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Abstract 
Extreme value models has been applied in environmental studies for modeling air 

pollution data. Recently, the max-stable processes have become a useful tool for statistical 

modeling of spatial behavior of extremes. In this article, the max-stable processes models 

are applied to data of extreme concentration levels of carbon monoxide in order to 

investigate spatial trends of this air pollutant in one of the largest urban zone in the world 

(Mexico City). The proposed approach uses the Smith and Schlather dependence models 

which are fitted in each year and, based on the Takeuchi information criterion, the 

Schlather model was chosen as the best fitted for these data. Subsequently, we propose a 

trend surfaces parameter nested into the parameters of the extreme values distribution, that 

allows to obtain predictive maps for this pollutant. The results of the studied case indicate 

that Schlather dependence models shows the best fit, and predictive maps shows an 

increase in the levels of this pollutant in the south region of the urban studied area. 

1. Introduction 

Throughout its history mankind has looked for the enjoyment of a life with a higher 

level of well-being and comfort. However, the development it has experienced to reach it 

has been accompanied with massive consumption of natural and power resources, as well 

as the generation of a large variety of waste and emissions to the atmosphere which have 

caused a large environmental degradation. 

A good example of environmental problems which have implications, both local and 

global, are the atmospheric ones, from which, the most important ones, due to their effects 

on the health of the population and the natural ecosystems, are the decrease of the air 

quality, the phenomenon of global climate change and the reduction of the stratospheric 

ozone layer. 

The atmospheric pollution has effects at local, regional and global levels. Several 

countries like Japan, China and Mexico face, for some time now, problems of air quality in 

their principal metropolitan areas; in the particular case of Mexico, the Valley of Mexico 

stands out as the most known and commented one. 

In the Valley of Mexico Metropolitan Zone (VMMZ) the atmospheric concentration of 

the principal pollutants is monitored: sulfur dioxide (SO
2

), carbon monoxide (CO),  
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nitrogen dioxide (NO2), ozone (O3), suspended particles 

(PM10 and PM2.5), total suspended particles (PST) and lead 

(Pb). Of these pollutants, the CO has been, steadily, the most 

emitted pollutant in the VMMZ, with values that have been 

between 66% and 79% of the total of emissions [21]. 

Many works studying some of these pollutants may be 

found in the literature, for example, [13] study the NO2 in 

Portugal in the spatio-temporal approach using geostatistical 

tools, from the view point of the extreme value theory, [2] 

study the occurrence and duration of ozone exceedances in 

Mexico City through a model of queuing theory, [22] use the 

Dagum distribution to modeling ozono levels in Mexico City. 

But none related to the present study. Reason for which this 

work focuses on the spatial extreme analysis of CO in the 

VMMZ. 

Carbon monoxide is an odorless and colorless gas, highly 

toxic, mainly emitted from burning fuels or any organic 

material when done in an oxygen-limited atmosphere. Its 

presence in the atmosphere in high concentrations is fatal to 

humans. Road traffic is the main source of carbon monoxide. 

Intoxication from this pollutant is one of the most common 

types of poisoning; it can inhibit oxygen from being transported 

to the cells and cause dizziness, headache, nausea, 

unconsciousness, and even death [10], [26]. The 

NOM-021-SSA1-1993 norm establishes that this pollutant must 

not surpass the permissible value of 11.00 ppm, equivalent to 

12595 µg/m
3
 in a mobile 8 hours mean once a year, as 

protection to the health of the susceptible population [20]. 

For our study, the max-stable processes are applied, which 

are natural models for modeling spatial extremes [12], these 

are a natural generalization of multivariate extreme value 

distribution in infinite dimensions. Nowadays, different 

spectral representations have been developed for stationary 

max-stable processes; see [8], [9] and [18]. Max-stable 

processes have been recently used for statistical modeling of 

spatial data; for example, [4] modeled extreme rainfall data 

using these processes. Another application to rainfall data can 

be found in [14], who modeled rainfall and proposed a 

practical estimation procedure based on pairwise likelihood. 

Other modeling approaches for spatial extremes, based either 

on copulas or on latent processes, are presented by [7]. 

Currently, different claseses of max-stable processes have 

been introduced; herein we will mention two of them, which 

will be used with our data. [24] used the [8] spectral 

representation and proposed a max-stable spatial model which 

is known as storm profile model. The different variables used 

in its construction can be interpreted as storm components, 

including shape and intensity. The process is based on points 

of a Poisson process together with a f kernel function, which 

can be a centered Gaussian density function. In this case, [23] 

explicitly found the bivariate distribution function for two 

locations; in this model, the dependence structure is obtained 

using Gaussian densities. 

In real applications, the measurements are taken at various 

locations, in some cases on a mesh, at specific time intervals. 

To do the inference, the observations are assumed to be 

independent in time. 

More recently, [18] proposed using a stochastic process as 

the kernel function. This generates a great variety of models 

when varying said process. He suggests using a Gaussian 

stochastic process, in this case, also obtaining an explicit 

bivariate distribution function. In both cases, using the [15] 

dependence function, the extreme coefficient can be obtained, 

which in this type of process is used as the function that allows 

to measure spatial dependence. Spatio-temporal aspects on 

extreme modeling are treated by [6] and [12]. 

The objective of the present paper is to use the max-stable 

stationary process to study the multivariate maximum 

concentrations of carbon monoxide in the spatial context to 

investigate spatial trends of this contaminant. 

2. Spatial Extremes and Max-Stable 

Processes 

2.1. Max-Stable Processes and Spatial 

Models 

Max-stable processes are the result of a natural extension of 

the multivariate extreme value theory in infinite dimensions. 

They provide a natural generalization of the extreme 

dependence structure in continuous spaces. Thus, the bivariate 

distribution function can be derived. 

Let T be a set of indices and let {Y
i
(x)}

x∈T
, i=1,…,n, be n 

independent replicates of a continuous stochastic process. 

Assume there are sequences of continuous functions a
n
(x)>0 

and b
n
(x)∈R so that  

Z(x)=
lim

n→+∞
 

max
n

i=1
Y

i
(x)−b

n
(x)

a
n

(x)
,    x∈T       (1) 

If this limit exists, the limit process Z(x) is a max-stable 

process [8]. 

Not that (1) does not guarantee that the limit exist; however, 

it always happens and can be observed that this type of 

processes can be appropriate to model maximum spatial 

extremes. Without loss of generality if a
n
(x)=n and b

n
(x)=0, 

the marginal distributions have a Fréchet distribution; this is 

F(z)=exp(−1/z), z>0. There are currently two different 

characterizations for this type of processes. The first of them, 

often referred to as the storm profile model, was introduced by 

[24] and the second was proposed by [18], who introduced a 

new characterization allowing a random shape. 

2.1.1. The Smith Model 
Let {(ξ

i
,y

i
),i≥1}  denote the points of a Poisson process on 

(0,+∞)×R
d

 with an intensity measure of ξ
−2

dξν(dy), where 

ν(dy) is a positive measure on R
d

. Then a characterization of a 

max-stable process with Fréchet marginal distributions is  
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Z(x)=max
i
 { }ξ

i
f(y

i
,x) ,    x∈R

d
          (2) 

where {���, ��, �, � ∈ 	
}  is a non-negative function such 

that � ���, ������ = 1�� , ∀x∈R
d
. To see that equation (2) 

defines a stationary max-stable process with Fréchet marginals, 

the marginals have to be proven to actually be Fréchet and that 

Z(x) satisfies the properties of a max-stable process. The 

process defined in (2) is more general and Smith considers a 

particular case where ν(dy) is the Lebesque measure and 

f(x,y)=f
0
(y−x) , where f

0
(y−x)  is the multivariate normal 

density function with zero mean and Σ covariance matrix. With 

these assumptions, we can prove that the cumulative 

distribution function for two locations is given by,  

Pr������ ≤ ��, ����� ≤ ��� = exp �− 1�� Φ  !2 + 1! log
����$ − 1�� Φ  !2 + 1! log

����$% 

where Φ(⋅) is the standard normal distribution function and, 

for two given locations 1 and 2, a
2
=∆x

T
Σ

−1
∆x, where ∆x is 

the distance between both locations. 

2.1.2. The Schlather Model 

Let Y(⋅) be a stationary process on R
d

 such that 

E[max{0,Y(x)}]=1 and let {ξ
i
,i≥1} be realizations of Poisson 

process on R
+

 with ξ
−2

dξ  intensity measure. Then, 

Schlather proves that the max-stable stationary process with 

unit Fréchet marginals can be defined as,  

����  =  max()(max{0, +(���}            (3) 

Where Y
i
(⋅)  are independent and identically distributed 

realizations of Y(⋅). 
Equation (3) is general and needs additional assumptions to 

obtain practical models. Schlather proposed taking Y
i
(⋅) to be 

a stationary standard Gaussian process with correlation 

function ,(h), with E[max{0,Y
i
(x)}]=1 . With these 

assumptions, we can prove that the bivariate cumulative 

distribution function of process is,  

Pr������ ≤ ��, ����� ≤ ��� = exp -− 12  1�� + 1��$ .1 + /1 − 2�,�ℎ� + 1� �������+����12 

where h∈R
+

 is the distance between locations 1 and 2. 

Usually, ,(h) is choosen from a valid parametric family (See 

Table 1); in this case c
2

 and ν are the range and the smooth 

parameters of the correlation function, Γ(⋅) is the gamma 

function, J
ν
(⋅)  and K

ν
(⋅)  and third type ν order modified 

Bessel functions and d is the dimension of the random field. In 

this case, it is possible to add a sill c
1

 and a nugget effect α to 

these correlation functions, as follows,  

,∗�ℎ� = 4 + 5�, ℎ = 0 5�,�ℎ� ℎ > 0 

Table 1. Some correlation functions. 

Family Correlation function Range of validity 

Whittle–Matern ,�ℎ� = �789
:�;� < =>?@; A; < =>?@  5� > 0,  > 0  

Cauchy ,�ℎ� = �1 + < =>?@�%B;
  5� > 0,  > 0  

Powered Exponential ,�ℎ� = exp C− < =>?@;D  5� > 0, 0 <  ≤ 2  

Bessel ,�ℎ� = <�>?= @; Γ� + 1�G; < =>?@  5� > 0,  ≥ IBJJ   

 

2.1.3. Spatial Dependence 

Let Z(⋅) be a stationary max-stable process with Fréchet 

margins the extremal dependence between N locations fixed in 

R
d

 can be summarized in the extremal coefficient defined as  

KL������ ≤ �, … , ���N� ≤ �� = exp <− OPQ @      (4) 

where 1≤Θ
N

≤N, with lower and upper bounds corresponding 

to a complete dependence and independence, respectively. 

Thus, we get a measure of the degree of spatial dependence 

between two stations. Given the properties of the max-stable 

process with unit Fréchet margins, the cumulative distribution 

function belongs to the multivariate extreme value 

distributions class, this is,  

KL������ ≤ �, … , ���N� ≤ �� = exp�−R���, … , �N�� 

where V is a -1 order homogeneous function, called the 

exponent measure [15], [3], and consequently the 

homogeneity property of V implies a strong relationship 

between it and the extremal coefficient. Thus, we get,  

ΘN = R�1, … ,1� 

A special case of equation (4) is considering pairwise 

extremal coefficients, this is,  

KL������ ≤ �, ����� ≤ �� = exp T− O�U7BU?�Q V     (5) 
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Θ(⋅) is known as the extremal coefficient function and 

provides sufficient information about the extreme dependence 

for many problems, although it does not characterize the 

whole distribution [19]. 

The Θ(⋅) function for the previously described models can 

be derived directly from the bivariate distribution function, 

taking z
1

=z
2
=z, this is  

Θ��� − ��� = 2Φ WX��� − ���YΣB���� − ���2 [ 

For the Smith model, while for the Schlather model it is,  

Θ��� − ��� = 1 + /1 − ,��� − ���2  

2.2. Inference in Max-Stable Processes 

2.2.1. Parameter Estimation 

For this type of processes, only the bivariate distribution 

function is known analytically, thus data fitting is not simple. 

In this paper, we consider estimation based on composite 

maximum likelihood, particularly the estimation of pairwise 

maximum likelihood [11]. In this case, the pairwise 

log-likelihood function is given by,  

\]�^; `� = ∑ ∑ logbc^d�e�, ^d�e�; `fge,hdijekh         (6) 

here ^ are the available data on the whole region, n
i,j

 is the 

number of observations common between i and j locations, 

and z
(i)

k
 is the kth observation of the ith location, and f(⋅,⋅) is 

the bivariate density of the max-stable process. The properties 

of the composite maximum likelihood estimators are well 

known [4] and belong to the class of maximum likelihood 

estimators under misspecification. 

2.2.2. Model Comparison 

Selecting the model plays an important role in statistical 

modeling. Given various models that adequately fit our data, we 

should choose the simplest and no the most complex model. 

There are several approaches to select the model, depending on 

the models that are going to be compared. In this paper, we 

chose the Takeuchi Information Criterion (TIC) [25], given by,  

TIC= − J \]c l̀ f–  J tr{nopBj}           (7) 

and as in the case of the AIC criterion [1], the best model will 

be that whose TIC is lowest. Recently, [27] rediscovered this 

information criterion and proved its use to select models when 

composite maximum likelihood estimation is used. 

3. Methodology for Modeling Spatial 

Extremes 

For modeling spatial extreme data, the following approach 

is proposed: 

a. Use of block maxima approach for each year. The 

maximum were taken from each block, made up of 

three-day consecutive observations, to guarantee their 

independence [3]. 

b. To perform an exploratory analysis for each station for 

every year and fit a GEV distribution, and verify the 

assumption. 

c. Transform the data to get a unit Fréchet distribution in 

each location as follows: if Y∼GEV(µ,σ,ξ), then the 

random variable defined as Z= 



1+ξ 

Y−µ

σ

1/ξ

 follows a 

unit Fréchet distribution. 

d. Fit the Smith and Schlather max-stable models for each 

year, obtaining the parameter estimations in each model. 

e. To produce predictive maps by introducing a linear trend 

surfaces into the GEV distribution parameter. 

To perform the data analysis a code in R statistical software 

was written, by using specifically, SpatialExtremes [16] and [17]. 

3.1. CO Data from Mexico City 

We present an application example of the max-stable 

processes described in the previous sections. The data set to be 

analyzed is made up of daily measurements of carbon 

monoxide registered hourly in VMMZ. The data were obtained 

from the Mexico City Environmental Meteorological System, 

which consist of daily measurements of the carbon monoxide 

levels registered every hour in 9 meteorological stations, from 

2008 to 2013, available at http://www.aire.df.gob.mx. 

Table 2 shows the list of stations, their geographical 

locations, and their altitudes. Figure 1 shows the study area, 

the VMMZ consists of 16 delegations of Mexico City and 29 

municipalities in Mexico State. 

Table 2. Meteorological stations under study. 

Code Station Longitude Latitude Altitude 

MER Merced -99°7’ 10.52" 19°25’ 28.59" 2245 

PED Pedregal -99°12’ 14.90" 19°19’ 30.54" 2326 

SAG San Agustin -99°1’ 49.15" 19°31’ 58.69" 2241 

SUR Santa Ursula -99°8’ 59.96" 19°18’ 52.12" 2279 

TLA Tlalnepantla -99°12’ 16.55" 19°31’ 44.68" 2311 

TLI Tultitlan -99°10’ 37.81" 19°36’ 9.14" 2313 

UIZ UAM Iztapalapa -99°4’ 25.96" 19°21’ 38.84" 2221 

VIF Villa de las Flores -99°5’ 47.72" 19°39’ 29.59" 2242 

IZT Iztacalco -99°7’ 3.50" 19°23’ 3.88" 2238 
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Figure 1. Study region. 

3.2. Results for CO in Mexico City 

Figure 2 shows the time series for Pedregal station from 2008 to 2013, in which the behavior of three-day block maxima of 

carbon monoxide is illustrated in each year. 

 

Figure 2. Carbon monoxide for Pedregal station from 2008 to 2013. 
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For the Smith model, the estimated spatial dependence parameters are shown in Table 3. 

Table 3. Spatial dependence parameters estimated for the Smith model, the standard errors is shown in parentheses. 

Year stjj  stjJ  stJJ  

2008 0.0003051(0.0000996 -0.0015313(0.0004490) 0.0131039(0.0022439) 
2009 0.0023020(0.0001546) -0.0021882(0.0002323) 0.0057172(0.0003743) 

2010 0.0029670(0.0006931) -0.0102894(0.0023580) 0.0360046(0.0080169) 

2011 0.0009467(0.0000489) 0.0010138(0.0000732) 0.0104137(0.0000307) 
2012 0.0013960(0.0003106) 0.0077026(0.0017259) 0.0444249(0.0096874) 

2013 0.0011950(0.0001059) -0.0040738(0.0003724) 0.0220853(0.0016569) 

The Schlather model was adjusted using the Whittle-Matérn (WM) correlation function and exponential (Exp). The results 

show that the model with the lower TIC was that where we used the exponential correlation function. Table 4 shows the results. 

Table 4. Takeuchi Information Criterion. 

 2008 2009 2010 2011 2012 2013 

TIC WM 37049.25 36668.09 36914.81 37256.32 36933.39 36812.45 

TIC Exp 37048.90 36667.56 36911.75 37233.72 36932.95 36803.19 

The spatial dependence parameters for the Schlather model using this correlation function are shown in Table 5. Note that in 

every case, the smooth parameter is near two, this suggests decreasing the dimensionality of the model and doing a hypothesis 

test on this parameter. 

Table 5. Spatial dependence parameters estimated for the Schlather model, the standard errors is shown in parentheses. 

Year ut  vwJ  xw  

2008 0.7723(0.1033) 0.3141(0.1283) 1.9999(3.26) 

2009 0.7000(0.1178) 0.2315(0.0698) 1.9998(1.84) 
2010 0.5562(0.3162) 0.0950(0.0398) 1.9887(2.43) 

2011 0.1384(0.1708) 0.0342(0.2616) 1.9902(8.82) 

2012 0.7818(0.2594) 0.1113(0.0732) 1.9997(4.34) 
2013 0.9999(0.1274) 0.1066(0.0492) 1.9814(1.48) 

To analyze the spatial dependence, the non-parametric extremal coefficients in each year were graphed. Figure 3 shows these 

coefficients for 2008, 2009, 2012, and 2013. Note that as time advances, the dependence tends to decrease. 

 

Figure 3. Non-parametric extremal coefficient. The continuous line estimates the trend of the spatial dependence. 
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Table 6 summarizes the Schlather model fitted to the 2012 data with the four correlation functions; they all have similar TIC, 

but the adjustment with the exponential function gives the lowest TIC. Similarly, the value of the log-likelihood function is 

similar in these cases. 

Table 6. Summary of the Schlather model fitted to the 2012 data. Standard errors are shown in parentheses. TIC is the Takeuchi information criterion and yzis 

the maximized composite log-likelihood. 

Correlation ut  vwJ  xw  TIC \]  

Whitmat 0.7545(0.1704) 0.0235(0.2351) 7.3450(140.30) 35897.60 -17943.46 

Cauchy 0.7578(0.1518) 0.6800(24.1971) 30.1698(2105.10) 35897.68 -17943.44 

Exponencial 0.7617(0.2202) 0.1252(0.0637) 1.9994(3.58) 35897.09 -17943.43 
Bessel 0.7574(0.1335) 0.0051(0.7280) 150.3081(4347.12) 35897.42 -17943.43 

To do the forecasts, it is convenient to define trend surfaces in the GEV distribution parameters as it is probable that the 

parameters show marginal spatial variation. In this case, for every x∈X, we assume that Y(x)∼GEV(µ(x),σ(x),ξ(x)), and thus we 

can define, for example µ(x)=h(x;β
µ

), x∈X, for a h(⋅;β
µ

) parametric function. To detect an adequate tendency, an exploratory 

analysis was done on the data. Figure 4 shows a symbol graph for the 2012 data. The circles are centered on the location of each 

station whose radius is proportional to the output value in that location and the mean value of the area. This suggests the 

following surfaces for our parameters: µ(x)=β
µ,0

+β
µ,1

lon(x)+β
µ,2

lat(x) , σ(x)=β
σ,0

+β
σ,1

lon(x)+β
σ,2

lat(x)  y 

ξ(x)=β
ξ,0

. 

 

Figure 4. Symbol plot for 2012 data. 

Other ways to select these marginal structures can be 

applied, for example, by adjusting several plausible models 

and choosing the one that has the lowest compound likelihood 

information criterion. In this case, the assumption of having 

Fréchet marginal distributions in each location can be omitted 

and the max-stable model can be fitted to the original data. 

Thus, the Schlather model was fitted to the 2012 data with the 

exponential correlation function and with the tendencies of the 

GEV distribution parameters. Table 7 shows the estimated 

parameters and their respective standard errors, also, Figure 5 

shows the validation of the model; the diagonal graphs the 

return levels and under it, the probability graphs in the 

Gumbel scale between the observed maximums for each block 

and those obtained through simulations of the adjusted model. 

The upper graph compares the extreme coefficient adjusted 

with the semi-parametric model. The other two graphs are the 

locations of the stations and the maximum probability graph 

by blocks, where the block size is four; this validates the 

goodness of fit of the model. Punctual predictive maps where 

then made for the location, shape, and return level at one week 

parameters; this is shown in Figure 6 – 8. 
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Table 7. Estimated parameters and standard errors of the Schlather model fitted to 2012 data, assuming trend surfaces in the GEV distribution parameters. 

 
u  vJ  {|,}  {|,j  {|,J  {s,}  {s,j  {s,J  {~,}  

�o  0.00176 0.0258 132.51 1.07 -1.28 68.13 0.5366 -0.7251 -0.0423 

����o�  10.7306 0.0534 33.39 0.3251 0.16 29.19 0.2914 0.1488 0.0308 

 

Figure 5. Model checking for the max-stable models fitted. 

 

Figure 6. Punctual forecasts for the Schlather process fitted, location parameter. 
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Figure 7. Punctual forecasts for the Schlather process fitted, scale parameter. 

 

Figure 8. Punctual forecasts for the Schlather process fitted, return level at one week. 

Finally, predictive maps were made using the trend surfaces estimated from the GEV distribution parameters. Return levels 1 

and 2 week were used. Figure 9 – 10 shows these maps. Note that an increase in the levels of the pollutant is forecasted in the 

south region of the Mexico valley, while in the north region it remains low. It is worth mentioning that in this case, spatial 

dependence is not taken into account. 
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Figure 9. Forecast of the return level, 1 week. 

 

Figure 10. Forecast of the return level, 2 week. 

4. Conclusions 

A methodology based in the max-stable processes by using 

a bivariate dependence model was implemented for 

investigating spatial trends in CO extreme concentrations. The 

methodology applied to carbon monoxide pollution data in the 

Valley of Mexico Metropolitan Zone from 2008 to 2013 

showed to be a good way to make inferences on the behavior 

of extreme concentrations. The max-stable models were fitted 

to these data and the best fit was observed to be with the 

Schlather model, likewise defining trend surfaces in the GEV 

distribution parameters. Fitting the Schlather model to the 

year 2012, we got predictive models for the following years, 

noting that higher levels of this pollutant are expected in the 

south region of the City. 
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