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Abstract 
This study presents the development, analysis and assessment of residential lighting load 
profile using computational intelligence based modelling - Adaptive Neuro Fuzzy 
Inference System (ANFIS) and Neural network (NN) models for prediction (forecasting) 
and evaluation of lighting load and initiatives. Factors considered in the development of 
the models include natural lighting, occupancy (active) and income level. Trapezoidal 
membership and sigmoid transfer function were applied during the training process of the 
ANFIS-based and NN-based model respectively. Using computational and different 
validation approaches, ANFIS gave better correlation and error level results in comparison 
with the NN-based method analyses notably morning standard, morning / evening peak 
and daily TOU (time of use) periods. The inference attribute of the ANFIS model based on 
characterization factors and its reflection of occupants’ complexity on lighting loads in 
residential buildings makes it a better lighting predictor especially in demand side 
management & residential lighting load energy efficiency project initiatives.  

1. Introduction 

Electricity demand outstripping generation has been shown by recent events around 
developing countries. Hence the need to institute different ways of coping with such issue 
i.e. using energy reduction, demand side management, implementation of energy 
technologies’, etc. According to the research carried by Pike research (2010) governments 
and organizations have looked to “lighting” as a swift means of achieving energy 
reduction [1]. A fifth of the total electricity consumption in an average household 
represents lighting demand [2]. Incentives and other programs to encourage and guide 
developers to implement efficient lighting in existing facilities and new projects has been 
put in place in South Africa and some other countries. This may has been deduced from 
research findings such as work carried out carried by Wong et al, 2010 which showed that 
lighting accounts for 20-30% of electricity consumption in a building [3]. Most impact 
evaluation of lighting usage / technologies has been based on fixed conditions where the 
presence of people and interactions of people are handled in an entirely deterministic way 
including some simulation programs. Other practices adopted at present in modelling 
lighting load in residential homes, do not reflect the complexity of the occupant(s) 
behaviour and the impact of environmental factors on such buildings and behaviour. 
Categorised methods or techniques that have been used for prediction or estimation of 
energy usage and lighting load includes statistical methods, analytical methods, empirical 
methods and modelling methods [3]-[12].  

As a result of human beings unpredictability, consumption habits, social lifestyle and 
cost of metering, lighting load model development have been relatively studied. This may 
be as a result of electricity consumption being inevitably influenced by random factors, 
while demand time series experiences highly non-linear characteristics [6]. Some of this  
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factor-s can be introduced to contribute and improved the 
prediction and estimation of lighting load within the 
residential sector. These factors may include occupant 
presence and effect on light usage, comfort level and income 
of individuals, location of residences and areas in terms of 
daylight effect, demographics characteristics etc. Literature 
discussions have shown that human behaviour and 
environmental climate could significantly change lighting 
usage in a residential dwelling within a period e.g. monthly or 
yearly basis [2]-[7]-[11]-[20]. 

Having this as a background, an approach that is capable of 
such characterization i.e. non-linearity, variableness, 
uncertainty and the ability to learn from historical data is 
needed. Adaptive network-based fuzzy inference system 
(ANFIS) is one of such approach. Studies using ANFIS for 
good predictability include, forecasting the amount of water 
discharge by stream water (River Kaduna) [13], prediction of 
surface roughness in turning operation [14], prediction model 
for water reservoir management [15] and river flow estimation 
by [16]. Result obtained showed that the ANFIS model is 
capable of high prediction accuracy. Another study using 
ANFIS approach was forecasting regional electricity loads. 
The study showed that ANFIS model has a better forecasting 
performance in comparison to the regression model, support 
vector machines with genetic algorithms, artificial neural 
network (ANN) model, recurrent support vector machines 
with genetic algorithms (RSVMG) model and the hybrid 
ellipsoidal fuzzy systems for time series forecasting (HEFST) 
model [17]. Another work carried out using ANFIS in 
combination with radial basis function (RBF) neural network 
was in the real-time price environment for the electricity 
market. The authors were able to demonstrate the flexibility 
and practicality of the model under the environment [18]. 

The main purpose of this study is to present an ANFIS 
based model lighting load predictor, assess and compare its 
performance with a learning algorithm based model (Neural 
network) for middle-income residential group.  

The outline of the study consists of the network structure, 
the parameter estimating algorithms, description of the main 
study group (middle-income earners), available data, model 
process design and strategy / development. Lastly, the 
discussion of models result, performance assessment and 
impact evaluation is carried out. 

1.1. Adaptive Neural Fuzzy Inference System 

(ANFIS) 

ANFIS well suited to mathematical analysis can simply be 
defined as a set of fuzzy 'if–then' rules with appropriate 
membership functions to generate the stipulated input–output 
pairs in the solution of uncertain and ill-defined systems [19]. 
The fuzzy inference is the process of formulating the mapping 
from a given input to output using fuzzy logic. The mapping 
then provides a basis from which decisions can be made or 
pattern discerned. The process of fuzzy inference involves 
membership functions, fuzzy logic operators, and if-then 
rules. This procedure (Fig. 1) is used to compute the mapping 
from the input values to the output values, and it consists of 
three sub-processes, fuzzification, aggregation, and 
defuzzification. Backward propagation algorithms and 

hybrid-learning algorithms methods are use for determination 
of the membership functions, learning provision of the ANFIS 
and construction of the rules. In general ANFIS system has 
input layer, output layer, and hidden layers that represent 
membership function and fuzzy rules. A typical three rule 
systems is shown as follows: 

Rule 1: if � is A1, � is B1 and � is C1, then  

�� � ��� �	
�� � ��� � �� 

Rule 2: if x is A2, � is B2 and z is C2, then  

� � �� �	
� � �� � � 

Rule 3: if x is A3, � is B3 and z is C3, then  

�� � ��� �	
�� � ��� � �� 

General rule being 

	�� � ��� �	
�� � ��� � �� 
Where x, y and z represents our inputs which are fuzzy sets 

Ai, Bi, and Ci representing natural lighting, occupancy and 
income. p, q, and z are the design parameters that will be 
determined during the training process.  

1.2. Feed Forward Back Propagation Neural 

Network (FFNN) 

The back propagation neural network consists of input 
layer, output layer, and hidden layers of neurons. Each layer 
has numerous neurons; each neuron is interconnected with 
adaptable weighted connections to neurons in the subsequent 
layer. The process of training involves the tuning of weights in 
order for the network to produce the desired output in relation 
to the particular inputs. To minimize the error function in 
relation to the desired output and actual FFNN outputs, a 
two-layer feed forward network and Levenberg-Marquardt 
back propagation learning algorithms is employed for this 
study. 

 

Fig. 1. ANFIS mapping. 

1.3. Model Development Design Strategy  

Fig. 2 shows the model development strategy applied. This 
entails relationship exploration based on characterization 
factors for model development that captures the non-linearity 
and complexities associated with residential lighting usage. 
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Three input factors namely natural light level, effective 
occupancy (Active/Awake occupancy) and household income 
grouping will be applied. The design strategy involves 

interactive importing and exploration of files, query of 
databases, filtrations and categorization of data feeds, use of 
Matlab / Excel sheet or interactive data language. 

 
Fig. 2. Logic Lights Usage Output Design. 

2. Study Methodology and Material 

ANFIS & NN techniques were applied to model a 
middle-income earner 24 hour lighting usage profile in a 
locality in Gauteng province, South Africa. Three input 
variables natural lighting (irradiance level), occupancy 
(active), and income earning are considered in relation to 
environmental factors, daily activities and its social class 
within the society. A survey data of 102 buildings carried out 
within the locality in the year 2010 as the input variables were 
used for both training and checking database (70%: 30% 
ratio). The classification of data as “error free” is because of 
the performance tracking exercise (physical audit and 
telephonic exercise) conducted periodically (yearly) to 
ascertain the impact of the utility compact fluorescent rollout. 
This conforms to the international performance measurement 
and verification protocol. The survey data are mainly 
historical obtained during the Eskom Measurement 
&Verification Compact Fluorescent initiative (CFL) 
implemented in the country using physical door to door 
exercise. The questionnaires format included the following 
key points: (i) Daily wake up time; switching ON lights and 
room involved; (ii) Occupant(s) departure time - from home; 
(iii) Time the occupant returned back home; (iv) Food 
preparation time and room lights that are ON in the evening; 
(iv) Sleeping time, (v) Bathing time (morning and /or 
evening). The information gathered will be interpreted using 0 
and 1 format. This will then be weighted between 0 and 1 
using an average weight per household utilization. Further 
validation of the model entailed the use of logging database 
(occupancy and lighting switch ON-OFF event) for a month 
period (November 2013 to April 2014) in homes for the 
various income groups and the use of different household’s 
survey profile data (Popoola et al., 2015). 

2.1. Metering 

For the metering aspect, Onset Hobo UX90-005/-006 or 
UX90-005M/-006M loggers were attached to each indoor 
luminaries or set of luminaries, on separate switch at the 
residential dwellings. One-minute resolution was used to 
capture the peaks and short duration events in this study. The 
data was downloaded and interpreted using the same format 
interpretation as the survey data. 

2.2. Sample Size 

The sample size is governed by confidence level - the level 
of certainty that the characteristics of the data collected will 
represent population characteristics; the margin of error that 
can be tolerated; statistical technique and analysis to be 
undertaken and lastly the size of the total population from 
which our sample is being drawn. This investigation was 
carried out using data sample size of 125 within the locality, 
however due to incomplete information, only 102 buildings 
were used for this investigation.  

3. Metering and Investigation 

Analysis 

3.1. Occupancy 

Most dwellings were occupied during the evening period as 
shown by the result obtained from the data loggers installed in 
different rooms within household dwellings in relation to 
average lighting usage and occupancy, while there was little or 
no occupancy during the daytime (Popoola et al., 2015). The 
findings were collaborated by the historical survey 
questionnaires. Other deductions include sharing of lighting 
especially in the evening and; increase and decrease in room 

Usage Of light 

Input 

� Natural light level 

� Active occupancy 

� Income 

 

Switch on events 

Natural lighting level 

Active Occupancy 

 

Output 

Usage of Light 

On/off 
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occupancy at certain TOU due to varying factors (Popoola et 
al., 2015). 

The assigned weights to reflect the active occupied room 
within the dwelling, which is expected to be variable 

throughout the day, is shown in Table 1. This is expected to 
contribute to effectual determination of the power demand at 
specific intervals. 

Table 1. Rooms occupancy weights. 

Weight No room occupied one room occupied Two rooms occupied Three rooms occupied Four rooms occupied House fully occupied 

Room(s) 0 0.2 0.4 0.6 0.8 1 

 
3.2. Natural Lighting 

A correlation coefficient of r = - 0.432116 was obtained 
from equation 1 based on data acquired from Hobo loggers 
(Popoola et al., 2014-Sims). The negative result obtained 
shows that an inversely proportional relationship exists 
between the switch ON (x) and switch OFF (y) event of 
artificial lighting. This thereby demonstrates that natural 
lighting plays a vital part in the use of artificial lighting usage.  

� � �∑����∑���∑��
���∑�����∑�������∑�����∑���               (1) 

where: � � �����ℎ	� 	!"!#�, � � �����ℎ	�%%	!"!#� 
x = switch ON event; y = switch OFF representing high 

natural lighting irradiance  
To simplify the investigation further, natural lighting was 

assigned weights also. Different weights were assigned 
according to the level of natural lighting (irradiance level) 
within 24-hours period in South Africa as follows: No Natural 
lighting = 0; Natural Lighting low = 0.3; Natural Lighting 
medium = 0.7 and Natural Lighting high = 1(Popoola et al., 
2015).  

3.3. Income 

Due to occupants not been keen to provide their earning, the 
rooms within the building were used to deduce their earning 
and social status at their locality based on University of South 
Africa bureau of market research (2012) (Popoola et al., 
2015). The group postulation is as follows: 

Middle-income (MI) group 
• Emerging Middle Income earners (EM): ≤6 rooms*;  
• Realised Middle Income earners (RM) group: 7 - above 

rooms*  
*these is the total rooms within a dwelling and not the 

active room; this is quite different from the occupancy weight 
ratio in Table 1.  

The ratio of the two group in respect of the 102 historical 
data was use as their income weighting e.g. Group EM - 0.3; 
Group RM – 0.7. 

4. Lighting Profile Development 

4.1. ANFIS-Based Model Predictor 

The model development based on the criteria - Table 2 was 
applied for effectively tuning of the membership functions to 
maximize the performance index and minimize error. 

Matlab version 7.10.0499 (R2010a) Adaptive Neuro-Fuzzy 
Inference system (ANFIS) toolbox was employed. The model 
development at the graphical user interface entailed obtaining 
training and checking data, data sizing, data partitioning and 

weighting, data set loading etc. The reliability of the estimated 
output based on the performance of a model is highly 
essential. This entails subjection to standard procedures and 
statistical evaluation (Root Mean Square Error (RMSE), 
correlation coefficient (r) and coefficient of determination 
(R2) analysis (15, 17 & 19).  

Table 2. ANFIS-based modeling measure. 

S/No Custom ANFIS Variables 

1. Membership Function Trapezoidal Membership Function 

2. 
Membership Function 
Number 

Three 

3. Learning algorithms 
Hybrid Learning (gradient descent and 
least square estimate) 

4. Epoch size 40 

5. Data size 102 

6. Surgeon type system First Order 

7. 
Output (consequent 
parameter) 

Linear 

The RMSE and r value indicate the closeness one data 
series is to another in this case while R2 is referred to as the 
goodness of fit - certainty of prediction. The target (actual) 
output values and the corresponding estimated generated by 
the model are represented by the data series in this 
investigation.  

The employed training errors for the ANFIS are the root 
mean squared error (RMSE= √MSE)) of the training data set 
at each epoch and the mean absolute percentage error (MAPE) 
of the checking data set at each time. If yt is the actual 
observation for time period t and Ft is the forecast for the same 
period, then MSE and MAPE are defined as in the equation 
below: 

'() � 	 ��∑ �%* − �*��
*,�                            (2) 

'-.) � 	 ��∑ /�0�10�0
2

∗ 100�

*,�                      (3) 

The RMSE and MAPE performance result for this model 
are 0.0670416 and 0.0610025. Note however, the training was 
completed at epoch 2. 

4.2. NN-based Model Predictor 

For the NN study, similar simulation and development 
strategy in section 4 were applied. These include use of middle 
income (both EM & RM) survey data of 102 buildings; input 
variables for both training, validation (checking) and testing 
database using these ratios 70%: 15%: 15%; information 
gathered in respect of the training, validation (checking) and 
testing data were interpreted using between 0 and 1 on excel 
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and imported into the MATLAB m-files spreadsheet. The first 
three columns in the data set represent the input variables i.e. 
same ANFIS-based variables (i.e. natural lighting, occupancy 
(active) and income while the fourth column indicates the 

output column for the training, checking and testing data). The 
model development training using the neural network tool in 
MATLAB workspace is based on the criteria in Table 3 and; 
performance result obtained is shown in Fig 3 and Table 4. 

 

Fig. 3. Correlation between Actual and Predicted lighting data. 

Table 3. NN-based modeling measure. 

S/No Custom ANFIS Variables-Middle 

1. 
Learning 
algorithms 

Levenberg-Marquardt back propagation 

2. Data size 
102 (Input data is 146880 x 3 matrix, while 
the target data is 146880 x 1 matrix.) 

3. Transfer Function 
A two-layer feed forward network with 
sigmoid (20 No.) hidden neurons and linear 
output (1 No.) neurons 

Table 4. NN-based model training result. 

1 Epoch 151 iterations 

2 Time 00: 09: 50 

3 Performance (MSE) 0.00401 

  Train Test Validate 

4 R2 0.9713 0.9691 0.9745 

5 MSE 0.0040 0.0045 0.0041 

6 RMSE 0.0632 0.0671 0.0640 

5. Results and Discussion 

Validations approach for this investigation using statistical 
analysis / inferences and graph plots are outlined in this 
section. 

5.1. Statistical Analysis & Assessment 

For the correlation analysis of the 1-minute interval data 
using (1), the deductions for the various groupings (EM & 
RM) are as follows: ANFIS-based EM & RM groups – 0.980 
and 0.964; while NN-based model is at 0.96 and 0.787 
respectively. The correlation of determination (R2) for EM and 
RM lighting usage estimator in comparison with the actual 
output is shown in Fig 4 and 5 (scatter diagrams). 

 
Fig. 4. EM ANFIS-based / NN Model precision. 

 
Fig. 5. RM ANFIS-based / NN Model precision. 

The standard errors obtained in respect of the 1-min interval 
predicted outputs for the models are ANFIS-based: EM & RM 
– 0.047 and 0.0683; while the NN-based model (see section 
5.3.2) is at 0.063 and 0.130 for EM & RM respectively.  

From these results, ANFIS-based model gave a better 
relationship and more positive fit in comparison with the 
actual output as shown by model plot. To further demonstrates 
model reliability, ten buildings (five buildings each for both 
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EM and RM group) and the metering data were subjected to 
varying statistical measures as shown in Table 5. From the 
result obtained/analysis carried out, it was observed that the 
ANFIS-based model predicted much better (R2 varied from 
0.7% to 21.52% accurately than the NN-based model) in terms 
of the applied factors – (human behavioural tendency) as 
shown in Table 10 for different households (buildings) and 
supported much widely by the metering data analysis. The NN 
based model related better in some instances (≈1%) with the 
expected actual output as shown also in Table 5; it however 
lacks the ability to properly extract trends for computation 
within a time period in relation to natural lighting and 
occupancy. The ANFIS-based model tends to be universal – 
i.e. the ability to learn and extract trends from data provided, 
compute and predict accordingly. 

5.2. Demand Profile Validation 

Since the essence of the model is lighting demand, a 
comparison of the daily lighting load profile for the two 
methodologies in relation to the actual profile is required. As a 
result, 24hr 15-min interval simulation for the 102 households 
was performed. The average demand profile is determined per 
interval using equation 4 based on 60W incandescent lamp 

rating. 

D15 min interval = (We x WL x NB) / Wɩ                (4) 

We = estimator weight for lamp in use per interval; Wɩ = 
initial estimator weight (actual) for lamp in use per interval; 
WL = wattage of lamp in use per interval; NB = numbers of 
building; D15 min interval = Average power demand per 
interval. 

The aggregated (total) simulated lighting profile for the 102 
residential buildings is shown in Fig 6 while Fig 7 is the 
demand correlation analysis. Figures 8 and 9 present the 
morning standard / peak periods demand output; Table 6 gives 
the breakdown of daily MAPE TOU pattern for all groupings 
in respect of the two models in comparison with the actual. 
Also from the load profiles, NN-based model average yearly 
lighting energy consumption using a 30-minute demand 
interval for middle-income earners is 436.34 kW while its EM 
& RM household’s are 537.32 kW and 405.27 kW 
respectively. This is more than the ANFIS-based model 
(400.16 kWh) energy consumption in comparison with the 
Actual. 

Table 5. ANFIS-based & nn-based modelling statistical analysis – middle-income earners. 

 
No. R2 RMSE MAE  Pearson Coefficient % Diff. (Performance) 

1. RM 
Building 1 ANFIS 0,825 0,088 0,02 0,909 

0,4% Building 1 NN 0,821 0,088 0,02 0,906 
Difference 0,004 -0,001 0,00 0,002 

2. RM 
Building 2 ANFIS 0,999 0,006 0,00 0,999 

1,3% Building 2 NN 0,986 0,021 0,01 0,993 
Difference 0,013 -0,014 0,00 0,007 

3. EM 
Building 23 ANFIS 0.834 0.090 0.02 0.913 

-1.0% Building 23NN 0.844 0.086 0.02 0.919 
Difference -0.010 0.005 0.00 -0.006 

4. RM 
Building 43 ANFIS 0,830 0,092 0,02 0,911 

-1,0% Building 43 NN 0,840 0,087 0,02 0,916 
Difference -0,010 0,004 0,00 -0,005 

5. EM 
Building 57 ANFIS 0,991 0,028 0,01 0,995 

1,1% Building 57 NN 0,988 0,032 0,01 0,994 
Difference 0,003 -0,004 0,00 0,002 

6. EM 
Building 63 ANFIS 0,983 0,040 0,01 0,991 

0,2% Building 63 NN 0,980 0,043 0,01 0,990 
Difference 0,002 -0,003 0,00 0,001 

7. EM 
Building 87 ANFIS 0,993 0,029 0,01 0,996 

-0,1% Building 87 NN 0,994 0,025 0,01 0,997 
Difference -0,001 0,005 0,00 -0,001 

8. RM 
Building 90 ANFIS 0,836 0,069 0,01 0,914 

9,4% Building 90 NN 0,742 0,082 0,03 0,861 
Difference 0,094 -0,013 -0,02 0,053 

9. RM 
Building 91 ANFIS 0,857 0,070 0,02 0,926 

3,6% Building 91 NN 0,821 0,080 0,04 0,906 
Difference 0,036 -0,009 -0,02 0,019 

10. RM 
Building 101 ANFIS 0,950 0,040 0,01 0,975 

1,0% Building 101 NN 0,940 0,043 0,01 0,970 
Difference 0,010 -0,003 0,00 0,005 

       
Polyn omial R2 % Diff. (Per formance) 

11. EM 
Metering 1 ANFIS 0,524 0,194 0,12 0,724 

10,2% 
0,61 

14,00%  Metering 1 NN 0,404 0,222 0,17 0,635 0,47 
Difference 0,120 -0,028 -0,05 0,088 0,14 

12. RM 
Metering 2 ANFIS 0,454 0,183 0,14 0,674 

18,7% 
0,55 

21,52% Metering 2 NN 0,267 0,305 0,23 0,516 0,34 
Difference 0,187 -0,122 -0,10 0,158 0,21 
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Table 6. Tou mape - comparison with actual value output (%). 

Group 
Morning Standard Morning Peak Evening Peak 

ANFIS-based NN-based ANFIS-based NN-based. ANFIS-based NN-based 

EM 5,68% 35,00% 5,50% 55,50% 11,85% 72,00% 

RM 0,50% 0,00% 4,75% 31,25% 3,97% 13,39% 

 
Fig. 6. Ave Daily Demand profile. 

 

Fig. 7. ANFIS / NN Demand correlation. 
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Fig. 8. Morning Standard / Peak Period. 

 
Fig. 9. Evening Peak period Demand. 

6. Conclusion 

Adept estimation of load profiles (lighting) is crucial for 
demand side management and implementation of / proposed 
energy efficient project across board. In development of such 
model, the behavioural pattern of the environment and income 
earning (social status) will be essential. The computational 
intelligence ANFIS & NN-based models based on three 
factors namely natural light, income and occupancy (active) 
were developed in the Matlab V7.10.0499 (R2010a) 
environment. The performance of the ANFIS-based model 
was better than the NN-based model as shown by the result 

obtained and the deduction from the statistical analysis such as  
• ANFIS-based model showed the ability to learn, extracts 

pattern much more accurately and estimate accordingly. 
This is notable from the load profile output. For instance, 
NN-based model predicted quite low (7.15 am – 7.30 
am) in the morning standard/ peak period and much 
higher (7.15 pm – 7.45 pm) for evening peak periods 
demand (Figures 8 and 9). These periods are very vital in 
Power Utility distribution planning (DSM) and energy 
efficient retrofit program in the residential sector.  

• The ability to reasonable analyze / attribute values taking 
into consideration factors or element for various 
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intervals instead of only identifying constant or 
consistent numerals to predict output as exemplified in 
Fig 7 by NN-based model. 

• The inference attribute of the model based on 
characterization factors makes it a better lighting 
predictor resource tool thereby enhancing energy 
managers, measurement and verification specialists’ etc 
evaluation and lighting profile development.  

• The study has shown that breakdown of income 
grouping is an essential factor that will enhance the 
lighting load prediction accuracy going by the result 
obtained from the income group and its breakdown into 
groupings (EM & RM) 

• Based on the results obtained from the study, it can be 
construed that the ANFIS model is a better modelling 
tool for the estimation / prediction of lighting load 
demand profile.  
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