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Abstract 
The objective of this paper is to contribute to the understanding of the bearing carrier 

frequency. It is widely believed that the carrier frequency of modulating fault 

frequencies is typically one of the bearing’s natural frequencies. To verify this 

assumption, Operational modal analysis was performed on the bearing vibration signals. 

Operational modal analysis main assumption is that the excitation of the structure is 

white Gaussian, which is violated in operating machines. Therefore, the harmonics (shaft 

and fault harmonics) were removed from the vibration data by converting the time 

domain signal into the order domain. Results show that the carrier frequency is not 

necessarily one of bearing’s natural frequencies. Out of two main frequency bands 

excited due to the fault, one included a structural frequency, however the other frequency 

band did not. 

1. Introduction 

Bearing fault frequencies appear as sidebands in frequency spectra around a carrier 

frequency [1]. It is believed that the carrier frequency is typically the resonance 

frequency of the bearing structure or an element of the bearing [2]. In other words, 

whenever the rolling elements hit a fault, a sudden impulse is generated, and this impulse 

excites the resonance frequency of the bearing housing. The excited frequency band in 

bearings is typically in the kHz range [3]. As shown later in this paper, for generator 

bearings of a 1.5 MW wind turbine, it is in the range of 2000 to 4000 and 5000 to 7000 

Hz. To investigate whether resonance frequencies are excited in these two frequency 

bands, Operational Modal Analysis (OMA) is used to calculate the natural frequencies of 

the bearing housing and supporting structure. 

However, unlike Experimental Modal Analysis (EMA), the main assumption of OMA 

is that the excitation of the structure is white Gaussian noise [4], which is basically 

violated for operating machines specially for a bearing with a fault; because, in addition 

to the random loads, harmonic excitations are also present due to rotating components. 

Since the input excitation is not measured in OMA, harmonic excitation (deterministic 

signals) shall be removed [5], to eliminate the influence of harmonic components in the 

modal parameter extraction process. It should be noted that harmonic excitation cannot 

be simply removed by filtering, since it may remove a natural frequency and disguise 

poles of the system [6]. 

OMA has been used in variety of applications such as buildings, towers, bridges, etc. 

where exciting the structure artificially is not possible (see e.g. [7] [8]), and they are 

excited by wind, traffic, etc. However, there are a few works on operating machines.  
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The main studies were published by Jacobsen et. al. [9] [10] 

where he proposed a method using spectral Kurtosis to 

remove the excitation and transform the measured signal in 

such a way that it is collected from a broadband excitation. 

Gade et. al. [6] used the same method for wind turbine 

gearbox application, where he successfully calculated the 

modal parameters. There is no other major work to the 

knowledge of the author. 

In this paper, OMA and Frequency Domain 

Decomposition (FDD) are explained. Then order domain 

harmonic identification and removal is used to remove the 

excitation from the signal from a wind turbine generator 

bearing, to make it suitable for OMA. And finally modal 

frequencies are calculated to observe whether bearing carrier 

frequency is one of natural frequencies. 

2. Operational Modal Analysis 

Modal analysis is a method to determine modal parameters 

of a system. The system could be a simple structure or a very 

complex model including several subsystems. Generally, the 

dynamic behavior of a system such as a vehicle or a wind 

turbine can be determined from knowledge of its modal 

characteristics. The response of a linear system to an 

excitation can be represented as a sum of the contributions 

from all the modes of the system. The motion and response 

equation for any linear system is given by: 

��� (�) + � �
 (�) + � �(�) = f(�)                   (1) 

where f(t) is the external force on the system. M, C, and K 

are Mass, damping, and stiffness matrices respectively; u(t) 

denotes the corresponding acceleration. Each solution of the 

above equation relates to a Degree Of Freedom (DOF) of the 

system and the behavior of a small portion of the whole 

system. When they are combined, they mimic the behavior of 

the complete system. Classical modal analyses are based on 

the measurements of both input force and output response, 

however in many instances input cannot be measured directly, 

as a result f(t) is not available, and OMA is used in lieu of 

EMA. Full details of advantage and disadvantage of OMA 

over EMA can be found in the literature such as [11]. 

The FDD technique is a non-parametric operational modal 

analysis technique introduced by Brincker et al. [12]. FDD is 

based on the singular value decomposition (SVD) on the 

basis that the excitation is both periodically and spatially 

white. SVD factorization is represented by: 

� = � ∑ �∗                                   (2) 

where U and V are unitary. V∗ is the conjugate transpose of V. 

∑  is a diagonal matrix with real numbers, called singular 

values on the diagonal. 

The relationship between the unknown input (x) and the 

measured response (y) at the frequency of ω can be written as: 

���(��) =  ��(��)���(��)�(��)�                (3) 

where ���(��)  is the r x r power spectral density (PSD) 

matrix of the input, and r is the number of inputs. ���(��) is 

the m x m PSD matrix of the responses, and m is the number 

of responses. �(��)  therefore is the m x r Frequency 

Response Function (FRF) matrix. An overbar denotes 

complex conjugate and T represents transpose of the matrix. 

Since there is no input, and only output data are available, 

then m = r [13]. 

On the other hand, the FRF, �(��) , can be written in 

partial fraction form as: 

�(��) =  ∑ ��
���  �

+ �!�
���  ��

 "
#$%                 (4) 

where n is the number of modes, &# is the '()eigenvalue, and 

*# is the residue which can be defined as: 

*# =  +# ,#
�                                (5) 

where ,#  is the mode shape vector, and +#  is the modal 

participation vector. ,# is the transpose of , [13]. 

Suppose that the input is a white Gaussian noise, then its 

PSD is a constant. Substituting ���(��) = � in eq. (3) gives: 

���(��) =  ∑ ∑ - ��
��� �

+ �!�
��. ��

/  � - �0
��� 0

+ �!0
��. �0

/
1"

2$%
"
#$%    (6) 

where H indicates the complex conjugate and transpose, i.e. 

Hermitian [14]. Assuming white Gaussian noise also means 

that the overall scaling of the system is lost. 

Multiplying the two partial fraction matrices and using the 

Heaviside partial fraction theorem, and after some 

mathematical manipulations, the output PSD may be 

shortened to a pole/residue form as: 

���(��) =  ∑ 3�
��� �

+ 34�
��� ��

+  5�
���� �

+ 5!�
���� ��

"
#$%      (7) 

Where �# is the '() residue matrix of the output PSD [12]. 

The residue matrix of the output PSD is a m x m Hermitian 

matrix, given by: 

�# = *# � -∑ [ �!07

� �� �0
+ �07

� �� 0
 "

2$% /                (8) 

The contribution to the residue from the '() mode is given 

by: 

�# =  �� 8 �!�
7

9 :�
                                   (9) 

Where ;#  is minus the real part of the pole which is 

&# =  −;# + ��' . When the damping is light, the residue 

becomes proportional to the mode shape vector: 

�# ≃  *# � *!# =  +#,#
� � ,#+#

� =  >#+#+#
�        (10) 

where ># is a scalar constant [11]. At a certain frequency ω, 

only a limited number of modes will dominate significantly, 

typically one or two. Let this set of modes be denoted by 

Sub(�). Therefore, in the case of a lightly damped structure, 

the response spectral density can be written as: 
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���(��) =  ∑ ?�@�@�7���  � � ?!�@� �@��7���  ��# A BCD���            (11) 

[13]. This final form of the matrix is then decomposed into 

a set of singular values and singular vectors using SVD. 

To implement the practical FDD technique, the first step is 

to estimate the PSD matrix. The calculation of the output 

PSD (GFF�jω� ) at discrete frequencies ( ω �  ωI ) is then 

decomposed by taking SVD of the matrix: 

������� �  �JKJ�J�                        (12) 

[12]. It should be noted that, in the case of real valued 

matrices, the ��  is a simple transpose. Near the peak 

corresponding to the '()  mode in the spectrum, the 

eigenvalue will dominate in its neighborhood. If only the '() 

mode is dominating there will only be one term in eq. (11). 

Thus, in this case, the first singular vector �J% is an estimate 

of the mode shape: 

+ �  �J%                                         (13) 

and the corresponding singular value is the auto-power 

spectral density function of the corresponding single degree 

of freedom system. The PSD (�������) function is identified 

close the peak by comparing the mode shape estimate + with 

the singular vectors for the frequency lines around the peak. 

3. Harmonic Identification and 

Removal 

There are two main approaches to identify the 

deterministic harmonics. First being Kurtosis as explained 

in [9], called Extended Kurtosis Checking. The idea is that 

the power spectral density function for a structural mode 

excited by a broadband signal is different from the one 

excited by a deterministic signal. Therefore, for each 

frequency line, the Kurtosis is calculated and compared 

with mean Kurtosis of other measurements at the same 

frequency line. Theoretically, if the signal is purely 

Gaussian distributed the mean is 3. If the Kurtosis deviates 

significantly from the mean Kurtosis, then the distribution 

is different from other measurements, and therefore should 

not be included in the OMA analysis. 

The second approach is explained in [15]. The overall 

concept is to change the time domain to angular domain, 

remove the known harmonic orders, and reconstruct the 

signal in time domain. This method is suitable for bearing 

vibration signal in wind turbines, since bearing 

characteristic orders are known based on the geometry. To 

examine the approach, a bearing signal is simulated. The 

simulated bearing has five rolling elements, with diameter 

of 2 cm and pitch diameter of 10.5 cm; thus, the outer race 

impulse frequency is 2fs Hz, that is the second order of shaft 

rotational speed. The impulse excitation can be considered 

as a defect input to the system that excites the natural 

frequency of the system when balls pass the defect. The 

bearing assembly is assumed to be a second order system as: 

L�M� �  N OPQMQ.QROPM.OPQ                           (14) 

This second-order impulse response is expressed in 

Laplace domain where K, S , and ω are DC-gain of the 

function, damping coefficient and natural frequency of the 

system, respectively. Any second order system whose 

transfer function is in the form of eq. (14) is stable for any 

positive values of S and ω. The time response of the second 

order system to an impulse input can be solved explicitly. 

The response in the frequency domain can be obtained as the 

product of the system transfer function and the Laplace 

transform of the unit step input signal, which is one (1) in 

case of impulse excitation to the system. The overall signal 

simulated from a bearing, then, can be created by adding the 

shaft harmonic and structural response (considering no noise). 

The natural frequencies of the system are assumed to be 104 

and 217 Hz. The fault is on the outer race (fixed position), 

and therefore, every time a rolling element hits it, an impulse 

is generated. The rotational speed is considered to be 5 Hz. 

Figure 1 shows the spectrum of the simulated signal. 

 

Figure 1. (Top) FFT spectrum of the simulated signal, (Bottom) Order 

spectrum of the same signal. 

Speed frequency and its harmonics are noticeable, as well 

as fault impulse frequency which is twice the speed 

frequency. The spectrum magnitude increases around the 

defined natural frequencies. To summarize, there are three 

components in the signal, shaft harmonics, modulating 

impulse components, and structural frequency components. 

The first two are violating the OMA assumption (i.e. white 

Gaussian excitation) and shall be removed, and only the fixed 

structural frequency components to be kept. To remove 

harmonic components caused by shaft speed and impulses, 

the signal is converted to angular domain, and FFT is applied 

on the constant angle sampled data (T�UV�) as shown in the 

same figure, using: 

W�X"� �  ∑ T�UV�Y�J�9Z"V/\�\�%V$]                 (15) 

Shaft speed harmonics are clearly noticeable. Impulse 

orders have higher magnitude. Orders excited at natural 

frequencies have much lower magnitudes. An index is 

defined as: 

' � ��ΔU X�                                       (16) 

where j is an integer and O is order number. Thus, harmonics 

at '2  in the order spectrum need to be removed. It is 



12 Ehsan Mollasalehi:  On Bearing Carrier Frequency: Operational Modal Analysis on Wind Turbine Bearing  

 

important to keep both the real and imaginary values of the 

spectrum, when an order is removed, because an inverse 

Fourier transform will be applied later to reconstruct the 

signal. If direct zeroing was applied, the signal characteristics 

would also be removed. 

 

Figure 2. Spectrum of the reconstructed simulated signal after harmonics 

were removed. 

Moreover, if the fixed structural frequency component 

happens to be on the variable harmonic, it will be removed, 

which is against the purpose of OMA. As a result, the local 

average values are used around the order which is to be removed: 

W�X#� �  �_6`�a�bc�d.�_6`�a�ec�d9 � fg6`�a�bc�d.fg6`�a�ec�d9       (17) 

It should be noted that j in eq. (16) starts from the upper 

limit of N/∆θO and decreases to 1. After the harmonics of the 

shaft and impulses are removed, the remaining components 

are used to reconstruct the signal in time domain using fixed 

time steps. The result is shown in figure 2. It clearly shows 

the defined natural frequencies, and harmonics were 

effectively removed. 

4. Bearing Vibration Analysis 

 

Figure 3. (Top) Raw acceleration data, (Bottom left) FFT Spectrum, 

(Bottom right) Spectrogram, at 1435 RPM- color scale (z-axis) represents 

the spectrogram amplitude (g). 

The wind turbine generator bearing studied in this paper 

had high value of vibration RMS, around 4 g. Figure 3 

represents the raw acceleration data, sampled at 25.6 kHz, 

when the shaft rotational speed was 1435 RPM, FFT 

spectrum and also the Short-time Fourier Transform (STFT) 

plot of one data (that is typical of other sets of data for this 

turbine). It is apparent that there are two main clusters, one 

around 6000 Hz which is the bearing natural frequency range, 

and the other one is around 3000 Hz. Therefore, the 

amplitude demodulation technique was performed on both 

frequency bands, as shown in figure 4. The sideband 

frequency and the harmonics in both top and bottom figures 

are associated with the ball pass frequency of outer race 

(BPFO), therefore, it is most likely that the bearing has a 

defect on its outer race. 

5. Operational Modal Analysis on 

Bearing Vibration Data 

As mentioned, vibration signals from the bearing contain 

three main parts; shaft harmonics, fault frequency harmonics, 

and structural vibration. There is a fourth part which is noise 

and frequency components from other rotating components 

close to the bearing vibration sensor in wind turbine drive-

train. Structural frequencies are fixed theoretically, since they 

are directly related to the structure and not affected by the 

shaft rotational speed. On the other hand, fault frequencies 

(bearing characteristic frequencies) are directly related to the 

shaft speed, and can be represented as multiples of the first 

order (which is shaft order). Therefore, to remove these 

harmonics, the following steps are applied to the signal: 

a. Vibration signal is converted to angular domain using 

computed order resampling 

b. The resampled signal is transformed to order domain 

c. Shaft orders and bearing characteristic orders are 

removed using the k index 

d. The remaining orders are transformed back to the time 

domain 

e. The reconstructed time domain signal is used for OMA 

 

Figure 4. Amplitude demodulation of (Top) 2000-4000 Hz, (Bottom) 5000-

7000 Hz. 

Four accelerometers are attached on the bearing housings, 

two on drive end bearing, and two on non-drive end bearing. 

Vibration data are transformed into the angular domain 
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(order tracking) and outer race and shaft orders are removed. 

Based on the geometry of the bearing (n=9, d=4.5 cm, 

D=23.5 cm, and α=0◦), the outer race frequency order is: 

X5hia �  "9 j1 < ?l cos ;p � 3.64                (18) 

It should be noted that the bearing does not purely roll. The 

slide-roll ratio is typically 2-3% [16], thus eq. (18) only suggests 

the neighborhood of the outer race fault order. In order to 

remove the exact fault harmonic effectively, each vibration 

signal is analyzed separately. Figure 5 shows a sample of the 

order diagram. The first order and integer harmonics relate to the 

shaft speed, whereas the order of 3.6 and its first three multiples 

relate to the outer race fault. Once the rotating orders are 

removed, the signals are converted back to time domain for 

further OMA analysis. Figure 6 shows the signal spectrum (a 

moving average filter is used to eliminate high frequency 

Gaussian components) after orders are effectively removed. 

To start extracting the modal parameters by OMA, FDD is 

used. There are no measured input signals, and Cross Spectral 

Densities (CSD) between outputs, f and g at sequence n is: 

�Kuvw�x� �  ∑ y46zd{6x � zd|g$�|              (19) 

where y4 denotes the complex conjugate of y in the frequency 

domain [17]. For N channels, a matrix is created as: 

������� �  }~Ku%,% � �Ku%,\� � ��Ku\,% � ~Ku\,\
�                (20) 

where diagonal elements, PSD, represent cross-correlation 

between same measurements called auto-correlation, and CSD, 

off-diagonal elements, represent cross-correlation between 

different measurements [8]. And finally, SVD is applied for 

each frequency, and repeated for the number of the 

measurements. This algorithm was validated by the author in 

[18], where an Euler-Bernoulli beam was modeled and time 

domain data from a free vibration analysis was simulated. An 

initial detection was made at the end of the beam and the 

responses at five locations (spaced equally along the beam) 

were calculated. The simulated time domain vibrations were 

inserted to the FDD algorithm, and it was shown that the FDD 

results are in agreement with the results from the simulation. 

 

Figure 5. Sample of order analysis on the generator bearing vibration data. 

Non-drive end generator bearings can potentially act as 

reference channels since they are minimally corrupted with 

fault frequencies from the drive end bearing signal. 

Subsequently, only shaft harmonics are removed from non-

drive end bearing. Figure 7 presents normalized (to the 

maximum value yielding the maximum of 1) singular values 

calculated by FDD. Since the data acquisition period is short, 

the low frequency values might not represent all structural 

frequencies. Regardless, two frequency bands are important 

in this analysis: 2000 to 4000 Hz and 5000 to 7000 Hz. For 

the frequency band of 2000 to 4000 Hz, there is a main peak 

excited close to 4000 Hz, which acted as carrier frequency in 

the presence of a fault. For the frequency band of 5000 to 

7000 Hz, there are no major peaks, this suggests that fault 

frequencies at this frequency band do not excite any 

structural frequencies. That said, the OMA assumptions are 

not completely met in this analysis. For instance, harmonic 

excitations from other rotating equipment (such as harmonics 

from the gearbox) might still be present in the signals after 

shaft and fault order were removed; It is minimum in non-

drive end bearing. 

 

Figure 6. Bearing signal spectrum after harmonics were removed. 

 

Figure 7. Normalized excited frequencies for the entire bearing datasets. 

Or, modal analysis is established under the assumption that 

the structure behavior is linear. Therefore, the results are not 

completely firm, yet they suggest more works and 

investigations on the understanding of the carrier frequency 

definition. 

6. Conclusions 

It is believed that bearing fault impulses excite a natural 

frequency of the bearing structure, in other words the carrier 

frequency of the modulating impulses is one of the natural 

frequencies. To investigate this, operational modal analysis 
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was used to calculate the structural frequencies of the bearing 

and its supporting structure. OMA, also called as output-only 

modal analysis, is based on measuring the output of a system 

and using the ambient and natural operating forces as 

unmeasured input. Thus, OMA assumption is that the 

excitations of the system are white Gaussian signal, and 

harmonic excitations (which potentially are mistaken for 

being structural modes) are to be removed before OMA 

analysis. Order spectrum was used to remove the known 

harmonic components of the signals: vibration signals were 

represented in angular domain, and known harmonics (shaft 

and fault orders) were removed by local averaging. Then, the 

order spectrum was converted back to frequency domain, and 

finally time domain signal was reconstructed, and OMA was 

applied. 

The analysis was applied to wind turbine generator 

bearings. Generator bearing faults excite mainly two 

frequency bands in kHz range (i.e. 2-4 kHz and 5-7 kHz). 

The results obtained from the OMA showed that the first 

frequency band contains a structural frequency, but the 

second band does not. Although analyses in this paper has a 

few uncertainties (e.g. other harmonics from other 

components in the drive-train might still be present in the 

reconstructed signal), the result suggests that modulating 

fault impacts to the bearing do not necessarily excite natural 

frequencies of the structure. 
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