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Abstract: Approximately 20-25 years ago, new approaches to the research of automatic control systems based on matrix 

methods appeared in the literature. New matrix designs (zero divisors, canonizers) have been developed that make it possible 

to extend the range of solvable problems, including not only minimal-phase, but also non-minimal-phase systems. It is obvious 

that matrix methods of investigation of linear systems are promising directions for the development of analysis and synthesis 

of dynamic objects, including studies of the steady–state stability of complex electrical systems. The mathematical formulation 

of the problem of studying the steady–state stability of electric power systems boils down to the following. Since all processes 

in the elements of the automatic control system are described by differential equations, the stability analysis reduces to 

investigating the properties of the solution of linearized equations for small perturbations. When analyzing and synthesizing 

dynamic systems, it becomes necessary to solve matrix equations. Along with the known methods for solving matrix equations, 

the article gives a method called the canonization method. Advantages of this method is its analyticity, i.e. this method allows 

us to carry out analytical studies of the resulting matrix equations. Canonicalization is based on a modified Gauss algorithm, in 

which the computational procedure is minimized. Here it should be noted that in the electrical system, when perturbations 

occur, the loss of stability occurs as a result of the synchronous generator leaving the synchronism or in the general case of 

rotating machines. Static elements affect the stability of electrical systems only by their parameters, which are usually assumed 

to be constant or slowly changing. Therefore, determining the conditions for the output from synchronism of a particular 

synchronous generator or their grostaups (stations) in a complex electrical system is the main task. The technology of 

embedding systems is an effective method for studying the steady–state stability (small oscillations) of an electrical system that 

makes it possible to determine all possible dynamic and structural properties of the linear matrix system under study. 
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1. Introduction 

The technology of embedding systems is the universal set 

of methods and methods for solving problems in the theory 

of systems, based primarily on modern achievements of 

algebra and reducing to determining the conditions under 

which a complexly organized (multidimensional, matrix) 

system behaves similarly to a relatively simpler (simply 

connected, well-studied or accessible for in-depth research) 

system [1]. The technology of embedding systems has the 

following features [2]: 

a. it is focused on analytical research and synthesis of 

linear multiply connected systems; 

b. takes into account a wide range of structural properties 

(poles, all types of zeros, algebraic features) of the 

studied or synthesized linear system; 

c. provides the possibility of obtaining the whole set of 

equivalent (indistinguishable by statement of the 

problem) results of analysis or synthesis of linear 

stationary dynamical systems if the desired solution 

exists and is not unique. 

Technology of embedding systems involves the sequential 
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execution of three stages [3]. Let's consider the stages of 

applying the technology of embedding systems. 

1. At the first stage, the general structure of the system 

being studied or synthesized is formalized. This is done by 

reducing the mathematical models of all the subsystems and 

the connections between them to a matrix of a special design 

- the problem matrix (the promatrix) Ω (p) of the problem 

being solved. The promatrix always has a square form and is 

reversible. If calculate the matrix inverse to the matrix, 

obtain a reversible problem matrix (resample matrix) Ω-1
 (p), 

which will contain all possible transfer functions of the linear 

dynamical system. Therefore, the promatrix is the only object 

of investigation, which exhaustively characterizes all the 

properties of a linear dynamical system. 

2. In the second stage, a so-called embedding identity is 

formed that establishes selective equivalence of the system 

under study and some other system, the image of ω(p) that 

has a known or desired set of properties. Speech are talking 

about the fragmented identification of the Ω-1
(p) and the 

image of ω(p): 

βΩ-1α = ω, 

which, in fact, gave the name of the technology. Here α and 

β in the general case are polynomial matrices of the required 

size, ω-image of the system under investigation. 

3. In the third stage, the transition from the identity of the 

investment to the calculated formulas is carried out. Matrices 

of equations α, β and ω form matrix equations whose 

solutions either do not exist (the problem posed is 

unsolvable), or it requires the fulfillment of those relations 

(values of matrix coefficients) that are this solution. 

Steady–state stability - stability under small perturbations, 

is investigated on the basis of methods that are based on the 

analysis of differential equations of the first (linear) 

approximation [4]. 

Checking the steady–state stability of power systems 

consists in determining the possibility of the existence of a 

stable regime with small perturbations of the parameters of 

the regime with given values of the parameters of the power 

system, the mode of generating sources, the load of node 

points, and the tuning of automatic mode control devices [5-

7]. 

2. Mathematical Model of Transients 

The study of small oscillations of a multi-machine 

electrical system will be carried out on the basis of equations 

in the state space having the form [3]: 

,ɺx A x B uΣ Σ= +                                    (1) 

,y Cx Dε= +                                   (2) 

where x, ɺx , y - the input vector of the state of the system and 

its derivatives, the output vector; АΣ, ВΣ, С, D - functional 

constants of the matrix, composed of the coefficients of the 

elements of the object and regulator of the system under 

study, u is a vector of input and disturbing factors, ε is the 

output vector. 

This model describes the transient process in the electric 

system, taking into account the balance of the moments 

(powers) on the shaft of the i-th power plant and has the form 

[8]. 

2
0

2
[ ]i

Ti Gi
ji

d
P P

Tdt

δ ω
= −                              (3) 

where ω0 is the synchronous angular frequency; 

,  ,  ,  ji i Ti GiT P Pδ − the inertia constant of the i-th aggregate, 

the load angle of the i-th generator, the mechanical power of 

the i-th turbine, the electromagnetic power of the i-th 

synchronous generator, respectively. 

The equation of electromagnetic power of the i-th 

synchronous generator in the positional idealization has the 

form [4]: 

2

1,

sin sin( ),

n

Gi i ii ii i j ij ij ij

j j i

P E y E E yα δ α
= ≠

= + −∑       (4) 

where Ei, Ej - emf. i-th and j-th synchronous generators; yii, 

yij - intrinsic and mutual conductivity of the network; αii, αij 

are complementary angles. 

Equation (4) is nonlinear, since the components of the 

equation are transcendental, in the form of a sinusoidal 

function. Therefore, in the study of small oscillations of 

electric power systems (EPS), Taylor series expansions and 

some trigonometric relations are used, which allow one to 

linearize the nonlinear differential equation of the aggregate 

(4) at the initial point of the mode P0 (the P-mode parameter: 

power, voltage, etc.), which simplify the studies of the static 

stability of the electrical system. The method of small 

oscillations, used in this case, is based on the assumption that 

the regime parameters that receive deviations of P =P0±∆P 

for small perturbations in the electrical system change to 

small values. 

Transcendental functions are linearized with the help of 

the following relations for any i and j: 

0 0,  ,  ,  ,ij i j i i i j j j ij jiδ δ δ δ δ δ δ δ δ δ δ= − = + ∆ = + ∆ = −  (5) 

and beyond 

i0 i j0 j

0 0

sin( ) sin[(δ ∆δ ) (δ ∆δ ) ]

  sin[( ) ( )]

cos cos sin ,

ij ij ij

i j i j ij

i ij j ijij

δ α α
δ δ δ δ α

δ β δ β β

− = + − + −
= ∆ −∆ + − −
= ∆ −∆ +

          (6) 

where 0 0 .ij i j ijβ δ δ α= − −  

It should be noted that the derivation of formula (6) uses 

the obvious relationships: 

sin( ) ( ) and cos( ) 1,i j i j i jδ δ δ δ δ δ∆ − ∆ ≅ ∆ − ∆ ∆ − ∆ ≅  

which are valid for small deviations in the generator load 
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angles. 

After the transformations (4), taking into account (5), (6) 

and the substitution, equation (3) takes the form: 

2
20

2
1,

[ ( sin )],

n

Ti i ii ii ij i ii i ij

ji j j i

d i
P E y b b c

Tdt

ωδ α δ δ
= ≠

= − − ∆ + ∆ +∑  (7) 

and taking into account the parameters of the initial regime 

and the relation 0i i iδ δ δ= + ∆  finally leads to a differential 

equation in the deviations [9]: 

2
0

2
1,

[ ],

n
i

ij j ii i
ji j j i

d
b b

Tdt

δ ω δ δ
= ≠

∆
= ∆ − ∆∑                (8) 

where 

1, 1,

cos ,  ,  , sin ,

n n

ij ij ij ij i j ij ii ij ij ij ij

j j i j j i

b a a E E y b b c aβ β
= ≠ = ≠

= = = =∑ ∑  

2( sin ) 0.Ti i ii ii ijP E y cα− + =  

If take into account the damper contours of the rotor of the 

i-th synchronous generator, equation (8) takes the form: 

2
0

2
1,

[ ],

n
i i

ij j ii i di
ji j j i

d d
b b P

T dtdt

δ ω δδ δ
= ≠

∆ ∆
= ∆ − ∆ −∑        (9) 

where Pdi is the coefficient of the generalized damper 

moment of the i-th generator. 

If the deviation of the emf is taken into account. i-th 

synchronous generator, equation (9) takes the form: 

2
0

2
1,

[ ].

n
i i i

ij j ii i di qi
ji qij j i

d d dP
b b P E

T dt dEdt

δ ω δδ δ
= ≠

∆ ∆
= ∆ − ∆ − − ∆∑   (10) 

A feature of equation (10) is that it is allowed with respect to 

the absolute angles of the system generators and, for example, 

for the three-generator electric system has the form [3]: 

2
01 1 1

11 1 12 2 13 3 1 12
1 1

2
02 2 2

21 1 22 2 23 3 2 22
2 2

2
3 0 3 3

31 1 32 2 33 3 3 32
3 3

[ ],

[ ],

[ ].

d q
j q

d q

j q

d q
j q

d d dP
b b b P E

T dt dEdt

d d dP
b b b P E

T dt dEdt

d d dP
b b b P E

T dt dEdt

ωδ δδ δ δ

ωδ δδ δ δ

δ ω δδ δ δ

∆ ∆
= − ∆ + ∆ + ∆ − − ∆

∆ ∆
= ∆ − ∆ + ∆ − − ∆

∆ ∆
= ∆ + ∆ − ∆ − − ∆

 

The system of equations of the EPS, reflecting transient 

processes for small deviations, is convenient, both 

algorithmically and computationally, in particular, in cases of 

their joint solution with steady-state equations - nodal 

voltages equations. This is explained by the fact that the 

result of the nodal voltages equations solution is the voltage 

module of the i-th node Ui and its argument δi, used in the 

above differential equations, determined with respect to the 

balancing node. 

3. Mathematical Model of the Circuit 

of Excitation and Automatic 

Regulator of Excitation of 

Synchronous Generators 

The equations of electromagnetic transient processes in the 

excitation circuit of the i-th synchronous machine in the 

deviations were in [3], and in a somewhat modified form 

have the form: 

' ,
qi

di qi qei

d E
T E E

dt

∆
= ∆ − ∆  

,
qei

ei AECi eqi

d E
T U E

dt

∆
= ∆ − ∆  

,AECi
pi i AECi

d U
T e U

dt

∆
= ∆ − ∆  

where - ' , ,di ei piT T T  the transition time constant of the 

excitation winding, the constant times of the exciter, the 

automatic excitation controller, respectively; 

,  ,  qi qei AECiE E U∆ ∆ ∆ - deviations of the synchronous, forced 

emf. and the voltage at the output of the automatic excitation 

controller (AEC), respectively. 

The generation of signals via the AEC ∆ei channels in an 

idealized form (provided that the constant times of the 

differentiating elements of the AEC are considered to be 

zero) can be represented as: 

2 2
0 k k 1 k k 2 k k (k k (d / dt) k (d / dt ),P P Pе P P P∆ = ∆ + ∆ + ∆  

where k0Pk, k1Pk, k2Pk are the gain factors of the AEC on the 

deflection channels, the first and second derivatives of the 

regime parameters ∆Pk, respectively, k is the number of 

adjustable mode parameters. 

4. Formation of Equations of 

Complex Electric System Based on 

Technology of Embedding Systems 

It is necessary to form models of the corresponding 

equations of EPS and regulating devices, using 

representations in the state space with respect to the 

technology of embedding systems. Taking into account the 

complexity of the equations of interrelations characterizing 

the multi-machine EPS, it is necessary to form equations and 

templates of the technology of embedding systems with 

maximally simplified relationships and at the same time 

allowing to fully take into account the dynamic properties of 

the electrical system. 

As indicated in [1], for a square matrix (m = n and C = In), 

the model for the object will have the form: 
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( ) ,

     0          

n

s

pI A B
p

I

− − 
Ω =  

 
                        (11) 

and for an adjustable dynamic system with a static regulator 

,u Kx= −  

the promatrix will be equal to 

  
( ) ,

               

n

s

pI A B
p

K I

− − 
Ω =  

 
                       (12) 

where A, B, C are given numerical matrices, K is the 

matrix of the regulator coefficients (n is the degree of the 

mathematical model of the object of the system under study, 

m is the number of system inputs, s is the number of 

controller outputs). 

In accordance with [2], the technology of embedding in a 

scalar image 

- for an open system: 

( )
( ) ,

( )

b p
f p

a p
=                               (13) 

- for the system closed by the regulator: 

( )
( ) ,

( )

q p
g p

d p
=                              (14) 

requires the formation of deterministic relationships that 

solve the problem of finding matrix numerators: 

( ) det( ),na p pI A= −                         (15) 

[ ( )] det( ) ( ),nb p pI A B a pαβ= − + −             (16) 

( ) det( ),nd p pI A BK= − +                   (17) 

[ ( )] det( ) ( ),nq p pI A B K d pαβ= − + + −         (18) 

The content of the system of matrix equations is as 

follows: a (p), d (p) are the characteristic polynomials for the 

model of the object under study - the electrical system and 

the closed controlled electrical system; [b (p)], [q (p)] are 

their matrix numerators, respectively, α  and β  two 

polynomial imbedding matrices. 

Relations (15) - (18), in contrast to the one-dimensional 

case, allow us to find matrix numerators of matrix transfer 

functions for the system under study for a multidimensional 

object with a regulator, which is characteristic of the modern 

approach to the study of complex dynamical systems [9]. 

The formation of the matrices A and B of the system (1) - 

(2) is based on the following considerations. Taking into 

account the complexity of the interrelations of the equations 

of the multi-machine electrical system, the self-matrix A is 

formed from the deviations of the absolute angles and slides 

of n generators, and the input matrix B from the deviations of 

the emf. machines. Then for a complex EPS the data of the 

matrix have the form [3]: 

21( ) 22( )

0 0
,  ,

nxn nxn nxn

nxn nxn nxn

I
A B

A A B
Σ Σ

   
= =   

  
 

where 

11 12 1 1

21 22 2 2
21( ) 22( )

1 2

    ...       0 ...   0

   ...   0    ...  0
,  

......................... .........................

     ...   0        0 ...

n d

n d
nxn nxn

n n nn dn

P

P
A A

P

ω ω ω
ω ω ω

ω ω ω

− −  
  − −  = =
  
  

− −    

.








 

Here the vector-column of state parameters, consisting of 

the parameters of the EPS mode: 

1 1[ ...     ... ] .T
n nx s sδ δ= ∆ ∆ ∆ ∆  

and the input vector: 

1[ ... ] .T
q qnu E E= ∆ ∆  

The matrix BΣ can be formed from two models of the 

dependence of the deviation of the active power of the i-th 

generator ∆Pi on the deviation of the emf. other generators of 

the electrical system: 

a) ∆Рi = f(∆δi…∆δn, ∆Eqi), i.e. ∆Ej=0, j=1-n, j≠i. In other 

words, the deviation of the active power of the generators 

depends on the deviation of the absolute angles and only the 

own emf. This generator, while the matrix B has the form: 

01

1 1

02

2 2

0

        0        ...     0

       0        ...    0
,

...............................................

       0               0      

q j

q jnxn

n

qn jn

dP

dE T

dP

dE TB

dP

dE T

ω

ω

ω

 − 
 
 

− 
=  
 
 
 

− 
  

 

b) ∆Рi = f(∆δi…∆δn, ∆Eqi…∆Еn) – the deviation of the 

power of the i-th generator depends on the deviation of the 

absolute angles and the emf. of all n generators and the 

matrix B has the form: 

0 0 01 1 1

1 1 2 1 1

0 0 02 2 2

1 2 2 2 2

0 0

1 2

       ...   

       ...   

................................................................

  

q j q j qn j

q j q j qn jnxn

n n

q jn q j

dP dP dP

dE T dE T dE T

dP dP dP

dE T dE T dE TB

dP dP

dE T dE T

ω ω ω

ω ω ω

ω ω

− − −

− − −
=

− − 0

.

     ...   n

n qn jn

dP

dE T

ω

 
 
 
 
 
 
 
 
 

− 
  

 

As can be seen from these matrices, the generalized 

eigenmode of the dynamics of a complex EPS AΣ has a size 

of 2nx2n, and the input matrix BΣ is a size of 2nxn. These 
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matrices make it possible to carry out in full the studies of the 

dynamic properties of the EPS under study on the basis of the 

technology of embedding systems if the matrix of 

coefficients of the regulator K is known, which is determined 

on the basis of synthesizing [10]. 

5. Conclusion 

Matrix methods of investigation of linear systems are 

promising directions for the development of analysis and 

synthesis of dynamic objects, including studies of the static 

stability of complex electrical systems. In this case, the speed 

of computation and the dimension of the systems under study 

will not be limiting factors, since they are solved as the 

development of information technology and the base of 

computer technology. 

The matrix equations of the EPS elements and the whole 

system were compiled on the basis of the most widely 

obtained equations of state variables, which are small 

deviations of the mode parameters-the angles of the rotor 

load of the synchronous generator, busbar voltages, power, 

and other operating parameters of the EPS. The considered 

matrix equations are used for analysis of transient processes 

and steady–state stability of EPS and for the synthesis of 

optimal parameters of regulators of synchronous machines 

operating in an electrical system. 

The mathematical model of the electrical system, resolved 

with respect to the deviations of the absolute angles of 

synchronous generators, can be used independently for 

studies of small oscillations of complex EPS. This model of 

small oscillations of complex electrical systems must be used 

in conjunction with the method of nodal voltages equations 

that determine the voltage modules Ui of nodes and their 

arguments representing the absolute angles δi with respect to 

the balancing node. 
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