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Abstract: This paper is specific to the background of ad hoc predictive modeling of electric power-distribution and related 

tariff issues by deducing objectively, a representative load-curve (RLC) vis-à-vis randomly-varying, daily electric-power 

demand in a service area. Relevantly, the method pursued uses an artificial neural network (ANN) in prescribing the said RLC 

within a cone-of-error (specified between a pair of stochastic bounds). Pertinent modeling and approach use a set of available 

(case-study) data; and, the closeness of the RLC deduced is cross-verified against relevant (existing) results derived via fuzzy 

K-mean method. The study concludes on adopting the bound-specified RLC towards formulating pertinent tariff considerations 

within a range of error-bar. The alternative ANN-approach proposed here has been found to produce accurate results close to 

FKM-results. However, it is an improvement over the FKM method in that the RLC is specified within a cone-of-error, 

accounting duly for the associated stochastic implications with the load-curve profile. Thus, rather than yielding a rigid RLC 

(yielding a rigid tariff policy), any tariff policy derived by this ANN-based method combined with stochastical bounds will 

have the judicious basis of technoeconomics of the utility in question. The method proposed here is novel and not hitherto done; 

and leads to optimal integrated planning for electricity towards load-demand versus tariffication decisions. 

Keywords: Representative Load Curve, Artificial Neural Network, Smart-Grid, Load Distribution,  

Stochastical Error Bounds 

 

1. Introduction 

In modern attempts towards implementing the complex 

infrastructure of a smart-grid in the network of an electric-

power utility facilitated in a service area, there could be 

different types of resources of electric energy being 

availed so as to meet the fluctuating load-demand posed 

by distinct groups of consumers across the power 

distribution network. Relevantly, demand (load) curves 

are assessed on a daily basis; and, such curves depict the 

statistical profile of electric-power consumption (in kW or 

MW) versus the time-of-the-day (1-to-24 hours). They 

implicitly decide the modeling aspects of the capital and 

operating expenses (CAPEX and OPEX) and hence, the 

tariff levied by the utility company. In this context, 

determination of a representative load-curve (RLC) of the 

aforesaid demand (load) curves is necessary so as to 

decide the logistics of underlying tariff to be levied on the 

consumer base in question. It is stressed in this study that 

such an RLC should also be specified within stochastic 

limits of a cone-of-error (rather than by a fixed-curve) 

commensurate with the statistical aspects of 

technoeconomic variables involved; and, specifications on 

relevant upper- and lower-bounds of the said cone-of-error 

are indicated for the example data analyzed here. 

(Relevant pursuit and suggestion indicated thereof are 

novel and hitherto not considered nor reported.) 
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1.1. Scope and Objectives 

This study is pertinent to the scope of deciding the 

performance of an electric utility with the objectives as follows: 

1. To describe a smart-grid implied infrastructure of an 

electric power utility in terms of deterministic features 

of the associated technological considerations and the 

stochastic profile of the power-distribution decided by 

the load-demand versus multiple power resources 

2. Using the aforesaid deterministic and stochastic 

considerations, to evolve a model of the underlying 

tariff logistics 

3. To assess hence, a representative load-curve (RLC) to 

analyze the technoeconomic details including the tariff 

considerations 

4. To develop an artificial neural network (ANN) method 

to determine the RLC and specify it with pertinent 

statistical upper- and lower–bounds (UB and LB) of the 

cone-of-error 

5. To formulate a compatible tariff model that can be 

specified within the said stochastic limits of the cone-

of-error (specified by the UB and LB). 

The technological aspects of power-system expansions 

with intended smart-grid implementations and assessing the 

associated economic reasonings that may impact the return-

on-investment (RoI) (gained via tariff) are essential 

considerations in modeling the technoeconomics of 

underlying expansion scenarios. Further, inasmuch as both 

electric-power generation and consumer-demand are 

stochastic details governed by both deterministic and 

statistical variables involved, the smart-grids provisioned in 

such expansions are to be designed in order to accommodate 

effectively the deterministic (known) engineering details as 

well as the fluctuating load-distribution profiles across the 

service network in question. Concurrently, the cost-of-

implementation (that is, the CAPEX) and the maintenance 

charges (namely, the OPEX) should be judiciously managed 

with appropriate tariff being levied on to the customers and 

revenues accrued thereof. Further, pertinent policy has to be 

logistically evolved and modeled consistent with the 

associated technoeconomics infested with stochastic 

attributes. Also, such models should be predictive (at least 

within a cone-of-error) via compatible forecast methods 

imposed on power generation (facilitated with multiple 

sources) and load-demand profiles observed on a daily basis. 

Hence, proposed in this study is a strategy on pertinent 

stochastic modeling of the technoeconomics of a power 

system and deducing the associated RLC using artificial 

neural network (ANN) approach; the purpose thereof, is to 

establish the details on the tariff versus power-demand 

profiles (with due considerations on their deterministic and 

stochastic characteristics). Relevant simulations indicated in 

this study are exercises carried out on a case-study data 

availed from the literature [1]. In all, the proposed effort in 

this paper objectively focuses on forecasting tariff issues 

implicitly correlated to an emulated RLC (specified within 

the statistical limits of a cone-of-error) of a test data set 

versus electric power-demand in an electric power utility 

encountered with statistical attributes; and, as stated before, 

the objective of the proposed effort on relevant prediction is 

aimed at using an ANN approach. 

1.2. Organization of the Paper 

Relevantly, the details of this study are organized in this 

paper as follows: The next section (Section 2) provides an 

outlay on the power-system specifics and load-distribution 

considerations (expressed in terms of measured load-curves). 

Also, Section 2 contains the heuristics on related tariff 

implications versus statistical aspects of fluctuating, multiple 

power-generations (adopted as resources) in smart-grid 

networks and corresponding random load-demand variations. 

In Section 3, relevant tariff considerations are identified in 

terms of technological norms and economics with their 

statistical bounds; hence, the underlying model proposition 

along with its algorithmic description is presented. Also, 

details on the test-ANN architecture and the associated training 

and prediction phases are covered (in Section 3). Estimation of 

an appropriate tariff parameter consistent with the objective 

model proposed is the topic addressed in Section 4; relevantly, 

determination of this tariff parameter versus load-statistics is 

considered via load-curve profiles and the RLC of a typical 

power-system network. The required RLC details are emulated 

using an ANN strategy. A summary of simulations done and 

discussions on the results obtained via the test ANN are 

furnished in Section 5 with reference to a set of case-studies 

data availed from the literature [1]. Hence, the predicted RLC 

is indicated to lie within a pair of stochastic bounds (of a cone-

of-error) close to the results obtained elsewhere on the case-

study data with the RLC deduced by another method [1]. The 

comparison made confirms the validity of the proposed 

method. Lastly, concluding remarks are presented in the 

closure section (Section 6). 

2. Power-System Load Distribution 

and Tariff Considerations 

2.1. Electric Power Systems with Smart-Grid 

Infrastructure: An Overview 

An avenue of modern electric-power utility includes 

provisioning a smart-grid network that contains multiple 

resources of power generation (such as thermal, hydro, solar, 

wind-mill, etc.) integrated or each placed in isolation on a 

distribution network of a service area; and, correspondingly, 

the consumer base may also consist of multiple types of 

demands posed by domestic, industrial, and commercial users. 

Implementing such a smart-grid infrastructure in the 

power-system utility also requires concurrently a market 

strategy in order to set up a pricing policy matching the cost-

profiles of the facilitated, multiple resources that meet 

different load-demands (consistent with the existence of a 

variety of customers); and, hence the associated tariffication 

policy also needs appropriate modeling. Therefore, 
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developing estimation procedures towards establishing a 

pertinent (tariff) parameter is crucial in the state-of-the-art 

smart power-grid systems. 

2.2. Load-Curves and RLC: Deterministic and 

Stochastic Considerations 

With reference to power-distribution networks with smart-

grid provisioning, the power consumption (P expressed in 

kW or MW) in a service area by a given type of consumers 

(such as domestic, industrial or commercial) may fluctuate 

with time over the 24 hours of the day. In other words, the 

power demand P is a random variable (RV) changing 

instantaneously as well as, possibly in conformance to a 

monotonic increasing or decreasing function of time. A 

hypothetical depiction of P versus time (H in hours) is 

illustrated in Figure 1. 

 

Figure 1. P versus time (H) – a hypothetical representation of the random 

variation of P with respect to time. 

The variation of P with time is typically characterized by 

the following: (i) Noticeable peaks and troughs at designated 

hours; (ii) random instant-by-instant fluctuations of the load 

and (iii) technology-dictated plus service-type based (overall) 

load-demand (power-consumption) variations (growth and/or 

decay profiles). In essence, Figure 1 illustrates the stochastic 

profile of the load-curve, which is often denoted by a time-

series expression of the type as follows: 

P(t) = a0 + a1Pt-1 + a2Pt-2 + … +ξ                 (1) 

Equation (1) denotes P(t) in terms of its instant-to-instant 

values, specified as a series; here ao is a constant intercept 

and, {a1, a2, …} is a set of the so-called auto-regressive 

model parameters and ξ is a random error component on each 

observation. Further, equation (1) implies that a set of 

coefficients decides the consequent elements of the series 

from specific time-lagged (previous) elements; and, it 

assumes the underlying process as stationary [2]. 

Typically, the stochastic aspects of equation (1) result 

from random fluctuations seen in power-consumption caused 

by endogenous technology-specific distribution system 

considerations; and, other causative exogeneous factors 

include the random patterns of electric power usage by the 

consumers as well as other related seasonal variations. 

The depiction of load-curve in Figure 1, however, can be 

“smoothed” with respect to short-time (instant-to-instant) 

variations. However, its profile across hourly changes can be 

significant and retained. Likewise, variations in electric 

power usage over seasons are significant and they are also 

retained. As such, a set of load-curves {a, b, c, d} as shown 

in Figure 2, are usually used in power-system analyses. 

 

Figure 2. A hypothetical exemplar set of load-curves {a,b,c,d} corresponding to seasonally varyingpower-demand profiles. (Each curve can be regarded as a 

smoothed version of the hypothetical curve in Figure 1). 

For applications such as, modeling the tariff policy 

consistent with power-demand in question, a representative 

load-curve (RLC) can be obtained for use, in lieu of the set 

{a, b, c, d}. For example, in [1], such a RLC is determined 

from a load-curve set pertinent to a case-study data of an 

electric utility system. The set of load-curves so considered is, 
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however, attributed with fuzzy characteristics; and, the 

method of K-Means is invoked to ascertain the RLC needed. 

Though such fuzzy considerations and K-Mean averaging 

could provide an average representation of the load-curves 

involved, yet another perspective on RLC would be to 

consider the stochastic aspects of the load-curves (implicitly 

specified by their random time-series depictions) and hence, 

arrive at the RLC specified with a cone-of-error confined 

within upper– and lower-bounds (UB and LB). A 

representation of the RLC under the circumstances of 

underlying endogeneous and exogeneous details of the set, {a, 

b, c, d} would be more realistic and more significant. 

Accordingly, pertinent tariff policy could also be established 

with bound-limited specifications for judiciously realistic 

applications. 

To the best of the authors’ knowledge, such RLC details 

prescribed within a cone-of-errors have not been determined 

and presented in the literature. As such, the present study is 

pursued and the required (bound-limited) RLC is obtained 

using an ANN-based method. 

As stated earlier, in [1] the representative load-curve (RLC) 

is prescribed to establish tariff requirements; and, it conforms 

to a specific customer group of interest. Pertinent data used 

depicts the power demand (P in kW or MW) in the 

distribution network (availed by the test group) over the 1 to 

24 hours of a day of a power utility system, in a specific 

case-study. The set of load-curves {a, b, c, d}, for example 

(as in Figure 2), would normally prevail in a power utility 

across the seasonal terms of a year; and, the RLC is a 

candidate that can be deduced from these load-curves so as to 

represent the net details of the associated power demands. 

(Typically, the RLC indicates the lowest as well as peak 

demand on the electric power from the consumer group 

under consideration over the 24 hours of the day). 

The electric-power consumption activity profile versus 

time can also be adopted to decide on the tariff levied on a 

rational basis. That is, the utility can determine the electric 

price for each customer class as per the demand perceived 

from that class [3]. 

As stated earlier, the method of finding the RLC described 

in [1] uses the fuzzy K-Means (FKM) technique. However, 

the present work, is conceived to offer an alternative strategy 

to construct the RLC using an ANN approach; and, the RLC 

deduced is also specified within a bounded statistical cone-

of-error. The following subsection (2.3) describes the pursuit 

involved. 

2.3. Proposed Bound-Specified RLC 

Determination Using ANN Approach: An 

Overview 

The underlying considerations and steps in constructing 

the RLC via ANN-based method are briefly outlined below 

and relevant details are furnished in the sections that follow 

Step I: Suppose the available load-curves (measured in an 

electric utility distribution base) are indicated by the set {a, b, 

c, d}, illustrated in Figure 1. These load-curves may refer to, 

for example, four seasonal data collected in a service area 

pertinent to a designated group of electric power consumers. 

Shown further in Figure 3, is an exemplar set of hypothetical 

load-curves a, b, c, and d; and, focusing on two time-instants, 

say k = 10 hours and k = 14 hours, the corresponding set of P 

values (in kW) on the load-curves are taken as follows (as in 

Figure 3): 

 

Figure 3. Hypothetical set of load-curves {a,b,c,d} with time-markings of k = 10 hours and k = 14 hours (being considered here as examples). 
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P_values of {a, b, c, d}at k = 10 hours ≡  {2,3,5,8}kW 

and 

P_values of {a, b, c, d}at k = 14 hours ≡  {3,6,7,10}kW 

Step II: As indicated in Step I, similar details for each hour 

(1 through 24) are also gathered with reference to the set {a, 

b, c, d}. Thus, the following details can be established and 

listed: 

(P)1 ≡  {P1a, P1b, P1c, P1d}kW 

(P)2 ≡  {P2a, P2b, P2c, P2d}kW 

⋮  

(P)k ≡  {Pka, Pkb, Pkc, Pkd}kW 

⋮  

(P)24 ≡  {P24a, P24b, P24c, P24d}kW 

Step III: For each set (P)k=1,2,…,24, gathered and listed in 

Step II, relevant pseudo-replicates can be generated via 

statistical bootstrapping technique [4]. The following are 

indicated as examples: 

Reference to the time-marking (in Figure 3) at H= 10 

hours: 

( ) { }a,b,c,d

10
2,  3,  5,  8

k
P = ≡  

and, at H = 14 hours 

( ) { }a,b,c,d

14
3,  6,  7,  10

k
P = ≡  

For each of the above sets, the pseudo-replicate values can 

be generated via bootstrapping concept [4]. 

Thus, considering the sets (P)k=10≡{2, 3, 5, 8} and 

(P)k=14={3, 6, 7, 10}, the corresponding pseudo-replicates can 

be specified and listed as shown in Table 1. 

Table 1. Bootstrapping-based pseudo-replicates of the test sets (P)k=10 and 

(P)k=14 of the load-curves, {a, b, c, d}. 

Original sets 
Examples of bootstrapping-based 

pseudo-replicates 

{ } { }
{ }

10

10

2,3,5,8

          , , ,

kP

a b c d

= ≡

⇒
 

{ }
{ }
{ }

2,3,5,5

3,2,5,8

2,3,3,8 .etc⋯
 

{ } { }
{ }

14

14

3,6,7,10

          , , ,

k
P

a b c d

= ≡

⇒
 

{ }
{ }
{ }

3,6,6,10

3,6,7,7

6,7,10,10 .etc⋯
 

Step IV: The pseudo-replicates presented in Table 1 denote 

examplars of shuffled values of the original sets at k = 10 and 

k = 14. The cardinality of each pseudo-replicate set is same 

as the original set; and, for each original set, the number of 

bootstrapped pseudo-replicates could be as large as 200 [4]. 

However, it can be limited to 20. That is, the number of 

pseudo-replicate sets for each original set could be as large as 

200 or even higher; but, in this study it is limited to 20 

(corresponding to 20 training iterations adopted in the test 

ANN as will be indicated later). 

Step V: Next, considering each hour (of 1 to 24) along the 

time-scale, containing four values of {a, b, c, d}, 

corresponding 20 pseudo-replicates are generated. They can 

then be applied as inputs to the test ANN to train it. Upon the 

realization of the convergence of the test ANN (as will be 

described later), the so-called interconnection weights of the 

net would correspond to values ready to predict the 

representative load-curve designation at the hour or time-

marking (for which the net is trained). 

Thus, training the test ANN for the entire time-frame of 1 

to 24 hours, the stored interconnection weights would 

designate the complete representative load-curve needed. The 

following section (Section 3) provides details on the usage of 

the pseudo-replicates on a test ANN. 

3. Construction of the RLC:  

ANN-based Emulation 

Considering a load-curve, as indicated earlier in Figure 2, 

it is divided into two major time-sections marked as I and II; 

and, the (empirical) description of the load-curve in those 

two sections can be specified in the format of time-series 

depicted via equation (1) as follows: 

In the time-section I of any load-curve: 

0 1 1 2 1( ) ( 1) ( 2)
I I I

P t P t P tα α α ζ= + − + − + +⋯     (2) 

Likewise, for the time-section II of any load-curve: 

0 1 1 2 2( ) ( 1) ( 2)
II II II

P t P t P tβ β β ζ= + − + − + +⋯     (3) 

Here, the sets {α0, α1, α2} and {β0, β1, β2} are empirical 

coefficients of time-series regressions fitted on the observed 

data set of load-curves in time sections I and II respectively. 

The cluster of load-curves conceived by varying these 

coefficients denotes a family of load-curves simulated using 

the pseudo-replicate data; and, the RLC required can be 

obtained as a ‘representative’ of this cluster of curves. 

In the present study, an ANN approach is pursued to 

deduce the RLC as above. That is, a sample set of four 

(seasonal) load-curves are first chosen from the field data (to 

represent the set {a, b, c, d}). Next, the pseudo-replicates are 

generated using these four curves at each hour, 1 to 24. As 

stated before, these pseudo-replicates (obtained via 

bootstrapping) intuitively lead to a cluster of load-curves; and, 

the RLC is derived from this cluster using an ANN as 

described below. 

In order to evolve the RLC in question, the type of test 

ANN adopted is described below. The test ANN being 

adopted corresponds to a feedforward architecture facilitated 

with backpropagation of the error. It consists of four input 

neuron units, one hidden layer (with four neuronal units) and 
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one output unit. The supervising teacher value corresponds to 

the arithmetic mean of the input set. The test ANN is 

illustrated in Figure 4. 

 

Figure 4. Test ANN: A feedforward net with backpropagation feasibility of the error. 

Training phase of the test ANN: The training input sets 

correspond to pseudo-replicated data set of {a, b, c, d} values 

in Table 1 (obtained via bootstrapping as indicated earlier) 

for each time-markings of 1 to 24 hours; and, relevantly, the 

following test parameters are used: 

1. Teacher value: This changes dynamically for each input. 

It corresponds to the arithmetic mean value of the four 

input values. 

2. Backpropagation is effected with the mean-square error 

(ɛ) obtained at the output and applied to the weight 

vector matrix [Wij] as shown in Figure 4. 

After applying the ANN training input sets (say 20 

corresponding to the pseudo-replicated values of {a, b, c, d}), 

the converged final weight matrix [Wij]Final (corresponding to 

each time-marking of 1 to 24 hours) is stored; then, each of 

the weight-matrices is adopted for use in the prediction phase 

as described below. 

Prediction phase of the test ANN: At each time-marking (1 

to 24), the test ANN is assigned with the converged weight-

matrix [Wij]Final deduced in the training phase; and, the 

subroutine RLC described below is applied to deduce the 

representative load-curve of the test utility. As in the 

subroutine RLC, by constructing the UB and LB curves of P 

versus time (hours, H) and establishing the corresponding 

infimum and supremum profiles, the RLC is decided by the 

cross-intersection of these profiles. For example, in Figure 4, 

considering example values at the time-instant, Hk=12, 

suppose the infimum and the supremum values are RI and RS. 

Then, the corresponding R is equal to the geometric mean of 

RI and RS. That is,   I SR R X R= . Likewise, the RLC 

coordinates can be established for all k = 1 to 24. 

“Subroutine RLC”: This refers to algorithmic details and 

computational routine towards deducing the required RLC. 

The pseudocode of the subroutine is as follows: 

This pseudocode is written on the ‘subroutine RLC’ 

(SRLC) 

%% The following are steps detailing the computational 

routines 

Input 
→ The weight-matrix [Wij]Final ascertained in the training 

phase of the ANN is recalled 
← The test ANN is configured with [Wij]Final 

Identify 
→ Time-markings, Hk=1,2,…24 are noted 

Select 
→ An arbitrary set of new pseudo-replicates of {a,b,c,d} 

are chosen and listed 
← The set of such pseudo-replicates can be arbitrarily 

taken, say as 10. 

Test 
→ Convergence of the test ANN (configured with 

[Wij]Final) with each pseudo-replicate set {a,b,c,d} at each 

time-marking, Hk=1,2,…24 ← The pseudo-replicates that showed convergence (in 

each case of Hk=1,2,…24) are completed 
→ Say, {a,b,c,d}, …, {a10,b10,c10,d10} 

Compute 
→ For each time-marking, compute the average-value set, 

{am,bm,cm,dm}, where 

( )m 1 2 10a a a  a /10= + + +⋯  

( )1 2 10 /10mb b b b= + + +⋯  

( )1 2 10 /10mc c c c= + + +⋯  

( )1 2 10 /10md d d d= + + +⋯  
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Determine 

1/2

( 1000)

1
[Z } Z (0.66)

2 2

1
[Z } Z (1.66)

2 2

m
m UB m q

m
m LB m q say

Z
L

Z
L

→

→∞

 → = +  
 

 → = −  
 

 

← Zm : Represents am or bm or cm or dm 

← Lq( • ): Langevin-Bernoulli function as defined in [5]. 

( )1 1 11( ) 1 coth 1 cothqL x x x
qq q q

      → = + + −      
      

 

← q: Order-parameter of the statistical system 

1
:  

2

:  

=

→∞

q Total disorder state

q Total order state 

 

List 
→ For each time-marking Hk=1,2,…24 list {am, bm, cm, dm}, 

{am, bm, cm, dm}UB and {am, bm, cm, dm}LB 

Plot: Upper- and Lower-bound (UB-LB) curves 
→ P versus time (hours, H) with the values of {am, bm, cm, 

dm}UB and ({am, bm, cm, dm}LB (at each time-marking 

Hk=1,2,…24) ← These curves depict the upper- and lower-bounds of 

the required RLC as illustrated in Figure 5. 

 

Figure 5. Deducing the RLC from the UB and LB values of the set {a, b, c, d} from ANN-based simulations. 

Decide 
→ RLC with UB and LB values 
← Establish the infimum and supremum profiles of the 

upper- and lower-bound curves (Figure 5) 
→ Infimum: 90 percentile value of UB 

Supremum: 110 percentile value of LB 
→ Example at Hk=12 in Figure 5, RI and RS are infimum 

and supremum values 
← Corresponding RLC value, R, is given by

  I SR R X R=  

→ Geometric mean of RI and RS: Cross-intersection 

bound values of UB and LB determine the cone-of-error as 

per the algorithm. 
→ Algorithm cone-of-error construction 
← RLC curve is decided and plotted. 

End 

4. Simulation Results 

Evolving the RLC via an ANN-based approach as 

conceived in this study involves the following simulations 

and pertinent results. 

4.1. Constructing the Pseudo-Replicates of 

the Set {a, b, c, d} 

As described earlier, by choosing an electric utility system 

and its field-data, a set of load-curves, {a, b, c, d} is 

considered; and, pertinent values of {a, b, c, d} in the time-

scale of k = 1 to 24 hours are noted and listed as original 

values. Hence, for each time-instant (k), corresponding 20 

sets of pseudo-replicates are generated via statistical 

bootstrapping. 

Presently, the case-study data as in [1] is considered as the 

original set and corresponding 20 sets of pseudo-replicates 

are obtained. 

4.2. Training Phase Results 

The training phase is done with the 20 pseudo-replicate 

sets of {a, b, c, d} used as inputs to the test ANN. The final 

weight matrix [Wij]Final obtained at the convergence of the 

20
th

 training set is then stored. Relevant weight matrix 

exhibits a fast-convergence as described in [6]. 
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4.3. Prediction Phase Results 

The test ANN is then organized with [Wij]Final as its 

weight-matrix; and, the RLC is determined as outlined in the 

pseudocode presented earlier. 

Shown in Figure 6 is the result on RLC deduced by the 

present method and shown within a cone-of-error decided by 

intersection bounds of the UB and LB values of the load-

curves shown in Figure 5. This result corresponds to the 

same electric utility case-study data considered in [1]. Along 

with the details of Figure 6 on the proposed RLC also 

indicated is the FKM result due to Phan [1] shown for 

comparison. The efficacy of the present method could be 

seen by comparing the present result (within the cone-of-

error) obtained against the RLC deduced via FKM method. It 

should be noted that the FKM method in [1] does not provide 

the span of possible bounds on the computed result on RLC. 

In contrast, the present study is more comprehensive in 

furnishing a cone-of-error result commensurate with the 

underlying stochastic considerations. This approach is novel 

and not indicated in any prior studies. 

 

Figure 6. RLC’s obtained via FKM approach due to Phan [1] and ANN-method proposed in this study. The present study implies the RLC be specified within 

a cone-of-error. 

5. Discussions 

The FKM versus ANN-based results on RLC indicated 

above are presented in Table 2 for evaluation. 

Table 2. Comparative results on RLC deduced via FKM and ANN-based 

methods. 

Computed Results on P (in MW) 

 
FKM-based 

result 
ANN-based results 

Time-

marking 
RLC RLC RLC (UB) RLC (LB) 

H1 1215 1231 1494 1025 

H2 1160 1109 1347 922 

H3 1130 1039 1263 863 

H4 1120 1089 1324 905 

H5 1130 1118 1358 930 

H6 1180 1045 1271 868. 

H7 1315 1276 1547 1062 

H8 1650 1640 1979 1373 

H9 1770 1673 2018 1401 

Computed Results on P (in MW) 

 
FKM-based 

result 
ANN-based results 

Time-

marking 
RLC RLC RLC (UB) RLC (LB) 

H10 1850 1878 2258 1578 

H11 1860 1864 2241 1565 

H12 1700 1650 1991 1382 

H13 1770 1764 2125 1480 

H14 1880 1841 2215 1546 

H15 1895 1829 2201 1536 

H16 1900 1909 2294 1605 

H17 1800 1742 2099 1461 

H18 1800 1787 2152 1500 

H19 1830 1783 2147 1495 

H20 1780 1736 2092 1455 

H21 1760 1790 2156 1502 

H22 1650 1604 1937 1342 

H23 1480 1521 1838 1271 

H24 1320 1243 1508 1035 
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Table 3. Percentage differences in computed results on RLC. 

 
Computation Method Used 

Time-

marking 

FKM 

Result 

(kW) 

ANN 

Result 

(kW) 

Percentile Difference of the 

ANN-based result with respect 

to the FKM-based result 

H1 1215 1231 1.34% 

H2 1160 1109 4.42% 

H3 1130 1039 8.07% 

H4 1120 1089 2.74% 

H5 1130 1118 1.07% 

H6 1180 1045 11.43% 

H7 1315 1276 3.00% 

H8 1650 1640 0.62% 

H9 1770 1673 5.48% 

H10 1850 1878 1.53% 

H11 1860 1864 0.19% 

H12 1700 1650 2.93% 

H13 1770 1764 0.33% 

H14 1880 1841 2.09% 

H15 1895 1829 3.46% 

H16 1900 1909 0.48% 

H17 1800 1742 3.20% 

H18 1800 1787 0.7% 

H19 1830 1783 2.58% 

H20 1780 1736 2.46% 

H21 1760 1790 1.72% 

H22 1650 1604 2.79% 

H23 1480 1521 2.74% 

H24 1320 1243 5.81% 

In view of the results presented in Tables 2 and 3, the 

maximum percentage difference between FKM versus ANN-

based methods is 11.43%, and most other percentage 

differences were much below that. This implies that the 

ANN-based method of determining the RLC is valid. 

Further, each difference observed in ANN-based method is 

also specified with error bounds (UB and LB). This is, 

however, absent in FKM-based approach. The bounds (UB 

and LB) designate a cone-of-error. 

Corresponding to the RLC observed, the tariff policy can 

be specified in both cases; however, in case of ANN-based 

approach such a policy is also bound-specified. 

Tariff levied in an electric power-utility is directly decided 

by the load-demand considerations involved. 

That is, demand forecast in electric utility systems is directly 

dependent on technoeconomic considerations of the underlying 

technology investments and economic plus demographic 

variables (such as, GDP, population and household growth). 

Further, the demand profile could vary with customer type 

(domestic, commercial, industrial and agricultural); and, weather 

could also play season-based roles [7]. 

Relevantly, the actual electricity sales in an area 

(consistent with annual demand from the end-use) are tariff-

specific. That is, suppose the electrical power demand per 

day is PD (kW). Relevant cost-recovery (via tariff) should 

meet the RoI expectations. The energy consumption per day 

(ED) can be deduced from the RLC as follows: 
24
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kγ =∑ E  where ki is a coefficient expressed in 

dollars per kWh. This coefficient is an optimal parameter 

decided by the utility policy towards RoI recovery. Pertinent 

optimization criteria can be decided as indicated for example 

in [8, 9, 10]. 

In all, RLC-based demand versus tariffication could form a 

best practice approach towards integrated planning for 

electric utility services. 

6. Closure 

As concluding remarks, the proposed study refers to 

deducing an RLC needed in power system planning scenario 

by duly considering the stochastic aspects of the associated 

random load-demand fluctuations. Hence, the RLC is 

specified within a statistically-appropriate and logically-

justifiable cone-of-error (within a pair of upper- and lower-

bounds), rather than as a deterministic profile (as done in 

earlier studies via FKM approach). An ANN-approach is 

presented thereof in formulating this alternative strategy 

towards deducing the RLC; and, the ANN-based RLC details 

so obtained are close to the FKM-based results, confirming 

the efficacy of the pursuit proposed. 

The RLC data (and hence, the tariff policy) when indicated 

within a cone-of-error, duly accounts for the stochastic 

implications associated with the load-curve profile as decided 

by fluctuating consumption, endogenous distribution system 

considerations and technoeconomic randomness. As such, any 

tariff policy derived will have judicious basis of 

technoeconomics of the utility in question. (The FKM method 

in [1], however, yields only a rigid RLC and corresponding 

tariff policy). The statistical error-bound based RLC 

determination as proposed here, is novel and not hitherto been 

done (to the best of the authors’ knowledge). Relevant 

approach could lead to an optimal integrated planning for 

electricity towards load-demand versus tariffication decisions. 

This is essentially pertinent to the contexts of overlaying 

smart-grids in the expansion of (or retrofitting in) existing 

infrastructure of an electric utility system [11, 12, 13]. 
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