

Computational and Applied Mathematics Journal
2015; 1(2): 21-28

Published online February 20, 2015 (http://www.aascit.org/journal/camj)

Keywords
Iterative Method,

Jacobi Method,

Modified Jacobi Method

Received: January 17, 2015

Revised: January 27, 2015

Accepted: January 28, 2015

On Some Iterative Methods for
Solving Systems of Linear
Equations

Fadugba Sunday Emmanuel

Department of Mathematical Sciences, Ekiti State University, Ado Ekiti, Nigeria

Email address
emmasfad2006@yahoo.com, sunday.fadugba@eksu.edu.ng

Citation
Fadugba Sunday Emmanuel. On Some Iterative Methods for Solving Systems of Linear Equations.

Computational and Applied Mathematics Journal. Vol. 1, No. 2, 2015, pp. 21-28.

Abstract
This paper presents some iterative methods for solving system of linear equations

namely the Jacobi method and the modified Jacobi method. The Jacobi method is an

algorithm for solving system of linear equations with largest absolute values in each row

and column dominated by the diagonal elements. The modified Jacobi method also

known as the Gauss Seidel method or the method of successive displacement is useful

for the solution of system of linear equations. The comparative results analysis of the

two methods was considered. We also discussed the rate of convergence of the Jacobi

method and the modified Jacobi method. Finally, the results showed that the modified

Jacobi method is more efficient, accurate and converges faster than its counterpart “the

Jacobi Method”.

1. Introduction

In computational mathematics, an iterative method attempts to solve a system of

linear equations by finding successive approximations to the solution starting from an

initial guess. This approach is in contrast to direct methods, which attempt to solve the

problem by a finite sequence of some operations and in the absence of rounding errors.

These direct methods lead to exact solution. Iterative methods are usually the only

choice for nonlinear problems involving a large number of variables where there is no

closed form solution or where the problems cannot be solved analytically. Probably the

first iterative method for solving a linear system appeared in a letter of Gauss to his

student. He proposed a method of solving a 4x4 system of equations. The theory of

stationary iterative methods was established with the work of D.M. Young starting in

the 1950s. The most well-known and accepted method for solving a system of linear

equations is the so called “The Cramer’s Rule”. However, there are other direct

methods for solving systems of linear equations such as the Gauss Elimination, the

Gauss Jordan method, LU Decomposition and Tridiagonal matrix algorithm.

But, when solving a system of linear equations with more than four unknown variables

(that is, when dealing with a higher order matrix) all these methods become very lengthy

and tedious to solve by hand. Therefore there is need for the use of a dedicated coding

language like MATLAB.

The paper is structured as follows: Section 2 gives a brief overview of iterative

methods for solving systems of linear equations. Section 3 presents some numerical

experiments, discussion of results and conclusion.

 Computational and Applied Mathematics Journal 2015; 1(2): 21-28 22

2. Iterative Methods for Solving

Systems of Linear Equations

An iterative method is a mathematical procedure that

generates a sequence of improving approximate solutions for

a class of problems. A specific implementation of an iterative

method, including the termination criteria, is an algorithm of

the iterative method.

An iterative method is said to be convergent if the

corresponding sequence converges for some given initial

approximations. A rigorous convergence analysis of an

iterative method is usually performed; however, heuristic

based iterative methods are also common.

In this paper we shall consider the system of linear

equations of the form

Ax b= (1.1)

Equation (1.1) can also be written as

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...

...

...

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 

⋮ ⋮ ⋮ ⋮
 (1.2)

where 11 12,, ..., nna a a are constant coefficients and

1 2 3, , ,..., nb b b b

are given real constants in the system of n-

linear algebraic equations in n-unknown variables

1 2 3, , ,..., nx x x x . The solution to (1.1) can be classified in

the following ways:

• If a system of linear equations is solved and unique

values 1 2 3, , ,..., nx x x x

are obtained, then the system is

said to be consistent and independent.

• If on the other hand when the system has no definite

solution, it is said to be inconsistent.

• If the system has infinitely many solutions, then it is

said to be consistent and dependent.

In the sequel we shall consider two iterative methods for

solving system of linear equations namely; the Jacobi method

and the modified Jacob method.

2.1. The Jacobi Iterative Method

In numerical linear algebra, the Jacobi method is an

algorithm for determining the solutions of system of linear

equations with largest absolute values in each row and

column dominated by the diagonal element. Each diagonal

element is solved for, and approximate values are substituted,

the process is then iterated until it converges. This algorithm

is a stripped-down version of the Jacobi transformation

method of matrix diagonalization. This method is named

after Carl Gustav Jakob Jacobi (1804-1851). Let us consider

the general system of linear equations given by (1.1) which

can be written in the form:

1

, 1,2 ,
n

ij j i

j

a x b i n
=

= =∑ ⋯ (2.1)

The following are the assumptions of the Jacobi method:

• The system given by (2.1) has a unique solution

(consistent and independent)

• The coefficient matrix A has no zeros on its main

diagonal.

If any of the diagonal entries 11 22 33, , ,..., nna a a a is zero,

then rows or columns must be interchanged to obtain a

coefficient matrix that has non zero entries on the main

diagonal. In Jacobi method, each equation of the system is

solved for the component of the solution vector associated

with the diagonal element, that is, xi as follows:

()

()

()

1 1 12 2 1

11

2 2 21 1 2

22

1 1 1 1

1
...

1
...

1
...

n n

n n

n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

 (2.2)

Equation (2.2) can also be written as

1

1

1
, 1,2

n

i i ij j

jii

x b a x i n
a

−

=

 
= − = 

 
∑ ⋯

Setting the initial estimates 0 0 0

1 1 2 2 1 1, , ..., n nx x x x x x− −= = = .

Then (2.2) becomes

()

()

()

1 0 0

1 1 12 2 1

11

1 0 0

2 2 21 1 2

22

1 0 0

1 1 1 1

1
...

1
...

1
...

n n

n n

n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

 (2.3)

Equation (2.3) is called the first approximation. In the

same way, the second approximation is obtained by

substituting the first approximation (x-values) into the right

hand side of (2.3), and then we have

()

()

()

2 1 1

1 1 12 2 1

11

2 1 1

2 2 21 1 2

22

2 1 1

1 1 1 1

1
...

1
...

1
...

n n

n n

n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

 (2.4)

23 Fadugba Sunday Emmanuel: On Some Iterative Methods for Solving Systems of Linear Equations

By repeated iterations, a sequence of approximations that

often converges to the actual solution is formed.

In general, the Jacobi iterative method is given by

1
1

1

1
, 1,2,

1,2,3,...

n
k k

i i ij j

jii

x b a x i n
a

k

−
−

=

 
= − =  

 
= 

∑ ⋯
 (2.5)

The summation is taken over all j’s except j=i. The initial

estimate or vector x
(0)

can be chosen to be zero unless we

have a better a-priori estimate for the true solution. This

procedure is repeated until some convergence criterion is

satisfied. The Jacobi method is sometimes called the method

of simultaneous iteration because all the values of xi are

iterated simultaneously. That is, all values of xi
(k)

depend

only on the values of xi
(k-1)

.

Remark 1: The Jacobi iterative method in (2.6) can also be

written as

1
1

1

1
, 1,2, ,

0,1,2,

n
k k

i i ij j

jii

x b a x i n
a

k

−
+

=

 
= − =  

 
= 

∑ ⋯

⋯

 (2.6)

The following result summarizes the convergence property

of the Jacobi method.

Theorem 1

Suppose that A is diagonal dominant, i.e.

:

,ii ij

j j i

a a i
≠

> ∀∑ (2.7)

then the Jacobi method converges.

Remark 2: We do not give the rigorous proof of the above

Theorem 1. We just comment that the condition (2.7) says

that in every row the diagonal entry is bigger (in absolute

value) than the sum of all the other entries (in absolute value)

in the row.

Next, we consider the modified Jacobi method for the

solution of system of linear equations.

2.2. The Modified Jacobi Method

In numerical linear algebra, the modified Jacobi method,

also known as the Gauss Seidel method, is an iterative

method used for solving a system of linear equations. It was

named after the German mathematicians Carl Friedrich

Gauss (1777-1855) and Philip Ludwig Von Seidel (1821-

1896). This method is similar to the Jacobi method. Though

it can be applied to any matrix with non-zero elements on the

diagonals, convergence is only guaranteed if the matrix is

either diagonally dominant, or symmetric and positive

definite.

The modified Jacobi method for solving a set of linear

equations can be thought of as just an extension of the Jacobi

method. Start out using an initial value of zero for each of the

parameters. Then, solve for x1
(1)

 as in the Jacobi method.

When solving for x2
(1)

, insert the just computed value for x1
(1)

.

In other words, for each calculation, the most current

estimate of the parameter value is used. The Gauss-Seidel

method (Modified Jacobi Method) converges about twice as

fast as Jacobi, but may still be very slow.

In the Jacobi method, all values of x
(k)

are based on x
(k-1)

.

The modified Jacobi method is similar to the Jacobi method,

except that the most recently computed values of all x1 are

used in all computations. Like the Jacobi method, the

modified Jacobi method requires diagonal dominance to

ensure convergence. Thus, in the modified Jacobi method,

each equation of the system is solved for the component of

the solution vector associated with the diagonal element, that

is, xi as follows:

()

()

()

1 1 12 2 1

11

2 2 21 1 2

22

1 1 1 1

1
...

1
...

1
...

n n

n n

n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

 (2.8)

Equation (2.2) can also be written as

1

1

1
, 1,2

n

i i ij j

jii

x b a x i n
a

−

=

 
= − = 

 
∑ ⋯

Setting the initial estimates 0 0 0

1 1 2 2 1 1, , ..., n nx x x x x x− −= = =

be the initial values. Then (2.8) becomes

()

()

()

1 0 0 0

1 1 12 2 13 3 1

11

1 1 0 0

2 2 21 1 23 3 2

22

1 1 1 1

1 1 2 2 1 1

1
...

1
...

1
...

n n

n n

n n n n nn n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

 (2.9)

Equation (2.9) is called the first approximation. In the

same way, the second approximation is formed by

substituting the first approximation (x-values) into the right

hand side of (2.9), and then we have

()

()

()

2 1 1 1

1 1 12 2 13 3 1

11

2 2 1 1

2 2 21 1 23 3 2

22

2 2 2 2

1 1 2 2 1 1

1
...

1
...

1
...

n n

n n

n n n n nn n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

 (2.10)

By repeated iterations, a sequence of approximations that

often converges to the actual solution is formed. In general,

 Computational and Applied Mathematics Journal 2015; 1(2): 21-28 24

the modified Jacobi algorithm is obtained from the Jacobi

algorithm, (2.5), by using xj
(k)

 values in the summation from

(j = 1 to i – 1), (assuming the sweeps through the equations

proceed from i = 1 to n) is given by

1
1 1

1 1

1
, 1,2, ,

1,2,3,...

i n
k k k
i i ij j ij j

ii j j i

x b a x a x i n
a

k

−
− −

= = +

   = − − =  
   

= 

∑ ∑ ⋯
 (2.11)

The modified Jacobi method is sometimes called the

method of successive iteration because the most recent values

of all xi are used in all the calculations. The modified Jacobi

method which is also called the Gauss-Seidel method is

generally converges faster than the Jacobi method.

2.2.1. Theorem 2

The modified Jacobi method is said to be convergent if the

matrix A is strictly diagonally dominant i.e.

:

,ii ij

j j i

a a i
≠

> ∀∑ (2.12)

The speed of convergence of the modified Jacobi iteration

is given by the largest eigenvalue of (L+D)
-1

U

where L is

called the Lower triangular matrix containing all element of

A strictly below the diagonal, U is called the Upper triangular

matrix containing all element of A strictly above the diagonal

and D is called Diagonal matrix containing the diagonal

elements of A respectively.

2.2.2. Comments

• An n n× matrix A is said to be strictly diagonally

dominant if the absolute value of each entry on the main

diagonal is greater than the sum of the absolute values

of each of the other entries in the same row. i.e.

11 12 13 1

22 21 23 2

33 31 32 3

1 2 1

...

...

...

...

n

n

n

nn n n nn

a a a a

a a a a

a a a a

a a a a −

> + + +


> + + + 
> + + + 


> + + +


⋮ ⋮ ⋮ ⋮

 (2.13)

• If A is strictly diagonally dominant, then the system of

linear equations in (1.1) has a unique solution in which

the Jacobi method and the modified Jacobi method will

converge for any initial approximation.

• Most of these iterative techniques entail a process that

converts the system in (1.1) into an equivalent system of

the form x Tx c= + for some n n× matrix T and

vector c. In general, we can write the iteration method

for solving a system of linear equations in the form

1 , 0,1,2,...k kx Tx c k−= + = (2.14)

where T is called the iteration matrix and depends on A, c is a

column vector which depends on A and b.

• Iterative methods are generally used when the system is

large (n>50) and the matrix is sparse (A matrix with very

few non-zero entries).

2.3. Accuracy and Convergence of Iterative

Methods

All non-singular systems of linear algebraic equations

have an exact solution. In principle, when solved by direct

methods, the exact solution can be obtained. However, all

real calculations are performed with finite precession

numbers, so round-off errors pollute the solution. Iterative

methods are less susceptible to round-off errors than direct

elimination methods for three reasons:

• The system of linear equations is strictly diagonally

dominant

• The System of linear equations is typically sparse

• Each iteration through the system of linear equations is

independent of the round-off errors of the previous

iteration.

When solved by iterative methods, the exact solution of a

system of linear algebraic equations is approached

asymptotically as the number of iterations increases. When

the number of iterations increases without bound, the

numerical solution yields the exact solution within the round-

off limit of the computing device. Such solutions are said to

be corrected to machine accuracy. In most practical solutions,

machine accuracy is not required. Thus, the iterative process

should be terminated when some type of accuracy criterion

(or criteria) has been satisfied in iterative methods, the term

accuracy refers to the number of significant figures obtained

in the calculations, and the term convergence refers to the

point in the iterative process when the desired accuracy is

obtained.

3. Numerical Experiments

This section presents some numerical experiments and

discussion of results.

3.1. Numerical Experiments

3.1.1. Problem 1

Let us consider the systems of linear equations of the form:

We consider the system of linear equations of the form

1 2 3

1 2 3

1 2 3

5 2 3 1

3 9 2

2 7 3

x x x

x x x

x x x

− + = − 
− + + = 
− − = 

 (2.15)

3.1.2. Problem 2

1 2

1 2 3

2 3 4

3 4

2 5

2 1

2 0

2 8

x x

x x x

x x x

x x

− + = 
− + = 
− + = 
− = 

 (2.16)

25 Fadugba Sunday Emmanuel: On Some Iterative Methods for Solving Systems of Linear Equations

Solving (2.15) and (2.16) using the two methods under

consideration, we have the following results as shown in the

Tables below.

3.2. Table of Results

Table 1. The Jacobi Method for Problem 1

n 0 1 2 3 4 5 6 7

x1 0.000 -0.200 0.146 0.192 0.181 0.185 0.186 0.186

x2 0.000 0.222 0.203 0.328 0.328 0.329 0.331 0.331

x3 0.000 -0.429 -0.517 -0.416 -0.421 -0.424 -0.423 -0.423

Table 2. The Modified Jacobi Method for Problem 1

n 0 1 2 3 4 5

x1 0.000 -0.200 0.167 0.191 0.186 0.186

x2 0.000 0.156 0.334 0.323 0.331 0.331

x3 0.000 -0.508 -0.429 -0.422 -0.423 -0.423

Table 3. The Jacobi Method for Problem 2

n x1 x2 x3 x4

[0] [0.0000] [0.0000] [0.0000] [0.0000]

[1] [-2.5000] [-0.5000] [0.0000] [-4.0000]

[2] [-2.7500] [-1.7500] [-2.2500] [-4.0000]

[3] [-3.3750] [-3.0000] [-2.8750] [-5.1250]

[4] [-4.0000] [-3.6250] [-4.0625] [-5.4375]

[5] [-4.3125] [-4.5313] [-4.5313] [-6.0313]

[6] [-4.7656] [-4.9219] [-5.2813] [-6.2656]

[7] [-4.9609] [-5.5234] [-5.5938] [-6.6406]

[8] [-5.2617] [-5.7773] [-6.0820] [-6.7969]

[9] [-5.3887] [-6.1719] [-6.2871] [-7.0410]

[10] [-5.5859] [-6.3379] [-6.6064] [-7.1436]

[11] [-5.6689] [-6.5962] [-6.7407] [-7.3032]

[12] [-5.7981] [-6.7048] [-6.9497] [-7.3704]

[13] [-5.8524] [-6.8739] [-7.0376] [-7.4749]

[14] [-5.9370] [-6.9450] [-7.1744] [-7.5188]

[15] [-5.9725] [-7.0557] [-7.2319] [-7.5872]

[16] [-6.0278] [-7.1022] [-7.3214] [-7.6160]

[17] [-6.0511] [-7.1746] [-7.3591] [-7.6607]

[18] [-6.0873] [-7.2051] [-7.4177] [-7.6795]

[19] [-6.1025] [-7.2525] [-7.4423] [-7.7088]

[20] [-6.1262] [-7.2724] [-7.4807] [-7.7212]

[21] [-6.1362] [-7.3035] [-7.4968] [-7.7403]

[22] [-6.1517] [-7.3165] [-7.5219] [-7.7484]

[23] [-6.1583] [-7.3368] [-7.5325] [-7.7609]

[24] [-6.1684] [-7.3454] [-7.5489] [-7.7662]

[25] [-6.1727] [-7.3586] [-7.5558] [-7.7744]

[26] [-6.1793] [-7.3642] [-7.5665] [-7.7779]

[27] [-6.1821] [-7.3729] [-7.5711] [-7.7833]

[28] [-6.1865] [-7.3766] [-7.5781] [-7.7855]

[29] [-6.1883] [-7.3823] [-7.5811] [-7.7891]

[30] [-6.1911] [-7.3847] [-7.5857] [-7.7905]

[31] [-6.1923] [-7.3884] [-7.5876] [-7.7928]

[32] [-6.1942] [-7.3900] [-7.5906] [-7.7938]

[33] [-6.1950] [-7.3924] [-7.5919] [-7.7953]

[34] [-6.1962] [-7.3934] [-7.5939] [-7.7959]

[35] [-6.1967] [-7.3950] [-7.5947] [-7.7969]

[36] [-6.1975] [-7.3957] [-7.5960] [-7.7973]

[37] [-6.1979] [-7.3967] [-7.5965] [-7.7980]

[38] [-6.1984] [-7.3972] [-7.5974] [-7.7983]

[39] [-6.1986] [-7.3979] [-7.5977] [-7.7987]

[40] [-6.1989] [-7.3982] [-7.5983] [-7.7989]

[41] [-6.1991] [-7.3986] [-7.5985] [-7.7991]

[42] [-6.1993] [-7.3988] [-7.5989] [-7.7993]

[43] [-6.1994] [-7.3991] [-7.5990] [-7.7994]

[44] [-6.1995] [-7.3992] [-7.5993] [-7.7995]

n x1 x2 x3 x4

[45] [-6.1996] [-7.3994] [-7.5994] [-7.7996]

[46] [-6.1997] [-7.3995] [-7.5995] [-7.7997]

[47] [-6.1997] [-7.3996] [-7.5996] [-7.7998]

[48] [-6.1998] [-7.3997] [-7.5997] [-7.7998]

[49] [-6.1998] [-7.3997] [-7.5997] [-7.7998]

[50] [-6.1999] [-7.3998] [-7.5998] [-7.7999]

[51] [-6.1999] [-7.3998] [-7.5998] [-7.7999]

[52] [-6.1999] [-7.3999] [-7.5999] [-7.7999]

[53] [-6.1999] [-7.3999] [-7.5999] [-7.7999]

[54] [-6.1999] [-7.3999] [-7.5999] [-7.7999]

[55] [-6.2000] [-7.3999] [-7.5999] [-7.8000]

[56] [-6.2000] [-7.3999] [-7.5999] [-7.8000]

[57] [-6.2000] [-7.4000] [-7.5999] [-7.8000]

[58] [-6.2000] [-7.4000] [-7.6000] [-7.8000]

[59] [-6.2000] [-7.4000] [-7.6000] [-7.8000]

Table 4. The Modified Jacobi Method for Problem 2

n x1 x2 x3 x4

[0] [0.0000] [0.0000] [0.0000] [0.0000]

[1] [-2.5000] [-1.7500] [-0.8750] [-4.4375]

[2] [-3.3750] [-2.6250] [-3.5313] [-5.7656]

[3] [-3.8125] [-4.1719] [-4.9688] [-6.4844]

[4] [-4.5859] [-5.2773] [-5.8809] [-6.9404]

[5] [-5.1387] [-6.0098] [-6.4751] [-7.2375]

[6] [-5.5049] [-6.4900] [-6.8638] [-7.4319]

[7] [-5.7450] [-6.8044] [-7.1181] [-7.5591]

[8] [-5.9022] [-7.0102] [-7.2846] [-7.6423]

[9] [-6.0051] [-7.1448] [-7.3936] [-7.6968]

[10] [-6.0724] [-7.2330] [-7.4649] [-7.7324]

[11] [-6.1165] [-7.2907] [-7.5116] [-7.7558]

[12] [-6.1453] [-7.3285] [-7.5421] [-7.7711]

[13] [-6.1642] [-7.3532] [-7.5621] [-7.7811]

[14] [-6.1766] [-7.3694] [-7.5752] [-7.7876]

[15] [-6.1847] [-7.3799] [-7.5838] [-7.7919]

[16] [-6.1900] [-7.3869] [-7.5894] [-7.7947]

[17] [-6.1934] [-7.3914] [-7.5930] [-7.7965]

[18] [-6.1957] [-7.3944] [-7.5955] [-7.7977]

[19] [-6.1972] [-7.3963] [-7.5970] [-7.7985]

[20] [-6.1982] [-7.3976] [-7.5981] [-7.7990]

[21] [-6.1988] [-7.3984] [-7.5987] [-7.7994]

[22] [-6.1992] [-7.3990] [-7.5992] [-7.7996]

[23] [-6.1995] [-7.3993] [-7.5995] [-7.7997]

[24] [-6.1997] [-7.3996] [-7.5996] [-7.7998]

[25] [-6.1998] [-7.3997] [-7.5998] [-7.7999]

[26] [-6.1999] [-7.3998] [-7.5998] [-7.7999]

[27] [-6.1999] [-7.3999] [-7.5999] [-7.7999]

[28] [-6.1999] [-7.3999] [-7.5999] [-7.8000]

[29] [-6.2000] [-7.3999] [-7.6000] [-7.8000]

[30] [-6.2000] [-7.4000] [-7.6000] [-7.8000]

[31] [-6.2000] [-7.4000] [-7.6000] [-7.8000]

3.3. Discussion of Results and Conclusion

In this paper two main iterative methods for solving a

system of linear equations have been presented namely the

Jacobi method and the modified Jacobi method. Two

practical examples were considered, a 3x3 and 4x4 system of

linear equations, even though the software can accommodate

up to 10x10 systems of linear equations. The analysis of

results in Tables 1, 2, 3 and 4 shows that Jacobi method

converges at the 7th iteration for 3x3 and 59 iterations to

converge for 4x4 matrix. Also the modified Jacobi method

takes 5 iterations to converge for 3x3 and 31 iterations to

converge for 4x4 matrix. This shows that the modified Jacobi

 Computational and Applied Mathematics Journal 2015; 1(2): 21-28 26

method requires less computer storage than the Jacobi

method. Thus, the modified Jacobi method is more accurate;

the numbers of iterations are minima and the rate of its

convergence is faster than its counterpart “the Jacobi

method”. Finally, we conclude the paper by stating the

advantages and disadvantages of the Jacobi method and the

modified Jacobi method.

3.3.1. Advantages of the Jacobi Method

• Jacobi method is the simplest method for solving a

system of linear equations

• Jacobi method requires non-zero diagonal entries.

• Jacobi method is known as the method of simultaneous

displacement and it is very easy to implement.

3.3.2. Disadvantages of the Jacobi Method

• It requires more time to converge.

• It diverges when the matrix is not strictly diagonally

dominant.

3.3.3. Advantages of the Modified Jacobi

Method

• It can be applied to any matrix with non-zero elements

on the diagonals.

• Convergence is only guaranteed if the matrix is either

diagonally dominant, or symmetric and positive definite.

• The modified Jacobi method converges faster than the

Jacobi method.

3.3.4. Disadvantages of the Modified Jacobi

Method

• Error is ineffable

• For tridiagonal matrices, the modified Jacobi method

converges or diverges simultaneously.

• Diagonal dominance is a restrictive sufficient condition

for the convergence of the modified Jacobi method.

Appendix

The Jacobi Method for 4x4 Matrix Using Matlab

1- clc;

2- close all;

3- N0=1000;

4- count=1;

5- % JACOBI ITERATIVE METHOD FOR 3 BY 3 MATRICES

6- X1{1} = input('ENTER THE INITIAL VALUES OF X1 = ');

7- X2{1} = input('ENTER THE INITIAL VALUES OF X2 = ');

8- X3{1}= input('ENTER THE INITIAL VALUES OF X3 = ');

9-X4{1}=input('ENTER THE INITIAL VALUES OF X4 = ');

10- % ENTER VALUES FOR THE FIRST EQUATION

11- % X11+X12+X13+X14=A1

12- disp('Enter in this form a11X1+a12X2+a13X3=A1');

13- a11=input('Enter a11=');

14- a12=input('enter a12=');

15- a13=input('enter a13=');

16- a14=input('enter a14=');

17- A1=input('enter A1=');

18- % ENTER VALUES FOR THE SECOND EQUATION

19- % X21+X22+X23+X24=A2

20- disp('Enter in this form a21X1+a22X2+a23X3=A2');

21- a21=input('Enter a21=');

22- a22=input('enter a22=');

23- a23=input('enter a23=');

24- a24=input('enter a24=');

25- A2=input('enter A2=');

26- % ENTER VALUES FOR THE THIRD EQUATION

27- % X31+X32+X33+X34=A3

28- disp('Enter in this form a31X1+a32X2+a33X3=A1');

29- a31=input('enter a31=');

30- a32=input('enter a32=');

31- a33=input('enter a33=');

32- a34=input('enter a34=');

33- A3=input('enter A3=');

34- % ENTER VALUES FOR THE FOURTH EQUATION

35- % X31+X32+X33+X34=A3

27 Fadugba Sunday Emmanuel: On Some Iterative Methods for Solving Systems of Linear Equations

36- %disp('Enter in this form a31X1+a32X2+a33X3=A1');

37- a41=input('enter a41=');

38- a42=input('enter a42=');

39- a43=input('enter a43=');

40- a44=input('enter a44=');

41- A4=input('enter A4=');

42- %X1{0}=X1;

43- %X2{0}=X2;

44- %X3{0}=X3;

45- %X4{0}=X4;

46- for N= 1:N0

47- % R CALCULATION

48- R1{N}=A1+(a11*X1{N})+(a12*X2{N})+(a13*X3{N});%+(a14*X4{N});

49- R2{N}=A2+(a21*X1{N})+(a22*X2{N})+(a23*X3{N});%+(a24*X4{N});

50- R3{N}=A3+(a31*X1{N})+(a32*X2{N})+(a33*X3{N});%+(a34*X4{N});

51- R4{N}=A4+(a41*X1{N})+(a42*X2{N})+(a43*X3{N});%+(a44*X4{N});

52- % calculate values for x

53- X1{N+1}=X1{N}+(R1{N}/abs(a11));

54- X2{N+1}=X2{N}+(R2{N}/abs(a11));

55- X3{N+1}=X3{N}+(R3{N}/abs(a11));

56- X4{N+1}=X4{N}+(R4{N}/abs(a11));

57- RESULT={N, X1{N+1}, X2{N+1}, X3{N+1}}, X4{N+1}};

58- disp(RESULT);

59- if((X1{N}==X1{N+1}) && (X2{N}==X2{N+1}) && (X3{N}==X3{N+1})&&(X4{N}==X4{N+1}));

60- goto 74;

61- else count=count+1;

62- end

63- disp(count);

64- %for N=1:count

65- % RESULT={N, X1{N+1}, X2{N+1}, X3{N+1}, X4{N+1}};

66- % disp(RESULT);

67- %end

The Modified Jacobi Method for 4x4 Matrix Using Matlab

1. clc;

2. close all;

3. N0=1000;

4. count=1;

5. % enter initial values of X

6. X1{1} = input('ENTER THE INITIAL VALUES OF X1 = ');

7. X2{1} = input('ENTER THE INITIAL VALUES OF X2 = ');

8. X3{1}= input('ENTER THE INITIAL VALUES OF X3 = ');

9. X4{1}=input('ENTER THE INITIAL VALUES OF X4 = ');

10. % ENTER VALUES FOR THE FIRST EQUATION

11. % X11+X12+X13+X14=A1

12. disp('Enter in this form a11X1+a12X2+a13X3+a14x4=A1');

13. a11=input('Enter a11=');

14. a12=input('enter a12=');

15. a13=input('enter a13=');

16. a14=input('enter a14=');

17. A1=input('enter A1=');

18. % ENTER VALUES FOR THE SECOND EQUATION

19. % X21+X22+X23+X24=A2

20. disp('Enter in this form a21X1+a22X2+a23X3+a24x4=A2');

21. a21=input('Enter a21=');

22. a22=input('enter a22=');

23. a23=input('enter a23=');

 Computational and Applied Mathematics Journal 2015; 1(2): 21-28 28

24. a24=input('enter a24=');

25. A2=input('enter A2=');

26. % ENTER VALUES FOR THE THIRD EQUATION

27. % X31+X32+X33+X34=A3

28. disp('Enter in this form a31X1+a32X2+a33X3+a34X4=A3');

29. a31=input('enter a31=');

30. a32=input('enter a32=');

31. a33=input('enter a33=');

32. a34=input('enter a34=');

33. A3=input('enter A3=');

34. % ENTER VALUES FOR THE FOURTH EQUATION

35. % X31+X32+X33+X34=A4

36. disp('Enter in this form a41X1+a42X2+a43X3+a44X4=A4');

37. a41=input('enter a41=');

38. a42=input('enter a42=');

39. a43=input('enter a43=');

40. a44=input('enter a44=');

41. A4=input('enter A4=');

42. for N= 1:N0

43. % R1 CALCULATION

44. R1{N}=A1+(a11*X1{N})+(a12*X2{N})+(a13*X3{N})+(a14*X4{N});

45. % calculate values for x1

46. X1{N+1}=X1{N}+(R1{N}/-a11);

47. % R2 CALCULATION

48. R2{N}=A2+(a21*X1{N+1})+(a22*X2{N})+(a23*X3{N})+(a24*X4{N});

49. % calculate values for x2

50. X2{N+1}=X2{N}+(R2{N}/-a11);

51. % R3 CALCULATION

52. R3{N}=A3+(a31*X1{N+1})+(a32*X2{N+1})+(a33*X3{N})+(a34*X4{N});

53. % calculate values for x3

54. X3{N+1}=X3{N}+(R3{N}/-a11);

55. % R4 CALCULATION

56. R4{N}=A4+(a41*X1{N+1})+(a42*X2{N+1})+(a43*X3{N+1})+(a44*X4{N});

57. % calculate values for x4

58. X4{N+1}=X4{N}+(R4{N}/-a11);

59. RESULT={{N, X1{N+1}, X2{N+1}, X3{N+1}}, X4{N+1};

60. disp(RESULT);

61. % if((X1{N}==X1{N+1}) && (X2{N}==X2{N+1}) && (X3{N}==X3{N+1}) && (X4{N}==X4{N+1});

62. % goto 85;

63. % else count=count+1;

64. % end

65. end

66. % disp(count);

References

[1] Atkinson, Kendall A. (1989), An Introduction to numerical
analysis (2nd ed.), New York: John Wiley & Sons..

[2] Bolch, G. et al (2006), Queuing networks and markov chains:
Modeling and performance evaluation with computer science
applications (2nd ed.), Wiley-Interscience.

[3] Farebrother, R.W. (1988), Linear least squares computations,
statistics: Textbooks and monographs, Marcel Dekker.

[4] Grcar, J. F. (2011b),"Mathematicians of Gaussian elimination",
Notices of the American Mathematical Society.

[5] Ibrahim B.K. (2010), A Survey of Three iterative methods for
the solution of linear equations, IJNM. Vol. 5 Number 1, page
153-162

[6] Lipson, M. and Lipschutz, S. (2001), Schaum's outline of
theory and problems of linear algebra, Schaum’s outline series,
Fourth edition.

