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Abstract 
This paper presents some iterative methods for solving system of linear equations 

namely the Jacobi method and the modified Jacobi method. The Jacobi method is an 

algorithm for solving system of linear equations with largest absolute values in each row 

and column dominated by the diagonal elements. The modified Jacobi method also 

known as the Gauss Seidel method or the method of successive displacement is useful 

for the solution of system of linear equations. The comparative results analysis of the 

two methods was considered. We also discussed the rate of convergence of the Jacobi 

method and the modified Jacobi method. Finally, the results showed that the modified 

Jacobi method is more efficient, accurate and converges faster than its counterpart “the 

Jacobi Method”. 

1. Introduction 

In computational mathematics, an iterative method attempts to solve a system of 

linear equations by finding successive approximations to the solution starting from an 

initial guess. This approach is in contrast to direct methods, which attempt to solve the 

problem by a finite sequence of some operations and in the absence of rounding errors. 

These direct methods lead to exact solution. Iterative methods are usually the only 

choice for nonlinear problems involving a large number of variables where there is no 

closed form solution or where the problems cannot be solved analytically. Probably the 

first iterative method for solving a linear system appeared in a letter of Gauss to his 

student. He proposed a method of solving a 4x4 system of equations. The theory of 

stationary iterative methods was established with the work of D.M. Young starting in 

the 1950s. The most well-known and accepted method for solving a system of linear 

equations is the so called “The Cramer’s Rule”. However, there are other direct 

methods for solving systems of linear equations such as the Gauss Elimination, the 

Gauss Jordan method, LU Decomposition and Tridiagonal matrix algorithm. 

But, when solving a system of linear equations with more than four unknown variables 

(that is, when dealing with a higher order matrix) all these methods become very lengthy 

and tedious to solve by hand. Therefore there is need for the use of a dedicated coding 

language like MATLAB.  

The paper is structured as follows: Section 2 gives a brief overview of iterative 

methods for solving systems of linear equations. Section 3 presents some numerical 

experiments, discussion of results and conclusion. 
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2. Iterative Methods for Solving 

Systems of Linear Equations 

An iterative method is a mathematical procedure that 

generates a sequence of improving approximate solutions for 

a class of problems. A specific implementation of an iterative 

method, including the termination criteria, is an algorithm of 

the iterative method. 

An iterative method is said to be convergent if the 

corresponding sequence converges for some given initial 

approximations. A rigorous convergence analysis of an 

iterative method is usually performed; however, heuristic 

based iterative methods are also common. 

In this paper we shall consider the system of linear 

equations of the form 

Ax b=                                  (1.1) 

Equation (1.1) can also be written as 

11 1 12 2 1 1

21 1 22 2 2 2

1 1 2 2

...

...

...

n n

n n

n n nn n n

a x a x a x b

a x a x a x b

a x a x a x b

+ + + = 
+ + + = 


+ + + = 

⋮ ⋮ ⋮ ⋮
            (1.2) 

where 11 12,, ..., nna a a are constant coefficients and 

1 2 3, , ,..., nb b b b
 
are given real constants in the system of n-

linear algebraic equations in n-unknown variables 

1 2 3, , ,..., nx x x x . The solution to (1.1) can be classified in 

the following ways: 

• If a system of linear equations is solved and unique 

values 1 2 3, , ,..., nx x x x
 
are obtained, then the system is 

said to be consistent and independent. 

• If on the other hand when the system has no definite 

solution, it is said to be inconsistent. 

• If the system has infinitely many solutions, then it is 

said to be consistent and dependent. 

In the sequel we shall consider two iterative methods for 

solving system of linear equations namely; the Jacobi method 

and the modified Jacob method. 

2.1. The Jacobi Iterative Method 

In numerical linear algebra, the Jacobi method is an 

algorithm for determining the solutions of system of linear 

equations with largest absolute values in each row and 

column dominated by the diagonal element. Each diagonal 

element is solved for, and approximate values are substituted, 

the process is then iterated until it converges. This algorithm 

is a stripped-down version of the Jacobi transformation 

method of matrix diagonalization. This method is named 

after Carl Gustav Jakob Jacobi (1804-1851). Let us consider 

the general system of linear equations given by (1.1) which 

can be written in the form: 

1

, 1,2 ,
n

ij j i

j

a x b i n
=

= =∑ ⋯                  (2.1) 

The following are the assumptions of the Jacobi method: 

• The system given by (2.1) has a unique solution 

(consistent and independent) 

• The coefficient matrix A has no zeros on its main 

diagonal. 

If any of the diagonal entries 11 22 33, , ,..., nna a a a  is zero, 

then rows or columns must be interchanged to obtain a 

coefficient matrix that has non zero entries on the main 

diagonal. In Jacobi method, each equation of the system is 

solved for the component of the solution vector associated 

with the diagonal element, that is, xi as follows: 

( )

( )

( )

1 1 12 2 1

11

2 2 21 1 2

22

1 1 1 1

1
...

1
...

1
...

n n

n n

n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

            (2.2) 

Equation (2.2) can also be written as  

1

1

1
, 1,2

n

i i ij j

jii

x b a x i n
a

−

=

 
= − = 

 
∑ ⋯  

Setting the initial estimates 0 0 0

1 1 2 2 1 1, , ..., n nx x x x x x− −= = = . 

Then (2.2) becomes  

( )

( )

( )

1 0 0

1 1 12 2 1

11

1 0 0

2 2 21 1 2

22

1 0 0

1 1 1 1

1
...
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n n
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n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

           (2.3) 

Equation (2.3) is called the first approximation. In the 

same way, the second approximation is obtained by 

substituting the first approximation (x-values) into the right 

hand side of (2.3), and then we have 

( )

( )

( )

2 1 1

1 1 12 2 1

11

2 1 1

2 2 21 1 2

22
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1 1 1 1

1
...
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nn

x b a x a x
a
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− −
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
= − − − 



= − − − 


⋮

         (2.4) 
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By repeated iterations, a sequence of approximations that 

often converges to the actual solution is formed. 

In general, the Jacobi iterative method is given by 

1
1

1

1
, 1,2,

1,2,3,...

n
k k

i i ij j

jii

x b a x i n
a

k

−
−

=

 
= − =  

 
= 

∑ ⋯
    (2.5) 

The summation is taken over all j’s except j=i. The initial 

estimate or vector x
(0) 

can be chosen to be zero unless we 

have a better a-priori estimate for the true solution. This 

procedure is repeated until some convergence criterion is 

satisfied. The Jacobi method is sometimes called the method 

of simultaneous iteration because all the values of xi are 

iterated simultaneously. That is, all values of xi
(k ) 

depend 

only on the values of xi
(k-1)

.  

Remark 1: The Jacobi iterative method in (2.6) can also be 

written as 

1
1

1

1
, 1,2, ,

0,1,2,

n
k k

i i ij j

jii

x b a x i n
a

k

−
+

=

 
= − =  

 
= 

∑ ⋯

⋯

   (2.6) 

The following result summarizes the convergence property 

of the Jacobi method. 

Theorem 1 

Suppose that A is diagonal dominant, i.e. 

:

,ii ij

j j i

a a i
≠

> ∀∑                 (2.7) 

then the Jacobi method converges. 

Remark 2: We do not give the rigorous proof of the above 

Theorem 1. We just comment that the condition (2.7) says 

that in every row the diagonal entry is bigger (in absolute 

value) than the sum of all the other entries (in absolute value) 

in the row.  

Next, we consider the modified Jacobi method for the 

solution of system of linear equations.  

2.2. The Modified Jacobi Method 

In numerical linear algebra, the modified Jacobi method, 

also known as the Gauss Seidel method, is an iterative 

method used for solving a system of linear equations. It was 

named after the German mathematicians Carl Friedrich 

Gauss (1777-1855) and Philip Ludwig Von Seidel (1821-

1896). This method is similar to the Jacobi method. Though 

it can be applied to any matrix with non-zero elements on the 

diagonals, convergence is only guaranteed if the matrix is 

either diagonally dominant, or symmetric and positive 

definite. 

The modified Jacobi method for solving a set of linear 

equations can be thought of as just an extension of the Jacobi 

method. Start out using an initial value of zero for each of the 

parameters. Then, solve for x1
(1)

 as in the Jacobi method. 

When solving for x2
(1)

, insert the just computed value for x1
(1)

. 

In other words, for each calculation, the most current 

estimate of the parameter value is used. The Gauss-Seidel 

method (Modified Jacobi Method) converges about twice as 

fast as Jacobi, but may still be very slow. 

In the Jacobi method, all values of x
(k) 

are based on x
(k-1)

. 

The modified Jacobi method is similar to the Jacobi method, 

except that the most recently computed values of all x1 are 

used in all computations. Like the Jacobi method, the 

modified Jacobi method requires diagonal dominance to 

ensure convergence. Thus, in the modified Jacobi method, 

each equation of the system is solved for the component of 

the solution vector associated with the diagonal element, that 

is, xi as follows: 

( )

( )

( )

1 1 12 2 1

11

2 2 21 1 2

22

1 1 1 1

1
...

1
...

1
...

n n

n n

n n n nn n

nn

x b a x a x
a

x b a x a x
a

x b a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

             (2.8) 

Equation (2.2) can also be written as  

1

1

1
, 1,2

n

i i ij j

jii

x b a x i n
a

−

=

 
= − = 

 
∑ ⋯  

Setting the initial estimates 0 0 0

1 1 2 2 1 1, , ..., n nx x x x x x− −= = =
 

be the initial values. Then (2.8) becomes  

( )

( )

( )

1 0 0 0

1 1 12 2 13 3 1

11

1 1 0 0

2 2 21 1 23 3 2

22

1 1 1 1

1 1 2 2 1 1

1
...

1
...

1
...

n n

n n

n n n n nn n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

            (2.9) 

Equation (2.9) is called the first approximation. In the 

same way, the second approximation is formed by 

substituting the first approximation (x-values) into the right 

hand side of (2.9), and then we have 

( )

( )

( )

2 1 1 1

1 1 12 2 13 3 1

11

2 2 1 1

2 2 21 1 23 3 2

22

2 2 2 2

1 1 2 2 1 1

1
...

1
...

1
...

n n

n n

n n n n nn n

nn

x b a x a x a x
a

x b a x a x a x
a

x b a x a x a x
a

− −

= − − − 

= − − − 



= − − − 


⋮

     (2.10) 

By repeated iterations, a sequence of approximations that 

often converges to the actual solution is formed. In general, 



 Computational and Applied Mathematics Journal 2015; 1(2): 21-28  24 

 

the modified Jacobi algorithm is obtained from the Jacobi 

algorithm, (2.5), by using xj
(k)

 values in the summation from 

(j = 1 to i – 1), (assuming the sweeps through the equations 

proceed from i = 1 to n) is given by 

1
1 1

1 1

1
, 1,2, ,

1,2,3,...

i n
k k k
i i ij j ij j

ii j j i

x b a x a x i n
a

k

−
− −

= = +

   = − − =  
   

= 

∑ ∑ ⋯
 (2.11) 

The modified Jacobi method is sometimes called the 

method of successive iteration because the most recent values 

of all xi are used in all the calculations. The modified Jacobi 

method which is also called the Gauss-Seidel method is 

generally converges faster than the Jacobi method.  

2.2.1. Theorem 2 

The modified Jacobi method is said to be convergent if the 

matrix A is strictly diagonally dominant i.e.  

:

,ii ij

j j i

a a i
≠

> ∀∑                  (2.12) 

The speed of convergence of the modified Jacobi iteration 

is given by the largest eigenvalue of (L+D)
-1

U
 
where L is 

called the Lower triangular matrix containing all element of 

A strictly below the diagonal, U is called the Upper triangular 

matrix containing all element of A strictly above the diagonal 

and D is called Diagonal matrix containing the diagonal 

elements of A respectively. 

2.2.2. Comments 

• An n n× matrix A is said to be strictly diagonally 

dominant if the absolute value of each entry on the main 

diagonal is greater than the sum of the absolute values 

of each of the other entries in the same row. i.e. 

11 12 13 1

22 21 23 2

33 31 32 3

1 2 1

...

...

...

...

n

n

n

nn n n nn

a a a a

a a a a

a a a a

a a a a −

> + + +


> + + + 
> + + + 


> + + +


⋮ ⋮ ⋮ ⋮

            (2.13) 

• If A is strictly diagonally dominant, then the system of 

linear equations in (1.1) has a unique solution in which 

the Jacobi method and the modified Jacobi method will 

converge for any initial approximation. 

• Most of these iterative techniques entail a process that 

converts the system in (1.1) into an equivalent system of 

the form x Tx c= + for some n n× matrix T and 

vector c. In general, we can write the iteration method 

for solving a system of linear equations in the form 

1 , 0,1,2,...k kx Tx c k−= + =        (2.14) 

where T is called the iteration matrix and depends on A, c is a 

column vector which depends on A and b. 

• Iterative methods are generally used when the system is 

large (n>50) and the matrix is sparse (A matrix with very 

few non-zero entries). 

2.3. Accuracy and Convergence of Iterative 

Methods 

All non-singular systems of linear algebraic equations 

have an exact solution. In principle, when solved by direct 

methods, the exact solution can be obtained. However, all 

real calculations are performed with finite precession 

numbers, so round-off errors pollute the solution. Iterative 

methods are less susceptible to round-off errors than direct 

elimination methods for three reasons: 

• The system of linear equations is strictly diagonally 

dominant 

• The System of  linear equations is typically sparse 

• Each iteration through the system of linear equations is 

independent of the round-off errors of the previous 

iteration. 

When solved by iterative methods, the exact solution of a 

system of linear algebraic equations is approached 

asymptotically as the number of iterations increases. When 

the number of iterations increases without bound, the 

numerical solution yields the exact solution within the round-

off limit of the computing device. Such solutions are said to 

be corrected to machine accuracy. In most practical solutions, 

machine accuracy is not required. Thus, the iterative process 

should be terminated when some type of accuracy criterion 

(or criteria) has been satisfied in iterative methods, the term 

accuracy refers to the number of significant figures obtained 

in the calculations, and the term convergence refers to the 

point in the iterative process when the desired accuracy is 

obtained. 

3. Numerical Experiments 

This section presents some numerical experiments and 

discussion of results. 

3.1. Numerical Experiments 

3.1.1. Problem 1 

Let us consider the systems of linear equations of the form: 

We consider the system of linear equations of the form 

1 2 3

1 2 3

1 2 3

5 2 3 1

3 9 2

2 7 3

x x x

x x x

x x x

− + = − 
− + + = 
− − = 

                     (2.15) 

3.1.2. Problem 2 

1 2

1 2 3

2 3 4

3 4

2 5

2 1

2 0

2 8

x x

x x x

x x x

x x

− + = 
− + = 
− + = 
− = 

                    (2.16) 
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Solving (2.15) and (2.16) using the two methods under 

consideration, we have the following results as shown in the 

Tables below. 

3.2. Table of Results 

Table 1. The Jacobi Method for Problem 1 

n 0 1 2 3 4 5 6 7 

x1 0.000 -0.200 0.146 0.192 0.181 0.185 0.186 0.186 

x2 0.000 0.222 0.203 0.328 0.328 0.329 0.331 0.331 

x3 0.000 -0.429 -0.517 -0.416 -0.421 -0.424 -0.423 -0.423 

Table 2. The Modified Jacobi Method for Problem 1 

n 0 1 2 3 4 5 

x1 0.000 -0.200 0.167 0.191 0.186 0.186 

x2 0.000 0.156 0.334 0.323 0.331 0.331 

x3 0.000 -0.508 -0.429 -0.422 -0.423 -0.423 

Table 3. The Jacobi Method for Problem 2 

n x1 x2 x3 x4 

[0] [0.0000] [0.0000] [0.0000] [0.0000] 

[1] [-2.5000] [-0.5000] [0.0000] [-4.0000] 

[2] [-2.7500] [-1.7500] [-2.2500] [-4.0000] 

[3] [-3.3750] [-3.0000] [-2.8750] [-5.1250] 

[4] [-4.0000] [-3.6250] [-4.0625] [-5.4375] 

[5] [-4.3125] [-4.5313] [-4.5313] [-6.0313] 

[6] [-4.7656] [-4.9219] [-5.2813] [-6.2656] 

[7] [-4.9609] [-5.5234] [-5.5938] [-6.6406] 

[8] [-5.2617] [-5.7773] [-6.0820] [-6.7969] 

[9] [-5.3887] [-6.1719] [-6.2871] [-7.0410] 

[10] [-5.5859] [-6.3379] [-6.6064] [-7.1436] 

[11] [-5.6689] [-6.5962] [-6.7407] [-7.3032] 

[12] [-5.7981] [-6.7048] [-6.9497] [-7.3704] 

[13] [-5.8524] [-6.8739] [-7.0376] [-7.4749] 

[14] [-5.9370] [-6.9450] [-7.1744] [-7.5188] 

[15] [-5.9725] [-7.0557] [-7.2319] [-7.5872] 

[16] [-6.0278] [-7.1022] [-7.3214] [-7.6160] 

[17] [-6.0511] [-7.1746] [-7.3591] [-7.6607] 

[18] [-6.0873] [-7.2051] [-7.4177] [-7.6795] 

[19] [-6.1025] [-7.2525] [-7.4423] [-7.7088] 

[20] [-6.1262] [-7.2724] [-7.4807] [-7.7212] 

[21] [-6.1362] [-7.3035] [-7.4968] [-7.7403] 

[22] [-6.1517] [-7.3165] [-7.5219] [-7.7484] 

[23] [-6.1583] [-7.3368] [-7.5325] [-7.7609] 

[24] [-6.1684] [-7.3454] [-7.5489] [-7.7662] 

[25] [-6.1727] [-7.3586] [-7.5558] [-7.7744] 

[26] [-6.1793] [-7.3642] [-7.5665] [-7.7779] 

[27] [-6.1821] [-7.3729] [-7.5711] [-7.7833] 

[28] [-6.1865] [-7.3766] [-7.5781] [-7.7855] 

[29] [-6.1883] [-7.3823] [-7.5811] [-7.7891] 

[30] [-6.1911] [-7.3847] [-7.5857] [-7.7905] 

[31] [-6.1923] [-7.3884] [-7.5876] [-7.7928] 

[32] [-6.1942] [-7.3900] [-7.5906] [-7.7938] 

[33] [-6.1950] [-7.3924] [-7.5919] [-7.7953] 

[34] [-6.1962] [-7.3934] [-7.5939] [-7.7959] 

[35] [-6.1967] [-7.3950] [-7.5947] [-7.7969] 

[36] [-6.1975] [-7.3957] [-7.5960] [-7.7973] 

[37] [-6.1979] [-7.3967] [-7.5965] [-7.7980] 

[38] [-6.1984] [-7.3972] [-7.5974] [-7.7983] 

[39] [-6.1986] [-7.3979] [-7.5977] [-7.7987] 

[40] [-6.1989] [-7.3982] [-7.5983] [-7.7989] 

[41] [-6.1991] [-7.3986] [-7.5985] [-7.7991] 

[42] [-6.1993] [-7.3988] [-7.5989] [-7.7993] 

[43] [-6.1994] [-7.3991] [-7.5990] [-7.7994] 

[44] [-6.1995] [-7.3992] [-7.5993] [-7.7995] 

n x1 x2 x3 x4 

[45] [-6.1996] [-7.3994] [-7.5994] [-7.7996] 

[46] [-6.1997] [-7.3995] [-7.5995] [-7.7997] 

[47] [-6.1997] [-7.3996] [-7.5996] [-7.7998] 

[48] [-6.1998] [-7.3997] [-7.5997] [-7.7998] 

[49] [-6.1998] [-7.3997] [-7.5997] [-7.7998] 

[50] [-6.1999] [-7.3998] [-7.5998] [-7.7999] 

[51] [-6.1999] [-7.3998] [-7.5998] [-7.7999] 

[52] [-6.1999] [-7.3999] [-7.5999] [-7.7999] 

[53] [-6.1999] [-7.3999] [-7.5999] [-7.7999] 

[54] [-6.1999] [-7.3999] [-7.5999] [-7.7999] 

[55] [-6.2000] [-7.3999] [-7.5999] [-7.8000] 

[56] [-6.2000] [-7.3999] [-7.5999] [-7.8000] 

[57] [-6.2000] [-7.4000] [-7.5999] [-7.8000] 

[58] [-6.2000] [-7.4000] [-7.6000] [-7.8000] 

[59] [-6.2000] [-7.4000] [-7.6000] [-7.8000] 

Table 4. The Modified Jacobi Method for Problem 2 

n x1 x2 x3 x4 

[0] [0.0000] [0.0000] [0.0000] [0.0000] 

[1] [-2.5000] [-1.7500] [-0.8750] [-4.4375] 

[2] [-3.3750] [-2.6250] [-3.5313] [-5.7656] 

[3] [-3.8125] [-4.1719] [-4.9688] [-6.4844] 

[4] [-4.5859] [-5.2773] [-5.8809] [-6.9404] 

[5] [-5.1387] [-6.0098] [-6.4751] [-7.2375] 

[6] [-5.5049] [-6.4900] [-6.8638] [-7.4319] 

[7] [-5.7450] [-6.8044] [-7.1181] [-7.5591] 

[8] [-5.9022] [-7.0102] [-7.2846] [-7.6423] 

[9] [-6.0051] [-7.1448] [-7.3936] [-7.6968] 

[10] [-6.0724] [-7.2330] [-7.4649] [-7.7324] 

[11] [-6.1165] [-7.2907] [-7.5116] [-7.7558] 

[12] [-6.1453] [-7.3285] [-7.5421] [-7.7711] 

[13] [-6.1642] [-7.3532] [-7.5621] [-7.7811] 

[14] [-6.1766] [-7.3694] [-7.5752] [-7.7876] 

[15] [-6.1847] [-7.3799] [-7.5838] [-7.7919] 

[16] [-6.1900] [-7.3869] [-7.5894] [-7.7947] 

[17] [-6.1934] [-7.3914] [-7.5930] [-7.7965] 

[18] [-6.1957] [-7.3944] [-7.5955] [-7.7977] 

[19] [-6.1972] [-7.3963] [-7.5970] [-7.7985] 

[20] [-6.1982] [-7.3976] [-7.5981] [-7.7990] 

[21] [-6.1988] [-7.3984] [-7.5987] [-7.7994] 

[22] [-6.1992] [-7.3990] [-7.5992] [-7.7996] 

[23] [-6.1995] [-7.3993] [-7.5995] [-7.7997] 

[24] [-6.1997] [-7.3996] [-7.5996] [-7.7998] 

[25] [-6.1998] [-7.3997] [-7.5998] [-7.7999] 

[26] [-6.1999] [-7.3998] [-7.5998] [-7.7999] 

[27] [-6.1999] [-7.3999] [-7.5999] [-7.7999] 

[28] [-6.1999] [-7.3999] [-7.5999] [-7.8000] 

[29] [-6.2000] [-7.3999] [-7.6000] [-7.8000] 

[30] [-6.2000] [-7.4000] [-7.6000] [-7.8000] 

[31] [-6.2000] [-7.4000] [-7.6000] [-7.8000] 

3.3. Discussion of Results and Conclusion 

In this paper two main iterative methods for solving a 

system of linear equations have been presented namely the 

Jacobi method and the modified Jacobi method. Two 

practical examples were considered, a 3x3 and 4x4 system of 

linear equations, even though the software can accommodate 

up to 10x10 systems of linear equations. The analysis of 

results in Tables 1, 2, 3 and 4 shows that Jacobi method 

converges at the 7th iteration for 3x3 and 59 iterations to 

converge for 4x4 matrix. Also the modified Jacobi method 

takes 5 iterations to converge for 3x3 and 31 iterations to 

converge for 4x4 matrix. This shows that the modified Jacobi 
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method requires less computer storage than the Jacobi 

method. Thus, the modified Jacobi method is more accurate; 

the numbers of iterations are minima and the rate of its 

convergence is faster than its counterpart “the Jacobi 

method”. Finally, we conclude the paper by stating the 

advantages and disadvantages of the Jacobi method and the 

modified Jacobi method. 

3.3.1. Advantages of the Jacobi Method 

• Jacobi method is the simplest method for solving a 

system of linear equations 

• Jacobi method requires non-zero diagonal entries. 

• Jacobi method is known as the method of simultaneous 

displacement and it is very easy to implement. 

3.3.2. Disadvantages of the Jacobi Method 

• It requires more time to converge. 

• It diverges when the matrix is not strictly diagonally 

dominant. 

3.3.3. Advantages of the Modified Jacobi 

Method 

• It can be applied to any matrix with non-zero elements 

on the diagonals. 

• Convergence is only guaranteed if the matrix is either 

diagonally dominant, or symmetric and positive definite. 

• The modified Jacobi method converges faster than the 

Jacobi method. 

3.3.4. Disadvantages of the Modified Jacobi 

Method 

• Error is ineffable  

• For tridiagonal matrices, the modified Jacobi method 

converges or diverges simultaneously. 

• Diagonal dominance is a restrictive sufficient condition 

for the convergence of the modified Jacobi method. 

 

Appendix 

The Jacobi Method for 4x4 Matrix Using Matlab 

1- clc; 

2- close all; 

3- N0=1000; 

4- count=1; 

5- % JACOBI ITERATIVE METHOD FOR 3 BY 3 MATRICES 

6- X1{1} = input('ENTER THE INITIAL VALUES OF X1 = '); 

7- X2{1} = input('ENTER THE INITIAL VALUES OF X2 = '); 

8- X3{1}= input('ENTER THE INITIAL VALUES OF X3 = '); 

9-X4{1}=input('ENTER THE INITIAL VALUES OF X4 = '); 

10- % ENTER VALUES FOR THE FIRST EQUATION 

11- % X11+X12+X13+X14=A1 

12- disp('Enter in this form a11X1+a12X2+a13X3=A1'); 

13- a11=input('Enter a11='); 

14- a12=input('enter a12='); 

15- a13=input('enter a13='); 

16- a14=input('enter a14='); 

17- A1=input('enter A1='); 

18- % ENTER VALUES FOR THE SECOND EQUATION 

19- % X21+X22+X23+X24=A2 

20- disp('Enter in this form a21X1+a22X2+a23X3=A2'); 

21- a21=input('Enter a21='); 

22- a22=input('enter a22='); 

23- a23=input('enter a23='); 

24- a24=input('enter a24='); 

25- A2=input('enter A2='); 

26- % ENTER VALUES FOR THE THIRD EQUATION 

27- % X31+X32+X33+X34=A3 

28- disp('Enter in this form a31X1+a32X2+a33X3=A1'); 

29- a31=input('enter a31='); 

30- a32=input('enter a32='); 

31- a33=input('enter a33='); 

32- a34=input('enter a34='); 

33- A3=input('enter A3='); 

34- % ENTER VALUES FOR THE FOURTH EQUATION 

35- % X31+X32+X33+X34=A3 
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36- %disp('Enter in this form a31X1+a32X2+a33X3=A1'); 

37- a41=input('enter a41='); 

38- a42=input('enter a42='); 

39- a43=input('enter a43='); 

40- a44=input('enter a44='); 

41- A4=input('enter A4='); 

42- %X1{0}=X1; 

43- %X2{0}=X2; 

44- %X3{0}=X3; 

45- %X4{0}=X4; 

46- for  N= 1:N0 

47- % R CALCULATION 

48- R1{N}=A1+(a11*X1{N})+(a12*X2{N})+(a13*X3{N});%+(a14*X4{N}); 

49- R2{N}=A2+(a21*X1{N})+(a22*X2{N})+(a23*X3{N});%+(a24*X4{N}); 

50- R3{N}=A3+(a31*X1{N})+(a32*X2{N})+(a33*X3{N});%+(a34*X4{N}); 

51- R4{N}=A4+(a41*X1{N})+(a42*X2{N})+(a43*X3{N});%+(a44*X4{N}); 

52- % calculate values for x 

53- X1{N+1}=X1{N}+(R1{N}/abs(a11)); 

54- X2{N+1}=X2{N}+(R2{N}/abs(a11)); 

55- X3{N+1}=X3{N}+(R3{N}/abs(a11)); 

56- X4{N+1}=X4{N}+(R4{N}/abs(a11)); 

57- RESULT={N, X1{N+1}, X2{N+1}, X3{N+1}}, X4{N+1}}; 

58- disp(RESULT); 

59- if((X1{N}==X1{N+1}) && (X2{N}==X2{N+1}) && (X3{N}==X3{N+1})&&(X4{N}==X4{N+1}));  

60- goto 74; 

61- else count=count+1; 

62- end 

63- disp(count); 

64- %for N=1:count 

65- % RESULT={N, X1{N+1}, X2{N+1}, X3{N+1}, X4{N+1}}; 

66- %  disp(RESULT); 

67- %end 

The Modified Jacobi Method for 4x4 Matrix Using Matlab 

1. clc; 

2. close all; 

3. N0=1000; 

4. count=1; 

5. % enter initial values of X 

6. X1{1} = input('ENTER THE INITIAL VALUES OF X1 = '); 

7. X2{1} = input('ENTER THE INITIAL VALUES OF X2 = '); 

8. X3{1}= input('ENTER THE INITIAL VALUES OF X3 = '); 

9. X4{1}=input('ENTER THE INITIAL VALUES OF X4 = '); 

10. % ENTER VALUES FOR THE FIRST EQUATION 

11. % X11+X12+X13+X14=A1 

12. disp('Enter in this form a11X1+a12X2+a13X3+a14x4=A1'); 

13. a11=input('Enter a11='); 

14. a12=input('enter a12='); 

15. a13=input('enter a13='); 

16. a14=input('enter a14='); 

17. A1=input('enter A1='); 

18. % ENTER VALUES FOR THE SECOND EQUATION 

19. % X21+X22+X23+X24=A2 

20. disp('Enter in this form a21X1+a22X2+a23X3+a24x4=A2'); 

21. a21=input('Enter a21='); 

22. a22=input('enter a22='); 

23. a23=input('enter a23='); 
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24. a24=input('enter a24='); 

25. A2=input('enter A2='); 

26. % ENTER VALUES FOR THE THIRD EQUATION 

27. % X31+X32+X33+X34=A3 

28. disp('Enter in this form a31X1+a32X2+a33X3+a34X4=A3'); 

29. a31=input('enter a31='); 

30. a32=input('enter a32='); 

31. a33=input('enter a33='); 

32. a34=input('enter a34='); 

33. A3=input('enter A3='); 

34. % ENTER VALUES FOR THE FOURTH EQUATION 

35. % X31+X32+X33+X34=A4 

36. disp('Enter in this form a41X1+a42X2+a43X3+a44X4=A4'); 

37. a41=input('enter a41='); 

38. a42=input('enter a42='); 

39. a43=input('enter a43='); 

40. a44=input('enter a44='); 

41. A4=input('enter A4='); 

42. for  N= 1:N0 

43. % R1 CALCULATION 

44. R1{N}=A1+(a11*X1{N})+(a12*X2{N})+(a13*X3{N})+(a14*X4{N}); 

45. % calculate values for x1 

46. X1{N+1}=X1{N}+(R1{N}/-a11); 

47. % R2 CALCULATION 

48. R2{N}=A2+(a21*X1{N+1})+(a22*X2{N})+(a23*X3{N})+(a24*X4{N}); 

49. % calculate values for x2 

50. X2{N+1}=X2{N}+(R2{N}/-a11); 

51. % R3 CALCULATION 

52. R3{N}=A3+(a31*X1{N+1})+(a32*X2{N+1})+(a33*X3{N})+(a34*X4{N}); 

53. % calculate values for x3 

54. X3{N+1}=X3{N}+(R3{N}/-a11); 

55. % R4 CALCULATION 

56. R4{N}=A4+(a41*X1{N+1})+(a42*X2{N+1})+(a43*X3{N+1})+(a44*X4{N}); 

57. % calculate values for x4 

58. X4{N+1}=X4{N}+(R4{N}/-a11); 

59. RESULT={{N, X1{N+1}, X2{N+1}, X3{N+1}}, X4{N+1}; 

60. disp(RESULT); 

61. % if((X1{N}==X1{N+1}) && (X2{N}==X2{N+1}) && (X3{N}==X3{N+1}) && (X4{N}==X4{N+1});  

62. % goto 85; 

63. % else  count=count+1; 

64. % end 

65. end 

66. % disp(count); 
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