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Abstract 
Potential theory is one of the ways to solve the boundary value problems for the 

Laplacian. Well-posed solvability of integral equations equivalent to boundary value 

problems allow to use for their solution well known projection methods. In many applied 

problems the boundary surfaces have complex geometry and contain the edges and 

corner points. Together with the singularity in the kernel this gives rise to a singularity in 

the searched density of the potential. The methods are proposed for removal of 

singularities in the kernels and unknown densities of potentials that significantly improve 

the accuracy of projection methods, as well as their numerical solution. 

1. Introduction 

During modeling of many physical processes (diffusion, heat flow, electrostatic field, 

frictionless flow, elastic motion of solids etc.), the need for solution of boundary value 

problems for the Laplacian in R
3
 arises [1]. In the case of complex geometry of the 

boundary surface for the solution of such problems should be used the potential theory 

methods [2]. Depending on the properties of environment solution of boundary value 

problem can be sought in the form of simple layer potential [3], double layer potential 

[4], or the sum of these potentials [5]. Systems of integral equations equivalent to the 

boundary value problems may contain integral equations of the first kind [2-5]. Review 

of the conditions of well-posed solvability of these equations for the simple and double 

layer potentials and closed boundary surfaces contained in [6], for tired boundary 

surfaces – in [7]. Review of the conditions of well-posed solvability of these equations 

for the sum of potentials contained in [8]. These results allow to use for the the solution 

of systems of integral equations the well-known projection methods [2, 9-13]. 

Implementation of these methods requires calculation of singularities in kernel and 

unknown density of potentials when approaching the edge or the corner of the boundary 

surface, which often occurs in existing devices, such as high voltage transmission 

towers, radar systems of various types etc. This problem was studied in [14-19]. In the 

given articles, analytical methods for calculation of singularities for particular surface are 

proposed. The use of finite element approximation of unknown potential density 

provides additional opportunities to calculate its singularities and build new algorithms 

for calculation of matrix coefficients of the system of linear algebraic equations, 

discretized system integral equations, and significantly improves the accuracy of their 

numerical solution. 
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2. Collocation Method and Function 

of Singularity of Potential Density 

Let ∪
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3
. Suppose that 

on each surface iΓ  is given boundary condition 
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Rx ∈ , is a double layer potential  

and )(yq , Γ∈y , is a density of double layer potential. To 

determine the unknown densities of the potentials need to 

solve the system of integral equations 
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Well-known projection methods (collocation, Galerkin, 

least squares, etc.) can be used to solve the system (1). These 

methods are well investigated for stability and convergence 

and commonly used to solve many problems of mathematical 

physics [2-4, 13, 14]. 

Let 
2],0[],0[ RbaS iii ∈×=  be the rectangular domain of 
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finite elements defined on ihS , . Consider collocation method 

for solution of the system (1) when the set of points of 

observation coincides with the nodes of the grid ihS , . System 

of collocation equations in this case has the form  
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where lma , 
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b ~~  are unknown parameters and itp ii
x Γ∈, , 

Ni ,1= , is the set of points of observation. Conditions of 

stability and convergence of the method (2) defined in [13]. 

The main factor affecting the accuracy of approximate 

solution of the system of collocation equations is the 

calculation of integrals with singularities in their matrices 

coefficients. Let P = ×],[ 10 ττ ],[ 10 νν
 
be the certain
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of the grid ihS , , 01 ττ − = ih ,τ , 01 νν − = ih ,ν , Ni ,1= . 

Elimination of singularity of the density is only suitable for 

grid elements that are tangent to the edges or corners of the 

boundary surface. Moreover, construction of the function of 

singularity for domain of parameters iS  is often a difficult 

problem, e.g., for surfaces with curved cuts. Consider the 

elements of the matrix of the system of collocation equations 

that are formed from the integrals depending on the given 

boundary conditions:  
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where ),( ιτρ  is the function of singularity of potential 

density, ),( ιτL  is a basic function defined on P , ),( ιτJ
 
is 

the Jacobian of coordinate transformation. Construct the 

function of singularity of potential density  
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Usually Pmes << iSmes , i.e. no more than two indexes 

jα , 4,1=j , may be different from zero. If P  is internal 

element of the grid ihS ,  , Ni ,1= , and point of observation 
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does not belong to P  then function under the integral in (3)-

(6) is smooth and for numerical integration the Gauss 

quadrature formula with constant weight various degrees of 

accuracy [21] is used. 

3. Removal of the Singularity in the 

Density and Kernel of Simple Layer 

Potential 

In order to simplify the presentation, we assume that =Γ0

]1,0[]1,0[ ×  is the unit square on the plane yx0 . Parametric 

representation of such surface is given by  
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and Jacobian of coordinate transformation ),( ιτJ =1. 

If P  is the border element of the grid, e.g. 0τ = 0ν =0, and 

point of observation does not belong to P  then integral 1I  

has the form 
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In order to calculate 1I  sequentially the quadrature 

formula proposed in [22] is used: 
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Choice of the formula (7) is explained by the simplicity of 

dependence on the singularity order γ . 

Let P  be the internal element of the grid and 

1 2 3
( , , )= =ɶy y y y (

0
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0
ν ,0). In this case 
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Implement the change of variables in (8) by transition to 

polar coordinates system with center in the point ( 0τ , 0ν ) 
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where )(0 θr  is function which determines the distance from 

the observation point to the opposite sides of the element, has 

no singularity. For its calculation the Gauss quadrature 

formula with constant weight is used. 
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Using the change of variables (9), we obtain 
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Function under the integral in (11) has no singularity. To 

calculate it Gauss quadrature formula with constant weight is 

used. If 

 
))((

))((
),(

1001

10

ννττ
ννττιτ
−−

−−=L  (12) 

we obtain 

 

1 2 1

1 2

2

1 2

1 2 1 2

21 1 1

2

1 0

1 2 0

21 1

1 1 3

0

1 2 0

cos
( )

2 sin

cos sin ( )
3

− − −
− −

− −
− − − −

=
− −

−
− −

∫

∫

h h
I r d

h h
r d

πα α α
α ατ ν

α

πα α
α α α ατ ν

θ θ θ
α α θ

θ θ θ θ
α α

 (13) 

The first integral in (13) is calculated by dividing the 

interval of integration into two intervals ],0[ ε  and ]2,[ πε , 

180πε = , and replacing 22sin
αα θθ =  on ],0[ ε . 

Approximate value of the integral with the singularity is 

calculated using the quadrature formula (7), other integrals – 
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Do the same for 

 
))((

))((
),(

0110

01

ννττ
ννττιτ
−−

−−
=L . (14) 

In this case 



 Computational and Applied Mathematics Journal 2015; 1(2): 29-35  32 

 

 

1 2 2

1 2

1

1 2

1 2 1 2

21 1 1

2

1 0

1 2 0

21 1

1 1 3

0

1 2 0

sin
( )

2 cos

cos sin ( )
3

− − −
− −

− −
− − − −

=
− −

− ×
− −

∫

∫

h h
I r d

h h
r d

πα α α
α ατ ν

α

πα α
α α α ατ ν

θ θ θ
α α θ

θ θ θ θ
α α

 (15) 

The first integral in (15) is calculated by dividing the 

interval of integration into two intervals ]2,0[ επ −  and 
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For the calculation of integrals with singularities in (17) 

the same techniques as for (13) and (15) are used. Similarly 

the removal of the singularity in the density of potential if the 

element of the grid is tangent to the edge of 0Γ  is performed. 

4. Removal of the Singularity in the 

Density and Normal Derivative of 

the Kernel of Simple Layer 

Potential 

Consider integral (4) if P is the internal element of the 

grid hS  and ),( 00 ντ  is the observation point. In this case  
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Functions under the integrals in (19)–(21) are smooth, and 
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Integrals with singularities in (24) and (25) are calculated similarly to (13) and (15). Instead of (23) we have 
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The removal of the singularity in the density of potential if 

the element of the grid is tangent to the edge of 0Γ  is 

performed similarly. 

5. Removal of the Singularity in the 

Density and Kernel of Double Layer 

Potential 

Consider the integral (5). In this case  
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In order to calculate the integral (29) the quadrature 

formulas for singular integrals proposed in [23] is used. We 

can also use the Galerkin method for numerical solution of 

corresponding integral equations, although it involves 

significant increase in the computational expenditures. 

Let 0Γ  be the part of the boundary surface Γ with 

parametric representation  
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consistently the Gauss quadrature formula and one of the 

previously considered methods for the calculation of singular 

integrals which depends on the value of α  are used. If step 

of the grid on the surface 0Γ  is small enough then element 

hSP ∈  can be replaced by a flat. In this case we can use 

algorithms considered above for removal of singularities for 

the flat surface. Proposed approach can be easily extended to 

the case of nonrectangular grids, higher-order finite element 

approximations, and other projection methods for numerical 

solution of  the system of integral equations (1). 

6. Results and Discussion 

Consider several examples with known analytical solution 

that are used to study numerical solution distortions that 

occur close to edges and corner points of boundary surface. 

They allow to examine the effectiveness of application of 

methods proposed for singularities removal in kernels and 

densities of potentials. 

Let G = ×]1,0[ ×]1,0[ ]1,0[  be the unit cube and  =Γ  

0Γ∪∂= G  where 0Γ  is a flat tired surface ,25.0[  ×]75.0

]75.0,25.0[  which lies in the plane 5.03 =y . Assume that 

the unknown function is continuous when crossing G∂  and 

0Γ . In order to illustrate the effectiveness of the proposed 

algorithms the following boundary value problems were 

solved. 

Problem 1. Find function Gu ∈ , 0=∆u  in G  which 

satisfied boundary condition 1=Γu . Solution of this 

problem is known, namely 1=u  in G . In all parts of Γ (the 

sides of the cube and the surface 0Γ ), the rectangular grid 

with ντ hh = =0.125 was generated. The solution was 

proposed in the form of simple layer potential with a 

piecewise linear approximation of the smooth part of the 

unknown potential density. The values iα ,  4,1=i , are 

equal to 0.5. For the solution of integral equation the 

collocation method is used with the observation points 

coinciding with the grid nodes. The dimension of the system 

of collocation equations  N1==458. To calculate integrals (3) 

first only Gauss quadrature formula of the fourth order with 

constant weight without removal of singularities was used. 

The accuracy of the approximate solution in G  when 

approaching the middle of the edge of the cube was equal 

2.1%, when approaching the middle of the edge 0Γ  – 3.5%, 

when approaching the corner points of G∂ and 0Γ – 5.8%. 

When Gauss quadrature formula of the fourth order with 

constant coefficients as well as proposed algorithms for 

removing singularities were used, the accuracy of 

approximate solution in G  while approaching the middle of 

the cube edge was equal to 0.3 %, when approaching the 

middle of the edge 0Γ  – 0.5 %, when approaching the corner 

points of boundary surface – 0.9 %. Result of similar 

accuracy may be achieved without usage of proposed 

algorithms for removal singularities. For this, the grid with 

step ντ hh = =0.0625 has to generated on the boundary 

surface. The dimension of the system of collocation 

equations in this case N2=1714. The number of operations 

required for the formation of the system of collocation 

equations in second case is over 14 times higher than number 

of operations required to generate appropriate system in first 

case. The number of operations required for solution of the 

system of collocation equations with the use of Gauss 

method )( 3
2NO  is over 52 times higher than number of 

operations )( 3
1NO  required for solution of the system of 

linear algebraic equations  in case of singularities removal. 

Problem 2 differs from problem 1 only in boundary value 

condition on the surface 0Γ  which is assumed to be 

0

0

=
∂
∂

Γn

u
. To calculate integrals (3) and (4), first only Gauss 

quadrature formula of the fourth-order with constant weight 

without singularities removal was used. The accuracy of the 

approximate solution in G  when approaching the middle of 

the edge of the cube was equal 3.1%, when approaching the 

middle of the edge 0Γ  – 5.7%, when approaching the corner 

points of G∂ and 0Γ – 8.2%. 

When Gauss quadrature formula of the fourth order with 

constant coefficients as well as proposed algorithms for 

removing singularities were used for integrals (3) and (4), the 

accuracy of approximate solution in G  while approaching 

the middle of the cube edge was equal 0.6 %, when 

approaching the middle of the edge 0Γ  – 0.9%, when 

approaching the corner points of G∂ and 0Γ – 1.2%. 

7. Conclusions 

Boundary integral equation method is a powerful tool for 

solving many problems of mathematical physics. The 

accuracy of the numerical solution of these equations 

depends essentially on the presence of singularities in the 

kernel and density of potential. The algorithms are developed 

for removal singularities in densities and kernels of simple 

and double layer potentials and its normal derivatives near 

the edges and corner points of the boundary surface using the 

properties of finite element approximation. Numerical 
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experiments demonstrate the high efficiency of approach 

proposed. These methods can be used to improve the 

accuracy of the numerical solution of integral and integral-

differential equations with singularities equivalent to many 

other problems of mathematical physics. 
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