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Abstract 
This paper presents a new technique for the solution of the Black-Scholes partial 

differential equation for European call option using a method based on the modified 

Mellin transform. We also used the modified Mellin transform method to determine the 

price of European call option. The modified Mellin transform method is mutually 

consistent and agrees with the values of Black-Scholes model as shown in Table 1. 

1. Introduction 

In finance, an option is a contract which gives the buyer (the owner) the right, but not 

the obligation, to buy or sell an underlyingasset or instrument at a specified strike price 

on or before a specified date. The seller has the corresponding obligation to fulfill the 

transaction – that is to sell or buy – if the buyer (owner) "exercises" the option. The 

buyer pays a premium to the seller for this right. An option that conveys to the owner the 

right to buy something at a specific price is referred to as a call; an option that conveys 

the right of the owner to sell something at a specific price is referred to as a put. 

American options allow option holders to exercise the option at any time prior to and 

including its maturity date, thus increasing the value of the option to the holder relative 

to European options, which can only be exercised at maturity. The majority of exchange-

traded options are American. 

European options are options that can only be exercised at the end of its life, at its 

maturity. They tend to sometimes trade at a discount to its comparable American option. 

This is because American options allow investors more opportunities to exercise the 

contract.  

Until 1973, the valuation of an option was done by little more than guesswork. Black-

Scholes [2] and Merton [5] derived a second order partial differential equation for the 

value of an option on stocks which then transformed option valuation into a science. 

Nowadays, the Black-Scholes equation is widely used in the field of financial 

mathematics. Despite the success of the Black-Scholes model on hedging and pricing 

contingent claims, Merton [5] noted early that options quoted on the markets differ 

systematically from their predicted values, which led up to questioning the distributional 

assumptions based on geometric wiener process. 

The Mellin transforms in the theory of option pricing was introduced by Panini and 

Srivastav [7]. They derived the expression for the free boundary and price of an 

American perpetual put as the limit of finite lived options. Panini and Srivastav [8] 
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considered the pricing of perpetual options using Mellin 

transforms. Nwozo and Fadugba [6] considered the Mellin 

transform method for the valuation of some vanilla power 

options with non-dividend yield. They extended the Mellin 

transform method to derive the price of European and 

American power put options with non-dividend yield. They 

also derived the fundamental valuation formula known as the 

Black-Scholes model using the convolution property of the 

Mellin transform method. Samuelson [9] derived a closed-

form expression for the free boundary and price of a 

perpetual American put option using Mellin transform 

techniques. 

Vasilieva [10] introduced a new method of pricing Multi-

options using Mellin transforms and integral equations. J�́dar 

et al [4] considered a new direct method for solving the 

Black-Scholes equation using the Mellin transforms. F. 

AlAzemi et al [1] obtained an analytical solution of the 

Black-Scholes equation for the European and the American 

put options. In this paper we shall derive a new technique 

which does not require variables transformation for the 

solution of homogeneous Black-Scholes partial differential 

equation for a European call option using the modified 

Mellin transform proposed by Frontczak and Sch��bel [3].  

The structure of the paper is organized as described in the 

following. In the next section we give an overview of the 

most fundamental ideas and mathematical tools needed for 

the Mellin transforms. We also present the most relevant 

properties of the Mellin transforms. Section 3 presents a new 

technique for the solution of the Black-Scholes partial 

differential equation for European call option. Section 4 

presents numerical experiment. Section 5 concludes the 

paper. 

2. Mellin Transform and Its 

Fundamental Properties in the 

Theory of Option Valuation 

Let )(yf  be a function defined on the positive real axis

),0( ∞∈t . The Mellin transformation denoted by M is the 

operation mapping the function f  into the function F
defined on the complex plane by the relation  

1

0

( ( ), ) ( ) ( ) vM f y v F v f y y dy

∞
−≡ = ∫                  (1) 

The function ( )F v  is called the Mellin transform of f . In 

general, the integral does exist only for complex values of 

v a jb= +  such that
1 2

( , )a a a∈ , where 
1

a  and 
2

a  depend 

on the function ( )f y  to transform. This introduces what is 

called the strip of definition of the Mellin transform that will 

be denoted by 
1 2

( , )V a a . In some cases, this strip may extend 

to half-plane 
1

( )a = −∞  or 
2

( )a = ∞  or to the complex v-

plane 
1

( )a = −∞  and 
2

( )a = ∞ . 

Conversely, the inversion formula of (1) is defined as  

1 1
( ( )) (( ), ) ( )

2

a j

v

a j

M F v f y v F v y dv
jπ

+ ∞
− −

− ∞

≡ = ∫      (2) 

where the integration is along a vertical line through 
av =)Re( . 

Some of the basic fundamental properties of the Mellin 

transforms are detailed below. 

If )(xf  is defined on the positive real axis ),0( ∞∈t , 

then the following properties hold. 

(a) Shifting Property 

( ) 1

0

( ); ( ) ( )

∞
−= = +∫

a a vM y f y v y f y y dy F v a            (3) 

(b) Scaling Property 

( ) 1

0

( ; ) ( ) ( )

∞
− −= =∫

v vM f ay v f ay y dy a F v            (4) 

(c) The Mellin Transform of Derivatives 

( ); ( 1) ( ) ( ), ( ) , + 
= − − − − ∈ ∈ 

 

k
k

k fk

d
M f y v v k F v k v k V k Z

dy
                              (5) 

where the symbol kkv )( −  is defined for k integer by; 

)1)...(1)(()( −+−−=− vkvkvkv k  

Equations (3) and (6) can be used in various ways to find 

the effect of linear combination of differential operator such 

that 

m

k d
v

dv

 
 
 

, k, m integers. The most remarkable results 

are 

( ); ( 1) ( )

( ); ( 1) ( ) ( )

( ); ( 1) ( ) ( )

   
   = −     


 
= − −  

 
   = − 
  


k

k k

k
k k

kk

k
k k

kk

d
M v f y v v F v

dy

d
M v f y v v k F v

dv

d
M v f y v v F v

dv

             (6) 

where fv V∈ , k a positive integer and 
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( 1)...( 1)
k

v v v v k= + + − . 

3. A New Technique for the Solution 

of the Black-Scholes Partial 

Differential Equation for a 

European Call Option 

Let us consider the homogeneous Black-Scholes partial 

differential equation for a European call ( , )c tE S t  option 

with the initial and boundary conditions given by 

 

( )

2 2 2

2

0

( , ) ( , ) ( , )
( , ) 0, (0, ), [0, ]

2

( , )

lim ( , ) 0

lim ( , )

+

→

→∞

∂ ∂ ∂
+ + − = ∈ ∞ ∈ ∂ ∂∂ 

= − 
=

= ∞


t

t

c t t c t c t

t c t t

tt

c t t

c t
S

c t
S

E S t S E S t E S t
rS rE S t S t T

t SS

E S T S K

E S t

E S t

σ

          (7) 

where σ  is the volatility, r  is a risk-free interest rate, K  is 

called the strike price and T  is the maturity date . It is a 

known fact that the partial differential equation in (7) has a 

closed form solution obtained after several change of 

variables and solving certain related diffusion equations. This 

procedure is not applicable in the vector framework where 

( , )
c t

E S t  is a vector and σ , r  are matrices.  

The modified Mellin transform for the price of European 

call option is defined as 

1

0

ˆ( ( , ), ) ( , ) ( , ) v

c t c c t t t
M E S t v E v t E S t S dS

∞
− −− = = ∫         (8) 

and the inversion formula for the modified Mellin transform 

is given by 

1 1ˆ ˆ( ( , )) (( , ), ) ( , )
2

+ ∞
−

− ∞

= − = ∫
a j

v

c c t c t

a j

M E v t E S t v E v t S dv
jπ     (9) 

To utilize the modified Mellin transform and the 

conditions that guarantee its existence, we assume that 

( , )
c t

E S t  is bounded of polynomial degree when 0
t

S →  and 

t
S → ∞  i.e. 

1

2

( ), 0
( , )

( ),

a

t t

c t a

t t

O S S
E S t

O S S

 →= 
→ ∞

                (10) 

for any u C∈  on 
1 2

( )a R u a− < < −  where 
1 2

( , )a a− −  is 

called fundamental strip. 

Taking the modified Mellin transform of the Black-

Scholes partial differential equation for a European call 

option in (7), we have that 

( )
2 2 2

2

( , ) ( , ) ( , )
( , )

2

 ∂ ∂ ∂
+ + = ∂ ∂∂ 

c t t c t c t

t c t

tt

E S t S E S t E S t
M rS M rE S t

t SS

σ
                                       (11) 

Using the properties of the Mellin transforms, we have 

( )

2 2 2 2
2

2

( , ) ˆ ( , )

( , ) ˆ( ) ( , )
2 2

( , ) ˆ ( , )

ˆ( , ) ( , )

∂   =  ∂  
 ∂
= −  ∂  
 ∂ = 
∂ 


= 

c t

c

t c t

c

t

c t

t c

t

c t c

E S t d
M E v t

t dt

S E S t
M v v E v t

S

E S t
M rS rvE v t

S

M rE S t rE v t

σ σ

       (12) 

Substituting (12) into (11) and simplifying further yields 

2 2 2ˆ ( , ) ˆ ( , ), [0, ]
2 2

  
= − − − − ∈   

  

c

c

dE v t v
r v r E v t t T

dt

σ σ
  

(13) 

Integrating (13) yields 

2 2 2

ˆ ( , ) ( ) exp
2 2

   
= − − − −        

c

v
E v t A v r v r t

σ σ
    (14) 

Setting  
2 2 2

( )
2 2

  
= − − −   

  

v
v r v r

σ σϕ , then (14) becomes 

( )ˆ ( , ) ( )exp ( )= −cE v t A v v tϕ                       (15) 

where )(vA is a constant of integration to be determined and 

it is defined as  

( ) ( , )exp( ( ) )=A v v t v Tψ ϕ                      (16) 
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( , )v tψ  can be obtained by taking the modified Mellin 

transform of the initial condition of the form  

( )( , ) ( )
c t t

E S T S S Kθ += = −                   (17) 

then we have  

1
1

0

( , ) ( ( ), ) ( )
( 1)

v
v

t t t t

K
v t M S v S K S dS

v v
ψ θ

∞ −
+ − −= − = − =

−∫    (18) 

Using equations (15), (16) and (18), we have that 

1

ˆ ( , ) exp( ( )( ))
( 1)

v

c

K
E v t v T t

v v
ϕ

−

= −
−

              (19) 

The modified Mellin inversion of (19) is obtained as 

1
1 1ˆ( ( , )) ( , ) exp( ( )( ))

2 ( 1)

+ ∞ −
−

− ∞

= = −
−∫

a j v
v

c c t t

a j

K
M E v t E S t v T t S dv

j v v
ϕ

π                               (20) 

Next we want to prove that the expression (20) is a 

solution of the Black-Scholes partial differential equation for 

a European call option given by (7). Let us assume that  

= + ⇒ =v m jn dv jdn                          (21) 

Substituting (21) into (20) yields 

1
( )1

( , ) exp( ( )( ))
2 ( )( 1)

∞ − −
+

−∞

= + −
+ + −∫

m jn
m jn

c t t

K
E S t S m jn T t dn

m jn m jn
ϕ

π
                                    (22) 

Substituting v m jn= +  into 
2 2 2

( )
2 2

v
v r v r

σ σϕ
  

= − − −   
  

, then  

2 2 2

2 2 2 2 2 2
2

( )
( ) ( )

2 2

2 2 2 2

  ++ = − − + −    
   


   = − − + − + − +   
   

m jn
m jn r m jn r

m n m n
rm r j mn rn

σ σϕ

σ σ σ σσ
                                (23) 

Since ( , )c tE S t  is Mellin transformable and continuous, setting Tt = then (22) becomes 

1
( )1

( , )
2 ( )( 1)

m jn
m jn

c t t

K
E S t S dn

m jn m jnπ

∞ − −
+

−∞

=
+ + −∫                                        (24) 

Equation (22) is well defined and satisfies (24). 

Using the definition of the Mellin transform, then  

1
1

( ) ( )
( )( 1)

m jn
mK

M m f s s ds n R
m jn m jn

− −
−≤ = ∀ ∈

+ + − ∫                                 (25) 

and for ),0[ Tt ∈ we have that  

1
( )

2 2 2 2 2 2 2

exp( ( )( ))
( )( 1)

( ) exp ( ) exp ( )
2 2 2 2

∞ − −
+

−∞

∞

−∞


+ − + + −


      −≤ − − + − − −          
      

∫

∫

m jn
m jn

t

m

T

K
S m jn T t dn

m jn m jn

m n m m
M m S rm r T t T t dm

ϕ

σ σ σ σ
                (26) 

Using the differentiation theorem of parameter integrals 

and the fact that   

2

exp ( ) , 0,1,2,..., [0, )
2

j
n T t dn j t T

σ∞

−∞

 
− − < ∞ = ∈ 
 

∫     (27) 

Then it follows that upon differentiation of (22), we have 

that  
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1
( )

1
( 1)

( , ) 1
( ) exp( ( )( ))

2 ( )( 1)

( , ) 1
( ) exp( ( )( ))

2 ( )( 1)

∞ − −
+

−∞
∞ − −

+ −

−∞

∂
= − + + − ∂ + + − 


∂ = + + − ∂ + + − 

∫

∫

m jn
m jnc t

t

m jn
m jnc t

t

t

E S t K
m jn S m jn T t dn

t m jn m jn

E S t K
m jn S m jn T t dn

S m jn m jn

ϕ ϕ
π

ϕ
π

                        (28) 

2 1
( 2)

2

( , ) 1
( )( 1) exp( ( )( ))

2 ( )( 1)

∞ − −
+ −

−∞

∂
= + + − + −

+ + −∂ ∫
m jn

m jnc t

t

t

E S t K
m jn m jn S m jn T t dn

m jn m jnS
ϕ

π
                  (29) 

Substituting (22), (28) and (29) into the Black-Scholes partial differential equation for a European call option given by (7), 

we have 

2 2 2

2

1
( )

2 2 1
( 2)

( , ) ( , ) ( , )
( , )

2

1
( ) exp( ( )( ))

2 ( )( 1)

1
( )( 1) exp( ( )( ))

2 2 ( )( 1)

∞ − −
+

−∞
∞ − −

+ −

−∞

∂ ∂ ∂
+ + −

∂ ∂∂

= − + + −
+ + −

+ + + − + −
+ + −

∫

∫

c t t c t c t
t c t

tt

m jn
m jn

t

m jn
m jnt

t

E S t S E S t E S t
rS rE S t

t SS

K
m jn S m jn T t dn

m jn m jn

S K
m jn m jn S m jn T t dn

m jn m jn

σ

ϕ ϕ
π

σ ϕ
π

1
( 1)

1
( )

2 2

( 2) ( 1)

1

1
( ) exp( ( )( ))

2 ( )( 1)

1
exp( ( )( ))

2 ( )( 1)

1
( ) ( )( 1) ( )

2 2

(

∞ − −
+ −

−∞
∞ − −

+

−∞

∞
− −

−∞

− −

+

+ + −
+ + −

+ −
+ + −

 
= − + + + + − + + − 

 

×

∫

∫

∫

m jn
m jn

t t

m jn
m jn

t

nt

t t t

m jn

K
rS m jn S m jn T t dn

m jn m jn

K
r S m jn T t dn

m jn m jn

S
m jn m jn m jn S rS m jn S r

K

ϕ
π

ϕ
π

σϕ
π

( )

( )

2 2 2 2 2 2
2

1
( )

1

exp( ( )( ))
)( 1)

1
( )

2 2 2 2 2

exp( ( )( ))
( )( 1)

1
( ) ( )

2

+

∞

−∞

− −
+

− −

 
+ − + + − 

     
= − + + − − + − + − +            

× + −
+ + −

= − + + +

∫

m jn

t

m jn
m jn

t

m

S m jn T t dn
m jn m jn

m n m n
m jn rm r j mn rn

K
S m jn T t dn

m jn m jn

K
m jn m jn

ϕ

σ σ σ σϕ σ
π

ϕ

ϕ ϕ
π

( ) exp( ( )( ))
( )( 1)

0

∞
+

−∞
































+ − + + −


= 



∫
jn

m jn

tS m jn T t dn
m jn m jn

ϕ

                   (30) 

Hence ( , )c tE S t  defined by (20) is a solution of (9) and the 

following result is established. 

Theorem: Let the price of a European call option denoted 

by ( , )c tE S t  be Mellin transformable and continuous, then  

11
( , ) exp( ( )( ))

2 ( 1)

+ ∞ −

− ∞

= −
−∫

a j v
v

c t t

a j

K
E S t v T t S dv

j v v
ϕ

π  

for , [0, )∈tS t T  is a solution of the homogeneous Black-

Scholes partial differential equation for the European call 

option of the form 

( )

2 2 2

2

0

( , ) ( , ) ( , )
( , ) 0, (0, ), [0, ]

2

( , )

lim ( , ) 0

lim ( , )

+

→

→∞

∂ ∂ ∂
+ + − = ∈ ∞ ∈ ∂ ∂∂ 

= − 
=

= ∞


t

t

c t t c t c t

t c t t

tt

c t t

c t
S

c t
S

E S t S E S t E S t
rS rE S t S t T

t SS

E S T S K

E S t

E S t

σ
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4. Numerical Experiment 

We consider the valuation of European call option using 

the modified Mellin transform in the context of Black-

Scholes model with the following parameters: 

100,110,120, 100, 0.5,1.0,1.5,2.0,2.5,3.0,= = =
t

S K T  

0.05, 0.2= =r σ  

The results generated are shown in the Table below. 

Table. The Comparative Results Analysis of the Black-Scholes Model and 

the Modified Mellin Transform Method  

T S 
Black-Scholes  

Model 

Modified Mellin Transform 

Method 

0.5 100 6.8887 6.8887 

0.5 110 14.0754 14.0754 

0.5 120 22.5928 22.5928 

1.0 100 10.4506 10.4506 

1.0 110 17.6630 17.6630 

1.0 120 26.1690 26.1690 

1.5 100 13.4429 13.4429 

1.5 110 20.7744 20.7744 

1.5 120 29.1703 29.1703 

2.0 100 16.1268 16.1268 

2.0 110 23.5901 23.5901 

2.0 120 31.9648 31.9648 

2.5 100 18.6033 18.6033 

2.5 110 26.1956 26.1956 

2.5 120 34.5878 34.5878 

3.0 100 20.9244 20.9244 

3.0 110 28.6389 28.6389 

3.0 120 37.0671 37.0671 

5. Conclusion 

In this paper we developed a new technique for the 

solution of the homogeneous Black-Scholes partial 

differential equation for a European call option using the 

modified Mellin transform method. The approach used in this 

paper does not require variables transformation. The above 

Table demonstrates that the modified Mellin transform 

method for the valuation of European call option which pays 

no dividend yield performs very well and agrees with the 

values of the Black-Scholes model. Also we can see from the 

Table above that the higher the time to maturity, the higher 

the values of the transform method. 
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