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Abstract 
In this paper, we used four feedback control method to suppress a modified hyperchaotic 

Pan system to unstable equilibrium, and we found that the critical value for each method 

based on the Routh-Hurwitz theorem, we study the relationship between this value and 

asymptotically stable, unstable and Hopf Bifurcation. Finally, we found that the least 

complexity and cost of method depended only on the system's constants of critical value 

and do not depended on the method itself. Theoretical analysis, numerical simulation, 

illustrative examples and comparison are given to demonstrate the effectiveness of the 

proposed controllers. 

1. Introduction 

In recent year, chaos control and synchronization have been received more attention 

due to its potential applications to physics, chemical reactor, control theory, biological 

networks, artificial neural networks, telecommunications and secure communication[8]. 

Chaos control, in a broader sense, can be divided into two categories: one is to suppress 

the chaotic dynamical behavior and the other is to generate or enhance chaos in nonlinear 

systems [6]. 

Recently, after the pioneering work of Ott et al. [7,9,10,13,16], many different 

techniques and methods have been proposed to achieve chaos control, such as OGY 

method, time-delay feedback method, Lyapunov method , impulsive control method, 

sliding method control , differential geometric method, H∞  control, adaptive control 

method, chaos suppression method, and so on. Among them, the feedback control is 

especially attractive and has been commonly applied to practical implementation due to 

its simplicity in configuration and implementation[3,6,7,16]. Generally speaking, there 

are two main approaches for controlling chaos: feedback control and non-feedback 

control. The feedback control approach offers many advantages such as robustness and 

computational complexity over the non- feedback control method[7,11,12,13]. 

Many attempts have been made to control hyperchaos and achieve synchronization of 

hyperchaotic systems [3,16]. Recently, Yan (2005) [8], Wang and Cai (2009) [16], Dou 

and Sun et al. (2009) [3], Zhu (2010)[14] and Zhuang et al. (2012)[15] suppressed 

hyperchaotic systems to unstable equilibrium by using feedback control method. In 2013, 

the Ref. [2] generated a new hyperchaotic based on Pan system [4,5] or Yang and Chen 

system via a state feedback controller which is called a modified hyperchaotic Pan 

system, which is described by the following mathematical model: 
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( )x a y x

y cx xz w

z xy bz

w dy

= −
 = − +
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                             (1) 

where 4( , , , )x y z u R∈ , and , , ,a b c d R∈  are constant 

parameters, When parameters 10a = , 8 3b =  28c =  and 

10d =  , system (1) is hyperchaotic and has two Lyapunov 

exponents, i.e. 
1 2

0.38352, 0.12714LE LE= = [2], The 

system (1) has only one equilibrium (0,0,0,0)O , and the 

equilibrium is an unstable under these parameters [2]. 

However, Some of the previous works founded that the 

coefficients of dislocate feedback control and enhancing 

feedback control were smaller than those of ordinary 

feedback control, and  another some previous works founded 

that the coefficients of speed feedback control and enhancing 

feedback control were smaller than those of ordinary,  but in 

this paper we found the main reason which make this 

coefficients are smaller than the rest of feedback control by 

depended on the system's constants of critical value, were 

each control method has critical value, and this value in 

ordinary feedback control depended on three system's 

constants i.e a,c and d, while in dislocate feedback control 

the critical value depended only one system's constants i.e a 

or c, and in speed feedback control depended on c or on a,c,d, 

Finally the enhancing feedback control depended on three 

system's constants i.e a,c and d. 

2. Types of Feedback Control Method 

2.1. Ordinary Feedback Control Method 

For the ordinary feedback control, the system's variable is 

often multiplied by a coefficient as the feedback gain, and the 

feedback gain is added to the right -hand of the 

corresponding equation [7,11,12,13]. 

According to the above definition we have four forms 

(cases) to control the system (1), but after the test we found 

only one form (case) that effective on the stability of the 

system when it is a following form: 

( )x a y x

y cx xz w ky

z xy bz

w dy

= −
 = − + −
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                           (2) 

where k is the feedback coefficient and the critical value for 

this system is  

2 2 2 3

( )

( ) ( ) 4

2
c Ordinary

a d ac a d ac a c
k k

a

− + − + + − +
= =  (3) 

Theorem 1. The solution of above system when , ,a b c and

0d >  has the following cases: 

(1) Asymptotically stable if 
( ) .c Ordinaryk k>  

(2) Unstable if 
( ) .c Ordinaryk k<  

(3) Hopf Bifurcation if 
( ) .c Ordinaryk k=  

Proof. The Jacobi matrix defined as: 

(0,0,0,0)

0 0 0 0

1 0 1

0 0 0 0

0 0 0 0 0 0
O

a a a a

c z k x c k
J

y x b b

d d

− −   
   − − − −   = =
   − −
   − −   

 

and its characteristic equation is : 

4 3 2( ) ( ( ) ) ( ( ) ) 0k a b b a k ak ac d b ak ac d ad abdλ λ λ λ+ + + + + + − + + − + + + =                                    (4) 

Solving equation (4) gives 1 bλ = −  and the following 

equation: 

3 2( ) ( ) 0k a ak ac d adλ λ λ+ + + − + + =         (5) 

By using Routh-Hurwitz method, the equation (5) has all 

roots with negative real parts if and only if 0, 0A C> >
and 0AB C− >  where ,A k a B ak ac d= + = − +  and 

C ad= , so , it is clear that , 0A C > since , 0a d > (given) 

and k is always positive and AB C> it is possible under the 

condition 
2 2 2 3

( )

( ) ( ) 4

2
c Ordinary

a d ac a d ac a c
k k

a

− + − + + − +
> =  therefore 

the system (2) is asymptotically stable if ( )c Ordinaryk k> , 

unstable if ( )c Ordinaryk k< and Hopf Bifurcation if 

( )c Ordinaryk k= . 

Proposition 1. Equation (4) has purely complex roots if 

and only if , ,a b c and 0d >  and ( )c Ordinaryk k= In this case, 

the solution of equation (4) are 
2

1 2,
2

a d ac E
b

a
λ λ − + += − = − , 

2

3,4
2

a d ac E
iλ − + − += ±  

where 
2 2 3( ) 4E a d ac a c= + − + . 

Proof. First get one root 1 bλ = − from equation(4) then 

obtain cubic equation (equation 5) If 3,4 iuλ = ±  are the 

complex roots and 2λ  the real root of equation(4) then , form 

2

2 3 4
2

a d ac E

a
λ λ λ − + ++ + = − . This easily leads to 

2

1 2,
2

a d ac E
b

a
λ λ − + += − = − ,

2

3,4
2

a d ac E
iλ − + − += ±  

when ( )c Ordinaryk k= . 
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Illustrative Example 1. Investigate for stability , unstable 

and Hopf Bifurcation of the following system: 

10( )

28

8 / 3

10

x y x

y x xz w ky

z xy z

w y

= −
 = − + −
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                       (6) 

Sol. 10, 8 3, 28a b c= = =  and 10d = , substitute this 

values in Eq(3) and Eq(4) we get the critical value 

( ) 27.2683c Ordinaryk k= = and the characteristic equation of 

system (6) is 

3 2( 8 / 3)( (10 ) (10 270) 100) 0k kλ λ λ λ+ + + + − + =    (7) 

Now, according to theorem 1 the roots of equation (7) 

depended of the value of k as following: 

If 27.5k = the equation (7) became 
3 2( 8 3) ( 37.5 5 100) 0,λ λ λ λ+ + + + = and the all roots have 

negative real parts 
1 28 3, 37.4378,= − = −λ λ

3,4 0.0311 1.6341= − ∓ iλ  therefore the system(6) is 

asymptotically stable. 

If 27k =  the equation (7) became 
3 2( 8 3) ( 37 100) 0,λ λ λ+ + + =

 
then not all roots have 

negative real parts 
1

8 3,= −λ  
2

37.0728 ,= −λ  

3,4
0.0364 1.6420= ∓ iλ  therefore the system(6) is unstable. 

Finally, if 27.2683k = the equation(7) became 
3 2( 8 3) ( 37.2683 2.683 100) 0,λ λ λ λ+ + + + =

 
we have two 

roots with negative real parts 
1 2

8 3, 37.2683λ λ= − = −  

and the other roots have purely complex 
3,4 1.6380iλ = ±

therefore the system(6) is Hopf Bifurcation. 

Also we can justified the same result that obtain in 

theorem1 by using MATLAB program where numerical 

simulations are used to investigate the controlled 

hyperchaotic system (6) using fourth-order Runge-Kutta 

scheme, The feedback coefficients are given by 27.5k = ,

27k = in figure 1 a, b respectively. The behaviors of the 

states ( ), ( ), ( ), ( )x t y t z t w t  of the hyperchaotic system (6) 

show converging to (0,0,0,0)O when 27.5k = (Fig1,a.) and 

divergence to (0,0,0,0)O when 27k = (Fig1,b.) 

 

(a) System (6) converge to O(0,0,0,0) where k=27.5 (b) System (6) divergence to O(0,0,0,0) where k=27 

Fig. 1. The difference of the state of the controlled system (6) with the control gain change. 

We can briefly describe illustrative example 1 by the following table (Table 1) also we can applied another values in theorem 

1 by the same table. 

Table 1. Relationship between critical value and asymptotically stable, unstable and Hopf Bifurcation for system (2). 

Input values Compute c
k  Compare Roots State 

a=10, c=28, d=10 27.26832 

k =27.5 2 3,437.4378 , 0.0311 1.6341= − = − ∓ iλ λ  asymptotically stable 

k=27 2 3,437.0728 , 0.0364 1.6420= − = ∓ iλ λ  unstable 

k=27.2683 2 3,4
37.2683, 1.6381= − = ±iλ λ  Hopf Bifurcation 

a=35, c=35, d=8 34.8859 

k =35 2 3,469.9429 , 0.0286 2.0006= − = − ∓ iλ λ  asymptotically stable 

k=34 2 3,469.4468, 0.2234 1.9955= − = ∓ iλ λ  unstable 

k=34.8859 2 3,4
69.8859, 2.0016= − = ±iλ λ  Hopf Bifurcation 
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Corollary 1. If the ordinary feedback control is the form 

as 

( )x a y x

y cx xz w

z xy bz

w dy kw

= −
 = − +
 = −
 = − −

ɺ

ɺ

ɺ

ɺ

                             (8) 

where k is the feedback coefficient and the critical value for 

this system is 

2 2 2 3

( )

( ) ( ) 4

2
c Ordinary

a d a d a c
k k

a

− + + + +
= =     (9) 

and k is a positive but this form, the system cannot converge 

to origin point . 

2.2. Dislocated Feedback Control Method 

If a system variable multiplied by a coefficient is added to 

the right -hand of another equation, then this method is called 

dislocated feedback control[7,11,12,13,14,15 ]. 

By above definition we have twelve forms (cases) to 

control the system (1), but after the test we found only two 

forms (cases) that effective on the stability of the system 

when it is a following form : 

( )x a y x ky

y cx xz w

z xy bz

w dy

= − −
 = − +
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                      (10) 

( )x a y x

y cx xz w kx

z xy bz

w dy

= −
 = − + −
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                  (11) 

where k is the feedback coefficient and the critical value for 

system (10) and system (11) respectively are: 

( )= =c Dislocatedk k a                         (12) 

( )= =c Dislocatedk k c                         (13) 

Theorem. 2 (i) The solution of system (10) when , ,a b c

and 0d >  has the following cases: 

(1) Asymptotically stable if k a>  

(2) Unstable if k a<  

(3) Hopf Bifurcation if k a=  

(ii) The solution of system (11) when , ,a b c and 0d >  has 

the following cases: 

(1) Asymptotically stable if k c>  

(2) Unstable if k c<  

(3) Hopf Bifurcation if k c=  

Proof. (i) The Jacobi matrix defined as: 

(0,0,0,0)

0 0 0 0

0 1 0 0 1

0 0 0 0

0 0 0 0 0 0
O

a a k a a k

c z x c
J

y x b b

d d

− − − −   
   − −   = =
   − −
   − −   

 

and its characteristic equation is : 

4 3 2( ) ( ) ( ( ) ) 0a b ab ck d ac b ck d ac ad abdλ λ λ λ+ + + + + − + + − + + =                                            (14) 

Solving equation (14) gives 
1

bλ = −  and the following 

equation: 

3 2 ( ) 0a ck d ac adλ λ λ+ + + − + =               (15) 

By using Routh-Hurwitz method, the equation (15) has all 

roots with negative real parts if and only if 0, 0A C> >
and 0AB C− >  where ,A a B ck d ac= = + −  and C ad= , 

so , it is clear that , 0A C > since , 0a d > (given) and since 

k is always positive then AB C>  is satisfied under the 

condition 
( )c Dislocatedk a k> =  therefore the system (10) is 

asymptotically stable if k a> , unstable if k a<  and Hopf 

Bifurcation if k a= . 

Proof. (ii) Analogously as in above  proof . 

Proposition2. Equation (14) has purely complex roots if 

and only if , ,a b c and 0d >  and 
( )c Dislocatedk k a= =  . In this 

case, the solution of equation (14) are 
1 2

,b aλ λ= − = − ,

3,4
i dλ = ± . 

Proof. First get one root 
1

bλ = − from equation(14) then 

obtain cubic equation (equation 15) If 
3,4 iuλ = ±  are the 

complex roots and 
2

λ  the real root of equation(14) then , 

form 
2 3 4

aλ λ λ+ + = − . This easily leads to 

1 2
,b aλ λ= − = − ,

3,4
i dλ = ±  . 

Corollary 2. System (11) has the same roots of system (10) 

when 
( )c Dislocatedk c k= = , General system (10) and system (11) 

have the same roots when 
( )c Dislocatedk k= . 

We can briefly describe theorem 2 by the following table 

where Table 2 for system (10) and Table 3 for system (11). 
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Table 2. Relationship between critical value and asymptotically stable, unstable and Hopf Bifurcation for system (10). 

Input values Compute c
k  Compare Roots State 

a=10, c=28, d=10 10 

k =10.1 2 3,49.7399 , 0.1300 3.2016= − = − ∓ iλ λ  asymptotically stable 

k=9.9 2 3,410.2494 , 0.1247 3.1211= − = ∓ iλ λ  unstable 

k=10 2 3,4
10, 3.1623= − = ±iλ λ  Hopf Bifurcation 

a=35, c=35, d=8 35 

k =36 2 3,433.9770, 0.5115 2.8284= − = − ∓ iλ λ  asymptotically stable 

k=34 2 3,435.9671, 0.4836 2.7479= − = ∓ iλ λ  unstable 

k=35 2 3,4
35, 2.8284= − = ±iλ λ  Hopf Bifurcation 

Table 3. Relationship between critical value and asymptotically stable, unstable and Hopf Bifurcation for system (11). 

Input values Compute c
k  Compare Roots State 

a=10, c=28, d=10 28 

k =28.1 2 3,49.9084 , 0.0458 3.1765= − = − ∓ iλ λ  asymptotically stable 

k=27 2 3,410.8495, 0.4248 3.0061= − = ∓ iλ λ  unstable 

k=28 2 3,4
10, 3.1623= − = ±iλ λ  Hopf Bifurcation 

a=35, c=35, d=8 35 

k =35.1 2 3,434.9004 , 0.0498 2.8320= − = − ∓ iλ λ  asymptotically stable 

k=34.9 2 3,435.0991, 0.0495 2.8240= − = ∓ iλ λ  unstable 

k=35 2 3,4
35, 2.8284= − = ±iλ λ  Hopf Bifurcation 

 
we noted from two tables the corollary 2 is satisfied when 

( )c Dislocatedk k= . and Fig. 2- a, b show converging and 

divergence to origin point when 10.1k = , 9.9k =  

respectively for system (10) 

 

(a) System (10) converge to O(0,0,0,0) where k=10.1 (b) System (10) 

divergence to O(0,0,0,0) where k=9.9 

Fig. 2. The difference of the state of the controlled system (10) with the 

control gain change. 

and Fig. 3- a, b show converging and divergence to origin 

point when 28.1k = , 27k =  respectively for system (11) 

when 10, 28, 10a c d= = = . 

 

(a) System (11) converge to O(0,0,0,0) where k=28.1 (b) System (11) 

divergence to O(0,0,0,0) where k=27 

Fig. 3. The difference of the state of the controlled system (11) with the 

control gain change. 

Corollary 3. If the dislocated feedback control is the form 

as 

( )x a y x kw

y cx xz w

z xy bz

w dy

= − −
 = − +
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                    (16) 
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where k is the feedback coefficient and the critical value for 

this system is 

2

( )c Dislocated

a
k k

d
= =                        (17) 

and k is a positive but this form, the system cannot converge 

to origin point . 

2.3. Speed Feedback Control Method 

For the speed feedback control, the independent variable 

of a system function is often multiplied by a coefficient as 

the feedback gain, so the method is called displacement 

feedback control. Similarly, if the derivative of an 

independent variable is multiplied by a coefficient as the 

feedback gain, it is called speed feedback 

control[ 3,6,7,8,11,12,13,14,16]. 

By above definition we have twelve forms (cases) to 

control the system (1), but after the test we found only two 

forms ( cases) that effective on the stability of the system 

when it is a following form : 

( )x a y x

y cx xz w

z xy bz

w dy kx

= −
 = − +
 = −
 = − −

ɺ

ɺ

ɺ

ɺ ɺ

                        (18) 

( )x a y x

y cx xz w

z xy bz

w dy ky

= −
 = − +
 = −
 = − −

ɺ

ɺ

ɺ

ɺ ɺ

                        (19) 

where k is the feedback coefficient and the critical value for 

system (18) and system (19) respectively are: 

( )c Speedk k c= =                           (20) 

2 2 2 3

( )

( ) ( ) 4

2
c Speed

a d ac a d ac a c
k k

a

− + − + + − +
= =  (21) 

Theorem.3 (i) The solution of system (18) when , ,a b c and

0d >  has the following cases: 

(1) Asymptotically stable if k c>  

(2) Unstable if k c<  

(3) Hopf Bifurcation if k c=  

(ii) The solution of system (19) when , ,a b c and 0d >  has 

the following cases: 

(1) Asymptotically stable if 
( )c Speedk k>  

(2) Unstable if 
( )c Speedk k<  

(3) Hopf Bifurcation if 
( )c Speedk k=  

Proof. (i) The Jacobi matrix defined as: 

(0,0,0,0)

0 0 0 0

0 1 0 0 1

0 0 0 0

0 0 0 0

− −   
   − −   = =
   − −
   − − − −   O

a a a a

c z x c
J

y x b b

ak d ak ak d ak

 

and its characteristic equation is : 

4 3 2( ) ( ) ( ( ) ) 0a b ak d ac ab b ak d ac ad abdλ λ λ λ+ + + + − + + + − + + =                                        (22) 

Solving equation (22) gives 
1

bλ = −  and the following 

equation: 

3 2 ( ) 0a ak d ac adλ λ λ+ + + − + =               (23) 

By using Routh-Hurwitz method, the equation (23) has all 

roots with negative real parts if and only if 0, 0A C> >
and 0AB C− >  where ,A a B ak d ac= = + −  and C ad= , 

so , it is clear that , 0A C > since , 0a d > (given) and since 

k is always positive then AB C>  is satisfied under the 

condition 
( )c Speedk ac k> =  therefore the system (18) is 

asymptotically stable if k c> , unstable if k c<  and Hopf 

Bifurcation if k c= . 

Proof. (ii) Analogously as in above proof . 

Proposition3. Equation (22) has purely complex roots if 

and only if , ,a b c and 0d >  and 
( )c Speedk k c= =  . In this 

case, the solution of equation (22) are 
1 2

,b aλ λ= − = − ,

3,4
i dλ = ± . 

Corollary 4. System (18) has the same roots of system (10) 

and system(11) under the condition 
( )c Speedk c k= = , General 

system (10) ,system (11) and system(18) have the same roots 

when 
c

k k= . 

Corollary 5. System (11) and system(18) have the same 

roots without any condition. 

Corollary 6. System (2) and system(19) have the same 

roots without any condition. 

We can briefly describe theorem 3 by the following table 

where Table 4 for system (18) and Table 5 for system (19). 
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Table 4. Relationship between critical value and asymptotically stable, unstable and Hopf Bifurcation for system (18). 

Input values Compute c
k  Compare Roots State 

a=10, c=28, d=10 28 

k =28.1 2 3,49.9084 , 0.0458 3.1765= − = − ∓ iλ λ  asymptotically stable 

k=27 2 3,410.8495, 0.4248 3.0061= − = ∓ iλ λ  unstable 

k=28 2 3,4
10, 3.1623= − = ±iλ λ  Hopf Bifurcation 

a=35, c=35, d=8 35 

k =35.1 2 3,434.9004 , 0.0498 2.8320= − = − ∓ iλ λ  asymptotically stable 

k=34.9 2 3,435.0991, 0.0495 2.8240= − = ∓ iλ λ  unstable 

k=35 2 3,4
35, 2.8284= − = ±iλ λ  Hopf Bifurcation 

 
we noted from table2, table3 and table4 the corollary 4 is 

satisfied under the condition 
c

k k= . also if we compare 

table4 for system(18) with table3 for system(11) we found 

the same results, therefore the corollary 5 is satisfied. 

Table 5. Relationship between critical value and asymptotically stable, unstable and Hopf Bifurcation for system (19). 

Input values Compute c
k  Compare Roots State 

a=10, c=28, d=10 27.26832 

k =27.5 2 3,437.4378 , 0.0311 1.6341= − = − ∓ iλ λ  asymptotically stable 

k=27 2 3,437.0728 , 0.0364 1.6420= − = ∓ iλ λ  unstable 

k=27.2683 2 3,4
37.2683, 1.6381= − = ±iλ λ  Hopf Bifurcation 

a=35, c=35, d=8 34.8859 

k =35 2 3,469.9429 , 0.0286 2.0006= − = − ∓ iλ λ  asymptotically stable 

k=34 2 3,469.4468, 0.2234 1.9955= − = ∓ iλ λ  unstable 

k=34.8859 2 3,4
69.8859, 2.0016= − = ±iλ λ  Hopf Bifurcation 

 

we noted from table5 and table1 have the same results. so, 

the corollary 6 is satisfied. and Fig. 4- a, b show converging 

and divergence to origin point when 28.1k = , 27k =  

respectively for system (18). 

 

(a) System (18) converge to O(0,0,0,0) where k=28.1 (b) System (18) 

divergence to O(0,0,0,0) where k=27 

Fig. 4. The difference of the state of the controlled system (18) with the 

control gain change. 

and Fig. 5- a, b show converging and divergence to origin 

point when 27.5k = , 27k =  respectively for system (19) 

when 10, 28, 10a c d= = = . 

 

(a) System (19) converge to O(0,0,0,0) where k=27.5 (b) System (19) 

divergence to O(0,0,0,0) where k=27 

Fig. 5. The difference of the state of the controlled system (19) with the 

control gain change. 

Corollary 7. If the speed feedback control is the form as 

( )x a y x

y cx xz w kw

z xy bz

w dy

= −
 = − + −
 = −
 = −

ɺ

ɺ ɺ

ɺ

ɺ

                 (24) 

where k is the feedback coefficient and the critical value for 
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this system is 

2 2 2 2 2 3 2

( ) 2

( ) ( ) 4

2
c Speed

acd d a d acd d a d a cd
k k

ad

− − − + − − +
= =                                                 (25) 

and k is a positive but this form, the system cannot converge 

to origin point .
 

2.4. Enhancing Feedback Control Method 

It is difficult for a complex system to be controlled by only 

one feedback variable, and in such cases the feedback gain is 

always very large. So we consider using multiple variables 

multiplied by a proper coefficient as the feedback gain. This 

method is called enhancing feedback control [7,11,12,13 -

15] . 

By above definition we have eleven forms (cases) to 

control the system (1), but after the test we found three forms 

( cases) that effective on the stability of the system when it is 

a following form : 

( )x a y x kx

y cx xz w ky

z xy bz

w dy

= − −
 = − + −
 = −
 = −

ɺ

ɺ

ɺ

ɺ

                         (26) 

( )x a y x

y cx xz w ky

z xy bz kz

w dy

= −
 = − + −
 = − −
 = −

ɺ

ɺ

ɺ

ɺ

                          (27) 

( )x a y x kx

y cx xz w ky

z xy bz kz

w dy

= − −
 = − + −
 = − −
 = −

ɺ

ɺ

ɺ

ɺ

                     (28) 

where k is the feedback coefficient. 

Proposition4. The critical value for system (26) depended 

of discriminate ( ∆ ) of cubic equation as: 

1

2

26
( )

cos

16( ) cos 0
3 3

− −
− ∆

= = − ∆ − ∆ <c Enhancing

q

q a
k k q if

                                           (29) 

3
( )

0
2 3

= = − ∆ =
c Enhancing

q a
k k if                                                            (30) 

3 3
( ) 0

2 2 3

− − ∆ − + ∆= = + − ∆ >c Enhancing

q q a
k k if                                         (31) 

where q and ∆  for system (26) are defined as: 

4 2 2 3 3 2 2 2 51 1 1 1 1 1
, ( 2 ) ( 2 ) ( 2 )

4 4 54 4 48 4
q ad a c d ac a a c d ac a a d ac a a c= − ∆ = + − + + − + − − + −  

Proof. The Jacobi matrix of system (26) is 

(0,0,0,0)

0 0 10 10 0 0

0 1 28 0 1

0 0 0 8 3 0

0 0 0 10 0 0
O

a a k

c z x k
J

y x b

ak d ak

− − −   
   − − −   = =
   − −
   − − −   

                                       (32) 

and its characteristic equation is :  

4 3 2 2 2(2 ) ( (2 ) ) ( ( ) ( )) ( ) 0k a b b k a k ak d ac b k ak d ac d k a bd k aλ λ λ λ+ + + + + + + + − + + + − − + + + =          (33) 

Solving equation (33) gives 
1

bλ = −  and the following 

equation: 

3 2 2(2 ) ( ) ( ) 0k a k ak d ac d k aλ λ λ+ + + + + − + + =   (34) 

we applied the condition AB C= if , , 0,A B C > on Eq (34) 

we get the following equation: 
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3 2 2 23 1 1
( 2 ) 0

2 2 2
k ak d ac a k a c+ + − + − =            (35) 

Now, Eq(35) is cubic equation, To solve this equation with 

respective to k we use Gardan method which exist in Ref [1] 

consequently, we get the critical value for system (26) 

depended of ∆  in Eq(29), Eq(30)and Eq(31) The proof is 

completed. 

Theorem.4 The solution of system (26) when , ,a b c and

0d >  has the following cases: 

(1) Asymptotically stable if 
( )c Enhancingk k>  

(2) Unstable if 
( )c Enhancingk k<  

(3) Hopf Bifurcation if 
( )c Enhancingk k=  

Proof. Analogously as in proof in previous theorem. 

Corollary 8. System (27) has the same critical value and 

roots of system (2) without any condition, also system (28) 

has the same critical value and roots of system (26) without 

any condition. 

We can briefly describe theorem 4 by the following table 

(Table 6) 

Table 6. Relationship between critical value and asymptotically stable, unstable and Hopf Bifurcation for system (26). 

Input values Compute ck  Compare Roots State 

a=10, c=28, d=10 12.3620 

k =12.3630 2 3,434.7250 , 0.0005 2.5377= − = − ∓ iλ λ  asymptotically stable 

k=12.3610 2 3,434.7230, 0.0005 2.5377= − = ∓ iλ λ  unstable 

k=12.3620 2 3,434.7240, 2.5377= − = ±iλ λ  Hopf Bifurcation 

a=35, c=35, d=8 21.6029 

k =21.7 2 3,478.3030, 0.0485 2.4064= − = − ∓ iλ λ  asymptotically stable 

k=21.5 2 3,478.1029, 0.0515 2.4051= − = ∓ iλ λ  unstable 

21.6029 2 3,478.2058, 2.4063= − = ± iλ λ  Hopf Bifurcation 

 

Corollary 9. If the enhancing feedback control are the 

forms as: 

( )x a y x kx

y cx xz w

z xy bz

w dy kw

= − −
 = − +
 = −
 = − −

ɺ

ɺ

ɺ

ɺ

                        (36) 

( )x a y x

y cx xz w ky

z xy bz

w dy kw

= −
 = − + −
 = −
 = − −

ɺ

ɺ

ɺ

ɺ

                (37) 

( )x a y x

y cx xz w

z xy bz kz

w dy kw

= −
 = − +
 = − −
 = − −

ɺ

ɺ

ɺ

ɺ

                       (38) 

( )x a y x kx

y cx xz w

z xy bz kz

w dy kw

= − −
 = − +
 = − −
 = − −

ɺ

ɺ

ɺ

ɺ

                     (39) 

( )x a y x

y cx xz w ky

z xy bz kz

w dy kw

= −
 = − + −
 = − −
 = − −

ɺ

ɺ

ɺ

ɺ

               (40) 

( )x a y x kx

y cx xz w ky

z xy bz

w dy kw

= − −
 = − + −
 = −
 = − −

ɺ

ɺ

ɺ

ɺ

                 (41) 

( )x a y x kx

y cx xz w ky

z xy bz kz

w dy kw

= − −
 = − + −
 = − −
 = − −

ɺ

ɺ

ɺ

ɺ

                 (42) 

and k is a positive but this forms, the systems cannot 

converge to origin point based on critical value . 

Corollary 10. Systems(37,40,41 and 42) can be suppred by 

using Routh-Hurwitz method. 

3. Comparison 

In this section, we compare between four feedback control 

method to suppress hyperchaos system (1) to unstable 

equilibrium, and we found the difference between them, and 

the following table explain this difference . 

Table 7. Difference between four feedback control method for system (1). 

 Ordinary feedback control Dislocated feedback control Speed feedback control Enhancing feedback control 

1 Contain four cases Contain twelve cases Contain twelve cases Contain eleven cases 

2 
Only one case effective on 

the system 

Only two case effective on 

the system 
Only two case effective on the system Seven cases effective on the system 

3 Depended on three constants Depended only one constant first case depended only one constant and Seven case depended on three 
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 Ordinary feedback control Dislocated feedback control Speed feedback control Enhancing feedback control 

for each case second case depended on three constants constants 

4 Linear feedback control Linear feedback control 
first case is Linear feedback control and 

second case is non-linear feedback control 
Linear feedback control 

5 Depended on critical value Depended on critical value Depended on critical value 
Depended on critical value and 
Routh-Hurwitz 

 

4. Conclusions 

In this paper, the control problem of a modified 

hyperchaotic Pan system is investigated: ordinary feedback 

control, dislocated feedback control , speed feedback control , 

enhancing feedback control are used to suppress hyperchaos 

to unstable equilibrium. we noted that the dislocated 

feedback control is more simplicity to compute the effective 

value (critical value) that reduced the cost from the another 

methods, since the coefficients of this method depended only 

one system's constant (a or c), while the coefficients of speed 

feedback control depended on one system's constant (a) or 

three system's constant (a,c,d) ), Finally both ordinary and 

enhancing feedback control are more complicity to compute 

the effective value (critical value) that reduced the cost, since 

the coefficients of this methods depended on three system's 

constant (a,c,d), also we noted that system's constant b do not 

effective on these methods. 
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