

Computational and Applied Mathematics Journal
2015; 1(3): 131-138

Published online April 30, 2015 (http://www.aascit.org/journal/camj)

Keywords
Symbolic Computations,

Computer-Based Education,

Xcas Computer Software

Received: March 31, 2015

Revised: April 20, 2015

Accepted: April 21, 2015

Using Xcas in Calculus Curricula: a
Plan of Lectures and Laboratory
Projects

George E. Halkos, Kyriaki D. Tsilika

Laboratory of Operations Research, Department of Economics, University of Thessaly, Volos,

Greece

Email address
ktsilika@uth.gr (K. D. Tsilika)

Citation
George E. Halkos, Kyriaki D. Tsilika. Using Xcas in Calculus Curricula: a Plan of Lectures and

Laboratory Projects. Computational and Applied Mathematics Journal.

Vol. 1, No. 3, 2015, pp. 131-138.

Abstract
We introduce a topic in the intersection of symbolic mathematics and computation,

concerning topics in multivariable Optimization and Dynamic Analysis. Our computational

approach gives emphasis to mathematical methodology and aims at both symbolic and

numerical results as implemented by a powerful digital mathematical tool, CAS software

Xcas. This work could be used as guidance to develop course contents in advanced

calculus curricula, to conduct individual or collaborative projects for programming related

objectives, as Xcas is freely available to users and institutions. Furthermore, it could assist

educators to reproduce calculus methodologies by generating automatically, in one entry,

abstract calculus formulations.

1. Introduction

Educational institutions are equipped with computer labs while modern teaching

methods give emphasis in computer based learning, with curricula that include courses

supported by the appropriate computer software. It has also been established that,

software tools integrate successfully into Mathematics education and are considered

essential in teaching Geometry, Statistics or Calculus (see indicatively [1], [2]).

Optimization of multivariable functions ends up with complicated symbolic

computations from differential calculus to matrix algebra operations. Dynamic Analysis

uses stability conditions also based on symbolics and abstract formulations, as functional

matrices and eigen-analysis. In all cases, symbolic and numeric computations can be

eliminated using mathematical software.

In the lectures proposed, a solution procedure of multivariable multi equation problems

applying - not substituting - theoretical methodology is followed, while, at the same time, the

reader is acquainted with a powerful digital mathematical tool, Computer Algebra System

(CAS) Xcas1([3]). In this computational approach, calculus methodologies using complex or

difficult to remember laws of formation are reproduced. The proposed laboratory projects

follow a functional programming approach in Xcas; they succeed to create program files that

generate automatically, in one entry, abstract calculus formulations and perform tests in a

black box function, in a symbolic language, the Xcas program editor.

In optimization problems, existence theorems for local and global extrema are

considered with emphasis in the corresponding necessary and sufficient conditions.

1The selected software, Xcas, is a computer algebra system accessible to all users interested, free of any charges, available

at http://www-fourier.ujf-grenoble.fr/~parisse/giac.html. Xcas is compatible with Mac OSX, Windows (except possibly for

Vista) and Linux/Ubuntu.

132 George E. Halkos and Kyriaki D. Tsilika: Using Xcas in Calculus Curricula: a Plan of Lectures and Laboratory Projects

In the dynamic analysis context, existence of equilibrium in

dynamic models in discrete and continuous time is checked:

stability results of difference equations and ordinary linear

and nonlinear differential equations are generated.

The lectures and laboratory projects presented in section 2

can be used in a wide variety of courses in Sciences, Business

and Engineering. The solution procedure(s) presented in

section 3 provide a general introduction to the problem solving

environment Xcas. Section 4 introduces the Xcas program

editor. The whole computational approach combines both

analytical - theoretical methods and practical programming

applications. The last section concludes the paper.

2. Results and Discussion

Once the introduction of the elements of optimization theory

and dynamic analysis is made theoretically, the educator may

implement selected topics of multivariable calculus with

computer-based lectures and laboratory projects as the ones

proposed in the present section. All lecture contents are Xcas-

based and are aimed to help students, early researchers and

scientists who want to perform less and simpler computations

compared to working manually. However the students should

have an upper level theoretical background in mathematics,

specifically in differential and infinitesimal Calculus. No

experience of the software package is required. The laboratory

projects provide a beginners’ introduction to functional

programming.

2.1. Lecture 1. Multivariable Unconstrained

Optimization Problems

1. Concepts and Operators using built-in Xcas functions:

The gradient vector, the Hessian determinant and the leading

principal minors of the Hessian determinant

2. Setting and computing necessary conditions for relative

extremum in Xcas

3. Setting and computing sufficient conditions for relative

extremum in Xcas

4. Example of Application

1st Laboratory Project: Unconstrained Optimization

After introducing the contents of lecture 1, programming the

corresponding matrix formulations and the tests required by

optimality conditions could be the next learning goal. The

Xcas program editor can be applied to create efficient

functions for automatic generation of 1) the series of the

leading principal minors of Hessian determinant (hessianseries

function), 2) the signs of the leading principal minors of

Hessian determinant evaluated at the critical point(s)

(signseries function), in order to test the sufficient conditions

for local extrema. The codes to perform such computations can

be found in [4] section 4.1.

2.2. Lecture 2. Multivariable Optimization

Problems with Equality Constraints

1. Concepts and notions using built-in Xcas functions: the

Lagrangian function, the bordered Hessian determinants

2. Setting and computing necessary conditions for relative

extremum in Xcas

3. Setting and computing sufficient conditions for relative

extremum in Xcas

4. Example of Application

2nd Laboratory Project: Constrained Optimization using

classical methods of optimization

After introducing the contents of lecture 2, the

corresponding determinental expressions and the tests

required by optimality conditions could be programmed. The

Xcas program editor can be applied to create efficient

functions for automatic generation of 1) the series of

bordered Hessian determinants according to sufficient

optimality conditions law (borderhessian function), 2) the

signs of bordered Hessian determinants evaluated at the

critical point(s) according to sufficient conditions law

(signborderhessian function), in order to test the sufficient

conditions for local extrema. The codes to perform such

computations can be found in [4] section 4.2.

2.3. Lecture 3. Multivariable Optimization

Problems with Inequality Constraints

1. Linearly dependent and independent vectors

2. Setting and computing Fritz- John necessary condition

in Xcas

3. Setting and computing Kuhn-Tucker Conditions in Xcas

4. Verification of Optimality Conditions at a point in Xcas

3rd Laboratory Project: Constrained Optimization using

the mathematical programming approach

The Xcas program editor can be applied to create efficient

functions for automatic generation of 1) the expression for

Fritz- John necessary condition for local minima (fritzjohn

function), 2) the expression for Kuhn-Tucker necessary

conditions for local minima (kuhntucker1function), 3) a test

of linear independence of the gradient vectors of the binding

constraints (kuhntucker2 function).The codes to perform such

computations can be found in [4] sections 6.1, 6.2.

2.4. Lecture 4. Stability Results for Discrete

Time Dynamic Models

1. Concepts and notions using built-in Xcas functions: the

Jacobian matrix, eigenvalues and eigenvectors, similarity

matrix and the Jordan canonical form of a square matrix

2. Computing the solutions of the characteristic

polynomial of the difference equation, the characteristic roots

in Xcas

3. Computing determinental expressions to apply Schur’s

theorem (see [5], [6], [7]) in Xcas

4. Setting and computing necessary and sufficient stability

conditions for linear constant coefficient difference equations

(as defined in [5], chapter 16) and for systems of linear

constant coefficient difference equations (as defined in [5],

chapter 18, [8] 5G p.264), in Xcas

5. Example of Application

 Computational and Applied Mathematics Journal 2015; 1(3): 131-138 133

4rth Laboratory Project: The Xcas program editor can be

applied to create efficient functions for automatic generation

of 1) the determinant series of the Schur Theorem

(schurseries function) 2) a direct answer to the stability test

for an n-th order linear difference equation based on the

Schur Theorem (e.g. stable/unstable) (stabilitytest1 function),

3) a direct answer to the stability test for systems of linear

constant coefficient first order difference equations (e.g.

stable/unstable) (stabilitytest2 function) 4) automatic

generation of the asymptotic state of the system in a column

matrix form in case equilibrium exists (steadystate function).

The codes to perform such computations can be found in [9,

10].

2.5. Lecture 5. Stability Results for

Continuous Time Dynamic Models

1. Concepts and notions using built-in Xcas functions: the

Jacobian matrix

2. Computing determinental expressions to apply Routh’s

theorem ([11], pp. 429-435) in Xcas

3. Computing the characteristic roots of an n-th order

constant coefficient homogeneous linear differential equation

and the characteristic equation of a square matrix

4. Setting and computing necessary and sufficient stability

conditions for autonomous systems of differential equations

(as defined in [8] pp. 275-280, in [12] theorem 8.2.4 and

theorems in p.332) and for linear constant coefficient

constant term n-th order differential equations (as defined in

[12] p. 319), in Xcas

5. Example of Application

5th Laboratory Project: The Xcas program editor can be

applied to create efficient functions for automatic generation

of 1) routh’s determinants symbolically and numerically

(routhseries and detrouthseries functions), 2) a direct test for

stability conditions for higher dimensional differential

equations by using Routhian analysis and without solving the

corresponding characteristic equations (stabtest function), 3)

a direct test for stability conditions for simultaneous first

order linear differential equations with constant coefficients

by checking the sign of the real part of the eigenvalues of the

coefficient matrix (linearsystemstability function), 4) a direct

test for stability of equilibrium points for simultaneous

nonlinear differential equations, by checking the sign of the

real part of the eigenvalues of the jacobian matrix

(nonlinearsystemstability function). The codes to perform

such computations can be found in [10, 13].

3. Teaching Examples2

In this section we review how the software package Xcas

performs the computations of content 4 of lectures 1,2,3. The

following examples present the computational solution to

optimization problems and focus on understanding the

underlying theory. A comprehensive presentation supports

the lecture learning goals.

2 All computations were made in Xcas version 1.1.2

Computations of content 4 of lectures 4 and 5 could be

performed in a similar way.

Example 3.1

Find the extrema of
2 2 2

2 2 2 ()(, ,) (2 3) xz y zf x y z x y z e− + += + +

in the first quadrant

of the xy-plane (the example is taken from [1]).

We define function f in Xcas:

f(x,y,z):=(x^2+2*y^2+3*z^2)*exp((-(x*z^2+y^2+z^2)))

We first calculate the critical points using the necessary

condition (1). In Xcas environment, by writing

gradf:=grad(f(x,y,z),[x,y,z])

results in:

[2*x*exp((-x)*z^2-y^2-z^2)+(x^2+2*y^2+3*z^2)*exp((-

x)*z^2-y^2-z^2)*(-(z^2)),

2*2*y*exp((-x)*z^2-y^2-z^2)+(x^2+2*y^2+3*z^2)*exp((-

x)*z^2-y^2-z^2)*-2*y,

3*2*z*exp((-x)*z^2-y^2-z^2)+(x^2+2*y^2+3*z^2)*exp((-

x)*z^2-y^2-z^2)*((-x)*2*z-2*z)]

The necessary condition based on the gradient test is not

solvable due to the exponential factors. After factorization of

the components of the gradient vector gradf:

factor(gradf[[1]]);factor(gradf[[2]]);factor(gradf[[3]]);

((-(x^2))*z^2+2*x-2*y^2*z^2-3*z^4)*exp((-x)*z^2-y^2-

z^2), -2*y*(x^2+2*y^2+3*z^2-2)*exp((-x)*z^2-y^2-z^2), -

2*z*(2*y^2*x+2*y^2+x^3+x^2+3*x*z^2+3*z^2-3)*exp((-

x)*z^2-y^2-z^2)

Solution is accomplished using the following simplified

form of the equations:

solution:=solve([(-x^2*z^2+2*x-2*y^2*z^2-3*z^4)=0,(-

2*y)*(x^2+2*y^2+3*z^2-2)=0,(-

2*z)*(2*y^2*x+2*y^2+x^3+x^2+3*x*z^2+3*z^2-

3)=0],[x,y,z])

[[0.538962270589,-

0.0,0.743613967821],[0.538962270589,0.0,-

0.743613967821], [1/2,(2*sqrt(2))/8,(sqrt(2))/2], [1/2,-

((2*sqrt(2))/8),(sqrt(2))/2], [1/2,(2*sqrt(2))/8,-((sqrt(2))/2)],

[1/2,-((2*sqrt(2))/8),-((sqrt(2))/2)], [0,1,0], [0,-1,0], [0,0,0]]

We get nine critical points. The nonnegative ones are

selected:

select(solution->sign(solution)==[1,1,1] or

sign(solution)=[1,0,0] or sign(solution)=[1,1,0] or

sign(solution)=[0,1,1] or sign(solution)=[0,0,0] or

sign(solution)=[1,0,1] or sign(solution)==[0,1,0],solution)

[[0.538962270589,-

0.0,0.743613967821],[1/2,(sqrt(2))/4,(sqrt(2))/2],[0,1,0],[0,0,

0]]

The nonnegative critical points as components of the initial

solution are denoted by:

134 George E. Halkos and Kyriaki D. Tsilika: Using Xcas in Calculus Curricula: a Plan of Lectures and Laboratory Projects

solution[[1]];solution[[3]];solution[[7]];solution[[9]]

[0.538962270589,-

0.0,0.743613967821],[1/2,(sqrt(2))/4,(sqrt(2))/2],[0,1,0],[0,0,

0]

Hessian matrix is:

hessian(f(x,y,z),[x,y,z])

Next we check the sequence of the leading principal minors of the Hessian determinant, evaluated at every nonnegative

critical point:

map([1,3,7,9],j->seq(approx(subst(det(hessian(f(x,y,z),[x,y,z])[0..k,0..k]), [x,y,z]=solution[[j]])),

k=0.length(hessian(f(x,y,z),[x,y,z]))-1))

[[0.599476634511,0.0259220576912,-0.340062512248], [0.625293029518,-0.347547886901,0.579518056274],

[0.735758882343,-2.16536453179,-1.59318618777], [2.0,8.0,48.0]]

Alternatively, only the signs of the leading principal minors of Hessian determinant are evaluated at every nonnegative

critical point:

map([1,3,7,9], j->seq(sign(subst(det(hessian(f(x,y,z),[x,y,z])[0..k,0..k]), [x,y,z]=solution[[j]])),

k=0..length(hessian(f(x,y,z),[x,y,z]))-1))

[[1,1,-1],[1,-1,1],[1,-1,-1],[1,1,1]]

Note: 1 stands for sign (+) and -1 stands for sign (-)

Results: the critical point (0,0,0) (or for Xcas solution[[9]]) satisfies necessary and sufficient optimality conditions for

relative minimum.

Example 3.2

Find the relative extrema of the function

(, , ,) 0.3 log(2) 0.4 log(3) 0.2 log(4) 0.1log(5),= − + − + − + −f x y z w x y z w subject to the constraint

01005432),,,(=−+++= wzyxwzyxg (the example is taken from [1]).

We define the Lagrangian function

l:=0.3*log(x-2)+0.4*log(y-3)+0.2*log(z-4)+0.1*log(w-5)+λ*(2*x+3*y+4*z+5*w-100)

We calculate a critical point of the Lagrangian function:

criticalpoint:=solve(grad(l,[x,y,z,w,λ])=[0,0,0,0,0],[x,y,z,w,λ])

[[8.9,9.13333333333,6.3,5.92,-0.0217391304348]]

We compute the leading principal minors of the bordered Hessian determinant:

seq(hessian(l,[λ,x,y,z,w])[0..t,0..t],t=2..length(hessian(l,[λ,x,y,z,w]))-1)

 Computational and Applied Mathematics Journal 2015; 1(3): 131-138 135

Previous result evaluated at the critical point:

subst([seq(det(hessian(l,[λ,x,y,z,w])[0..t,0..t]),t=2..length(hes

sian(l,[λ,x,y,z,w]))-1)],[x,y,z,w,λ]=criticalpoint[[1]])

[0.0992443186526,-0.00482419714138,0.000633296507025]

Alternatively, only the determinants’ signs at the critical

point are evaluated:

subst([seq(sign(det(hessian(l,[λ,x,y,z,w])[0..t,0..t])),t=2..lengt

h(hessian(l,[λ,x,y,z,w])) 1)],[x,y,z,w,λ]=criticalpoint[[1]])

[1.0,-1.0,1.0]

Sufficient optimality conditions for the critical point are

satisfied for relative maximum.

Example 3.3

Consider the constrained optimization problem (the

example is taken from [1])
2 2 2 2min (, , ,) 2 2 2 2 2u x y z w x y z w xy yz zw= + + + − − −

subject to the constraints:

1 2(, , ,) 2 10 0, (, , ,) 4 12 0g x y z w x y z w g x y z w x z w= + + + − = = − + − =

In Xcas environment we define the Lagrangian function

u(x,y,z,w,λ,µ):=x^2+2*y^2+2*z^2+w^2-2*x*y-2*y*z-2*z*w+λ*(2*x+y+z+w-10)+µ*(4*x-z+w-12)

seq(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z])[0..t,0..t],t=4..length(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z]))-1)

Evaluating determinant’s values:

seq(det(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z])[0..t,0..t]),t=4..length(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z]))-1)

42,836

Or determinant’s signs:

seq(sign(det(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z])[0..t,0..t])),t=4..length(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z]))-1)

1,1

Sufficient optimality conditions are satisfied for relative minimum.

Example 3.4

Consider the optimization problem:

minimize subject to
1 2
(,) 7 0, (,) 4 16 0,= + − ≤ = + − ≤g x y x y g x y x y

3
(,) 5 0,= − + − ≤g x y x y

0, 0≥ ≥x y

Check whether the points (3,4) and (1,6) satisfy the Fritz – John necessary condition (the example is taken from

[1]).

In Xcas environment we define

f(x,y):=(x-8)^2+(y-6)^2;g1(x,y):=x+y-7;g2(x,y):=4*x+y-16;g3(x,y):=-x+y-5;

We search for binding constraints at (3,4) and (1,6):

g1(3,4);g2(3,4);g3(3,4)

2 2(,) (8) (6)f x y x y= − + −

136 George E. Halkos and Kyriaki D. Tsilika: Using Xcas in Calculus Curricula: a Plan of Lectures and Laboratory Projects

0,0,-4

(constraints g1, g2 are binding since g1(3,4)=0=g2(3,4) and g3 is not since g3(3,4)≠0)

g1(1,6);g2(1,6);g3(1,6)

0,-6,0

(constraints g1, g3 are binding since g1(1,6)=0=g3(1,6) and g2 is not since g2(1,6)≠0)

Substituting point (3,4) in the first part of the Fritz-John condition:

subst(λ0*grad(f(x,y),[x,y])+λ1*grad(g1(x,y),[x,y])+λ2*grad(g2(x,y),[x,y]),[x,y]=[3,4])

[-10*λ0+λ1+4*λ2,-4*λ0+λ1+λ2]

solve([-10*λ0+λ1+4*λ2=0,-4*λ0+λ1+λ2=0],[λ1,λ2])

[[2*λ0,2*λ0]] (we prove the existence of parameters λ0, λ1, λ2≥0 as Fritz-John necessary condition assumes for local

minimum)

Substituting point (1,6) in the first part of the Fritz-John condition:

subst(λ0*grad(f(x,y),[x,y])+λ1*grad(g1(x,y),[x,y])+λ3*grad(g3(x,y),[x,y]),[x,y]=[1,6])

[-14*λ0+λ1-λ3,λ1+λ3]

solve([-14*λ0+λ1-λ3=0,λ1+λ3=0],[λ1,λ3])

[[7*λ0,-7*λ0]] (we prove that there are no parameters λ0, λ1, λ3≥0 as Fritz-John necessary condition assumes for local

minimum)

4. Programming in Xcas

Programs may be written in a command line if they are

one or two lines long, but for more complex programs, it is a

good idea to put them in a separate program level, via Prg-

>New of Prg Menu. This will open an editor in a new level.

The editor has its own menu, where we can open or import

an existing (program) file inside the current text, save or

export the current program. We can also use the editor menu

to insert programming structure. There are buttons to find the

next occurrence of a search string, to parse the current

program (errors are displayed in the messages area) and to

save the program (the current filename is displayed at the

right of the save button). The OK button (F9) is used for

compilation ([3]).

In this section we illustrate the realization of the 5th

Laboratory Project in Xcas. The codes for routhseries

detrouthseries and stabtest functions (see [10], [13]) are

saved in rouththeorem.cxx program file. The codes for

linearsystemstability and nonlinearsystemstability functions

(see [10], [13]) are saved in eigentest.cxx program file.

Figure 1. Loading a program file in Xcas.

Example 4.1

Working in any session in Xcas, by writing in a command

line read("rouththeorem.cxx") we can use routhseries,

detrouthseries and stabtest functions.

 Computational and Applied Mathematics Journal 2015; 1(3): 131-138 137

routhseries function takes as arguments the characteristic

polynomial of the linear differential equation and its variable.

routhseries generates the first n minors of determinant

1 0

3 2 1 0

5 4 3 2

1

0 0 ... 0

... 0

... ...

...

0 0 0 ...

0 0 0 0 ...

n

n n

n

a a

a a a a

a a a a

a a

a

−

∆ = . To calculate the first n

minors of
n

∆ we use detrouthseries function with arguments

the characteristic polynomial and its variable.

In Xcas environment, by writing read ("rouththeorem.cxx")

we can generate the input of our programmed functions as

presented below:

rout series (a0*x^5+a1*x^4+a2*x^3+a3*x^2+a4*x+a5,x)

routhseries(x^3+6*x^2+11*x+6,x)

detrouthseries(x^3+6*x^2+11*x+6,x)

6,60,360

linearsystemstability and nonlinearsystemstability

functions (see [10], [13]) are saved in eigentest.cxx program

file and can be used in any session by writing

read("eigentest.cxx"). linearsystemstability function takes

system’s coefficient matrix as argument and returns

«asymptotically stable» for systems with equilibrium state(s)

and «unstable» for systems that have explosive behavior

otherwise nonlinearsystemstability function takes as

arguments the list of functions of the second part of the d.e.

system ()x f x
•

= ,
1(,...,)T

nf f f= , the variable vector and

the equilibrium point. nonlinearsystemstability function

returns «asymptotically stable» for systems with equilibrium

state(s) and «unstable» otherwise.

Figure 2. The eigentest.cxx program file.

5. Conclusions

The lectures proposed provide thematic applications of the

free computer algebra system Xcas to aid instruction of

advanced topics in Symbolic Mathematics. The essential idea

is to utilize all calculation modules to solve multivariable

problems of computational nature. The solution procedure(s)

presented can be used in a wide variety of courses in

Sciences, Business and Engineering.

The accompanied laboratory projects provide a general

introduction to a symbolic language, the Xcas program editor.

The lectures combine both analytical theoretical methods and

practical programming applications. The importance of

calculus methodology within an “all in” general purpose

computing environment was highlighted.

References

[1] C. Huang and P. Crooke, Mathematics and Mathematica for
Economists, Oxford Blackwell Publishers, Massachusetts,
1997.

[2] S. Kadry, M. El Shalkamyb, Toward New Vision in Teaching
Calculus, IERI Procedia, vol. 2, pp. 548–553, 2012.

138 George E. Halkos and Kyriaki D. Tsilika: Using Xcas in Calculus Curricula: a Plan of Lectures and Laboratory Projects

[3] B. Parisse, An Introduction to the Xcas Interface. Available at
http://www-fourier.ujf-
grenoble.fr/~parisse/giac/tutoriel_en.pdf

[4] G. E. Halkos and K. D. Tsilika, Computing Optimality
Conditions in Economic Problems, Journal of Computational
Optimization in Economics and Finance, vol. 3, no. 3, pp.
143-155, 2011.

[5] A. Chiang, Fundamental Methods of Mathematical Economics,
3 Edn., McGraw-Hill Book, Singapore, 1984.

[6] E.I. Jury, Inners and Stability of Dynamic Systems, Wiley,
New York, 1974.

[7] M. Neumann, Weak stability for matrices, Linear Multilinear
Algebra, vol. 7, pp. 257-262, 1979.

[8] G. Strang, Linear Algebra and its Applications, 3rd Edn.,
Harcourt Brace Jovanovich College, Philadelphia, New York,
1988.

[9] G. E. Halkos and K. D. Tsilika, Computational Techniques for

Stability Analysis of a Class of Discrete Time Discrete State
Dynamic Economic Models, American Journal of Applied
Sciences, vol. 9, no. 12, pp. 1944-1952, 2012. DOI:
10.3844/ajassp.2012.1944.1952

[10] G. E. Halkos and K. D. Tsilika, Stability Analysis in
Economic Dynamics: A Computational Approach, MPRA
paper, 2012. Available at http://mpra.ub.uni-
muenchen.de/41371/

[11] P.A. Samuelson, Foundations of Economic Analysis, Harvard
University Press, 1947.

[12] W.B. Zhang, Differential Equations, Bifurcations, and Chaos
in Economics. Series on Advances in Mathematics for Applied
Sciences Vol. 68, World Scientific, New Jersey, 2005.

[13] G. E. Halkos and K. D. Tsilika, Xcas as a Programming
Environment for Stability Conditions of a Class of Linear
Differential Equation Models in Economics, AIP Conference
Proceedings 1389, 9th International Conference of Numerical
Analysis and Applied Mathematics (ICNAAM 2011), Halkidiki,
Greece, 2011, pp. 1769-1772. DOI:10.1063/1.3636951.

