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Abstract 
We introduce a topic in the intersection of symbolic mathematics and computation, 

concerning topics in multivariable Optimization and Dynamic Analysis. Our computational 

approach gives emphasis to mathematical methodology and aims at both symbolic and 

numerical results as implemented by a powerful digital mathematical tool, CAS software 

Xcas. This work could be used as guidance to develop course contents in advanced 

calculus curricula, to conduct individual or collaborative projects for programming related 

objectives, as Xcas is freely available to users and institutions. Furthermore, it could assist 

educators to reproduce calculus methodologies by generating automatically, in one entry, 

abstract calculus formulations. 

1. Introduction 

Educational institutions are equipped with computer labs while modern teaching 

methods give emphasis in computer based learning, with curricula that include courses 

supported by the appropriate computer software. It has also been established that, 

software tools integrate successfully into Mathematics education and are considered 

essential in teaching Geometry, Statistics or Calculus (see indicatively [1], [2]).  

Optimization of multivariable functions ends up with complicated symbolic 

computations from differential calculus to matrix algebra operations. Dynamic Analysis 

uses stability conditions also based on symbolics and abstract formulations, as functional 

matrices and eigen-analysis. In all cases, symbolic and numeric computations can be 

eliminated using mathematical software. 

In the lectures proposed, a solution procedure of multivariable multi equation problems 

applying - not substituting - theoretical methodology is followed, while, at the same time, the 

reader is acquainted with a powerful digital mathematical tool, Computer Algebra System 

(CAS) Xcas1([3]). In this computational approach, calculus methodologies using complex or 

difficult to remember laws of formation are reproduced. The proposed laboratory projects 

follow a functional programming approach in Xcas; they succeed to create program files that 

generate automatically, in one entry, abstract calculus formulations and perform tests in a 

black box function, in a symbolic language, the Xcas program editor. 

In optimization problems, existence theorems for local and global extrema are 

considered with emphasis in the corresponding necessary and sufficient conditions. 

                                                             

1The selected software, Xcas, is a computer algebra system accessible to all users interested, free of any charges, available 

at http://www-fourier.ujf-grenoble.fr/~parisse/giac.html. Xcas is compatible with Mac OSX, Windows (except possibly for 

Vista) and Linux/Ubuntu. 
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In the dynamic analysis context, existence of equilibrium in 

dynamic models in discrete and continuous time is checked: 

stability results of difference equations and ordinary linear 

and nonlinear differential equations are generated. 

The lectures and laboratory projects presented in section 2 

can be used in a wide variety of courses in Sciences, Business 

and Engineering. The solution procedure(s) presented in 

section 3 provide a general introduction to the problem solving 

environment Xcas. Section 4 introduces the Xcas program 

editor. The whole computational approach combines both 

analytical - theoretical methods and practical programming 

applications. The last section concludes the paper. 

2. Results and Discussion 

Once the introduction of the elements of optimization theory 

and dynamic analysis is made theoretically, the educator may 

implement selected topics of multivariable calculus with 

computer-based lectures and laboratory projects as the ones 

proposed in the present section. All lecture contents are Xcas-

based and are aimed to help students, early researchers and 

scientists who want to perform less and simpler computations 

compared to working manually. However the students should 

have an upper level theoretical background in mathematics, 

specifically in differential and infinitesimal Calculus. No 

experience of the software package is required. The laboratory 

projects provide a beginners’ introduction to functional 

programming. 

2.1. Lecture 1. Multivariable Unconstrained 

Optimization Problems 

1. Concepts and Operators using built-in Xcas functions: 

The gradient vector, the Hessian determinant and the leading 

principal minors of the Hessian determinant 

2. Setting and computing necessary conditions for relative 

extremum in Xcas 

3. Setting and computing sufficient conditions for relative 

extremum in Xcas 

4. Example of Application 

1st Laboratory Project: Unconstrained Optimization 

After introducing the contents of lecture 1, programming the 

corresponding matrix formulations and the tests required by 

optimality conditions could be the next learning goal. The 

Xcas program editor can be applied to create efficient 

functions for automatic generation of 1) the series of the 

leading principal minors of Hessian determinant (hessianseries 

function), 2) the signs of the leading principal minors of 

Hessian determinant evaluated at the critical point(s) 

(signseries function), in order to test the sufficient conditions 

for local extrema. The codes to perform such computations can 

be found in [4] section 4.1. 

2.2. Lecture 2. Multivariable Optimization 

Problems with Equality Constraints 

1. Concepts and notions using built-in Xcas functions: the 

Lagrangian function, the bordered Hessian determinants  

2. Setting and computing necessary conditions for relative 

extremum in Xcas  

3. Setting and computing sufficient conditions for relative 

extremum in Xcas 

4. Example of Application 

2nd Laboratory Project: Constrained Optimization using 

classical methods of optimization 

After introducing the contents of lecture 2, the 

corresponding determinental expressions and the tests 

required by optimality conditions could be programmed. The 

Xcas program editor can be applied to create efficient 

functions for automatic generation of 1) the series of 

bordered Hessian determinants according to sufficient 

optimality conditions law (borderhessian function), 2) the 

signs of bordered Hessian determinants evaluated at the 

critical point(s) according to sufficient conditions law 

(signborderhessian function), in order to test the sufficient 

conditions for local extrema. The codes to perform such 

computations can be found in [4] section 4.2. 

2.3. Lecture 3. Multivariable Optimization 

Problems with Inequality Constraints  

1. Linearly dependent and independent vectors 

2. Setting and computing Fritz- John necessary condition 

in Xcas  

3. Setting and computing Kuhn-Tucker Conditions in Xcas 

4. Verification of Optimality Conditions at a point in Xcas 

3rd Laboratory Project: Constrained Optimization using 

the mathematical programming approach  

The Xcas program editor can be applied to create efficient 

functions for automatic generation of 1) the expression for 

Fritz- John necessary condition for local minima (fritzjohn 

function), 2) the expression for Kuhn-Tucker necessary 

conditions for local minima (kuhntucker1function), 3) a test 

of linear independence of the gradient vectors of the binding 

constraints (kuhntucker2 function).The codes to perform such 

computations can be found in [4] sections 6.1, 6.2. 

2.4. Lecture 4. Stability Results for Discrete 

Time Dynamic Models 

1. Concepts and notions using built-in Xcas functions: the 

Jacobian matrix, eigenvalues and eigenvectors, similarity 

matrix and the Jordan canonical form of a square matrix  

2. Computing the solutions of the characteristic 

polynomial of the difference equation, the characteristic roots 

in Xcas 

3. Computing determinental expressions to apply Schur’s 

theorem (see [5], [6], [7]) in Xcas 

4. Setting and computing necessary and sufficient stability 

conditions for linear constant coefficient difference equations 

(as defined in [5], chapter 16) and for systems of linear 

constant coefficient difference equations (as defined in [5], 

chapter 18, [8] 5G p.264), in Xcas 

5. Example of Application 
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4rth Laboratory Project: The Xcas program editor can be 

applied to create efficient functions for automatic generation 

of 1) the determinant series of the Schur Theorem 

(schurseries function) 2) a direct answer to the stability test 

for an n-th order linear difference equation based on the 

Schur Theorem (e.g. stable/unstable) (stabilitytest1 function), 

3) a direct answer to the stability test for systems of linear 

constant coefficient first order difference equations (e.g. 

stable/unstable) (stabilitytest2 function) 4) automatic 

generation of the asymptotic state of the system in a column 

matrix form in case equilibrium exists (steadystate function). 

The codes to perform such computations can be found in [9, 

10]. 

2.5. Lecture 5. Stability Results for 

Continuous Time Dynamic Models 

1. Concepts and notions using built-in Xcas functions: the 

Jacobian matrix 

2. Computing determinental expressions to apply Routh’s 

theorem ([11], pp. 429-435) in Xcas 

3. Computing the characteristic roots of an n-th order 

constant coefficient homogeneous linear differential equation 

and the characteristic equation of a square matrix 

4. Setting and computing necessary and sufficient stability 

conditions for autonomous systems of differential equations 

(as defined in [8] pp. 275-280, in [12] theorem 8.2.4 and 

theorems in p.332) and for linear constant coefficient 

constant term n-th order differential equations (as defined in 

[12] p. 319), in Xcas 

5. Example of Application 

5th Laboratory Project: The Xcas program editor can be 

applied to create efficient functions for automatic generation 

of 1) routh’s determinants symbolically and numerically 

(routhseries and detrouthseries functions), 2) a direct test for 

stability conditions for higher dimensional differential 

equations by using Routhian analysis and without solving the 

corresponding characteristic equations (stabtest function), 3) 

a direct test for stability conditions for simultaneous first 

order linear differential equations with constant coefficients 

by checking the sign of the real part of the eigenvalues of the 

coefficient matrix (linearsystemstability function), 4) a direct 

test for stability of equilibrium points for simultaneous 

nonlinear differential equations, by checking the sign of the 

real part of the eigenvalues of the jacobian matrix 

(nonlinearsystemstability function). The codes to perform 

such computations can be found in [10, 13]. 

3. Teaching Examples2 

In this section we review how the software package Xcas 

performs the computations of content 4 of lectures 1,2,3. The 

following examples present the computational solution to 

optimization problems and focus on understanding the 

underlying theory. A comprehensive presentation supports 

the lecture learning goals. 

                                                             

2 All computations were made in Xcas version 1.1.2 

Computations of content 4 of lectures 4 and 5 could be 

performed in a similar way. 

Example 3.1 

Find the extrema of 
2 2 2

2 2 2 ( )( , , ) ( 2 3 ) xz y zf x y z x y z e− + += + +
 
in the first quadrant 

of the xy-plane (the example is taken from [1]). 

We define function f in Xcas: 

f(x,y,z):=(x^2+2*y^2+3*z^2)*exp((-(x*z^2+y^2+z^2))) 

We first calculate the critical points using the necessary 

condition (1). In Xcas environment, by writing 

gradf:=grad(f(x,y,z),[x,y,z]) 

results in: 

[2*x*exp((-x)*z^2-y^2-z^2)+(x^2+2*y^2+3*z^2)*exp((-

x)*z^2-y^2-z^2)*(-(z^2)), 

2*2*y*exp((-x)*z^2-y^2-z^2)+(x^2+2*y^2+3*z^2)*exp((-

x)*z^2-y^2-z^2)*-2*y, 

3*2*z*exp((-x)*z^2-y^2-z^2)+(x^2+2*y^2+3*z^2)*exp((-

x)*z^2-y^2-z^2)*((-x)*2*z-2*z)] 

The necessary condition based on the gradient test is not 

solvable due to the exponential factors. After factorization of 

the components of the gradient vector gradf: 

factor(gradf[[1]]);factor(gradf[[2]]);factor(gradf[[3]]); 

((-(x^2))*z^2+2*x-2*y^2*z^2-3*z^4)*exp((-x)*z^2-y^2-

z^2), -2*y*(x^2+2*y^2+3*z^2-2)*exp((-x)*z^2-y^2-z^2), -

2*z*(2*y^2*x+2*y^2+x^3+x^2+3*x*z^2+3*z^2-3)*exp((-

x)*z^2-y^2-z^2) 

Solution is accomplished using the following simplified 

form of the equations: 

solution:=solve([(-x^2*z^2+2*x-2*y^2*z^2-3*z^4)=0,(-

2*y)*(x^2+2*y^2+3*z^2-2)=0,(-

2*z)*(2*y^2*x+2*y^2+x^3+x^2+3*x*z^2+3*z^2-

3)=0],[x,y,z]) 

[[0.538962270589,-

0.0,0.743613967821],[0.538962270589,0.0,-

0.743613967821], [1/2,(2*sqrt(2))/8,(sqrt(2))/2], [1/2,-

((2*sqrt(2))/8),(sqrt(2))/2], [1/2,(2*sqrt(2))/8,-((sqrt(2))/2)], 

[1/2,-((2*sqrt(2))/8),-((sqrt(2))/2)], [0,1,0], [0,-1,0], [0,0,0]] 

We get nine critical points. The nonnegative ones are 

selected: 

select(solution->sign(solution)==[1,1,1] or 

sign(solution)=[1,0,0] or sign(solution)=[1,1,0] or 

sign(solution)=[0,1,1] or sign(solution)=[0,0,0] or 

sign(solution)=[1,0,1] or sign(solution)==[0,1,0],solution) 

[[0.538962270589,-

0.0,0.743613967821],[1/2,(sqrt(2))/4,(sqrt(2))/2],[0,1,0],[0,0,

0]] 

The nonnegative critical points as components of the initial 

solution are denoted by: 
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solution[[1]];solution[[3]];solution[[7]];solution[[9]] 

[0.538962270589,-

0.0,0.743613967821],[1/2,(sqrt(2))/4,(sqrt(2))/2],[0,1,0],[0,0,

0] 

Hessian matrix is: 

hessian(f(x,y,z),[x,y,z])  

 

Next we check the sequence of the leading principal minors of the Hessian determinant, evaluated at every nonnegative 

critical point: 

map([1,3,7,9],j->seq(approx(subst(det(hessian(f(x,y,z),[x,y,z])[0..k,0..k]), [x,y,z]=solution[[j]])), 

k=0.length(hessian(f(x,y,z),[x,y,z]))-1)) 

[[0.599476634511,0.0259220576912,-0.340062512248], [0.625293029518,-0.347547886901,0.579518056274], 

[0.735758882343,-2.16536453179,-1.59318618777], [2.0,8.0,48.0]] 

Alternatively, only the signs of the leading principal minors of Hessian determinant are evaluated at every nonnegative 

critical point: 

map([1,3,7,9], j->seq(sign(subst(det(hessian(f(x,y,z),[x,y,z])[0..k,0..k]), [x,y,z]=solution[[j]])), 

k=0..length(hessian(f(x,y,z),[x,y,z]))-1)) 

[[1,1,-1],[1,-1,1],[1,-1,-1],[1,1,1]] 

Note: 1 stands for sign (+) and -1 stands for sign (-) 

Results: the critical point (0,0,0) (or for Xcas solution[[9]]) satisfies necessary and sufficient optimality conditions for 

relative minimum. 

Example 3.2 

Find the relative extrema of the function 

( , , , ) 0.3 log( 2) 0.4 log( 3) 0.2 log( 4) 0.1log( 5),= − + − + − + −f x y z w x y z w  subject to the constraint 

01005432),,,( =−+++= wzyxwzyxg  (the example is taken from [1]). 

We define the Lagrangian function  

l:=0.3*log(x-2)+0.4*log(y-3)+0.2*log(z-4)+0.1*log(w-5)+λ*(2*x+3*y+4*z+5*w-100) 

We calculate a critical point of the Lagrangian function: 

criticalpoint:=solve(grad(l,[x,y,z,w,λ])=[0,0,0,0,0],[x,y,z,w,λ]) 

[[8.9,9.13333333333,6.3,5.92,-0.0217391304348]] 

We compute the leading principal minors of the bordered Hessian determinant: 

seq(hessian(l,[λ,x,y,z,w])[0..t,0..t],t=2..length(hessian(l,[λ,x,y,z,w]))-1) 
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Previous result evaluated at the critical point: 

subst([seq(det(hessian(l,[λ,x,y,z,w])[0..t,0..t]),t=2..length(hes

sian(l,[λ,x,y,z,w]))-1)],[x,y,z,w,λ]=criticalpoint[[1]])  

[0.0992443186526,-0.00482419714138,0.000633296507025] 

Alternatively, only the determinants’ signs at the critical 

point are evaluated:  

subst([seq(sign(det(hessian(l,[λ,x,y,z,w])[0..t,0..t])),t=2..lengt

h(hessian(l,[λ,x,y,z,w])) 1)],[x,y,z,w,λ]=criticalpoint[[1]])  

[1.0,-1.0,1.0] 

Sufficient optimality conditions for the critical point are 

satisfied for relative maximum.  

Example 3.3 

Consider the constrained optimization problem (the 

example is taken from [1]) 
2 2 2 2min ( , , , ) 2 2 2 2 2u x y z w x y z w xy yz zw= + + + − − −

 
subject to the constraints: 

1 2( , , , ) 2 10 0, ( , , , ) 4 12 0g x y z w x y z w g x y z w x z w= + + + − = = − + − =  

In Xcas environment we define the Lagrangian function 

u(x,y,z,w,λ,µ):=x^2+2*y^2+2*z^2+w^2-2*x*y-2*y*z-2*z*w+λ*(2*x+y+z+w-10)+µ*(4*x-z+w-12) 

seq(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z])[0..t,0..t],t=4..length(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z]))-1) 

 

Evaluating determinant’s values: 

seq(det(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z])[0..t,0..t]),t=4..length(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z]))-1) 

42,836 

Or determinant’s signs: 

seq(sign(det(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z])[0..t,0..t])),t=4..length(hessian(u(x,y,z,w,λ,µ),[λ,µ,x,y,w,z]))-1) 

1,1 

Sufficient optimality conditions are satisfied for relative minimum.  

Example 3.4 

Consider the optimization problem:  

minimize  subject to 
1 2
( , ) 7 0, ( , ) 4 16 0,= + − ≤ = + − ≤g x y x y g x y x y  

3
( , ) 5 0,= − + − ≤g x y x y  

0, 0≥ ≥x y
 
Check whether the points (3,4) and (1,6) satisfy the Fritz – John necessary condition (the example is taken from 

[1]).  

In Xcas environment we define  

f(x,y):=(x-8)^2+(y-6)^2;g1(x,y):=x+y-7;g2(x,y):=4*x+y-16;g3(x,y):=-x+y-5; 

We search for binding constraints at (3,4) and (1,6):  

g1(3,4);g2(3,4);g3(3,4) 

2 2( , ) ( 8) ( 6)f x y x y= − + −
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0,0,-4 

(constraints g1, g2 are binding since g1(3,4)=0=g2(3,4) and g3 is not since g3(3,4)≠0) 

g1(1,6);g2(1,6);g3(1,6) 

0,-6,0 

(constraints g1, g3 are binding since g1(1,6)=0=g3(1,6) and g2 is not since g2(1,6)≠0)  

Substituting point (3,4) in the first part of the Fritz-John condition:  

subst(λ0*grad(f(x,y),[x,y])+λ1*grad(g1(x,y),[x,y])+λ2*grad(g2(x,y),[x,y]),[x,y]=[3,4]) 

[-10*λ0+λ1+4*λ2,-4*λ0+λ1+λ2] 

solve([-10*λ0+λ1+4*λ2=0,-4*λ0+λ1+λ2=0],[λ1,λ2]) 

[[2*λ0,2*λ0]] (we prove the existence of parameters λ0, λ1, λ2≥0 as Fritz-John necessary condition assumes for local 

minimum) 

Substituting point (1,6) in the first part of the Fritz-John condition:  

subst(λ0*grad(f(x,y),[x,y])+λ1*grad(g1(x,y),[x,y])+λ3*grad(g3(x,y),[x,y]),[x,y]=[1,6]) 

[-14*λ0+λ1-λ3,λ1+λ3] 

solve([-14*λ0+λ1-λ3=0,λ1+λ3=0],[λ1,λ3]) 

[[7*λ0,-7*λ0]] (we prove that there are no parameters λ0, λ1, λ3≥0 as Fritz-John necessary condition assumes for local 

minimum) 

4. Programming in Xcas 

Programs may be written in a command line if they are 

one or two lines long, but for more complex programs, it is a 

good idea to put them in a separate program level, via Prg-

>New of Prg Menu. This will open an editor in a new level. 

The editor has its own menu, where we can open or import 

an existing (program) file inside the current text, save or 

export the current program. We can also use the editor menu 

to insert programming structure. There are buttons to find the 

next occurrence of a search string, to parse the current 

program (errors are displayed in the messages area) and to 

save the program (the current filename is displayed at the 

right of the save button). The OK button (F9) is used for 

compilation ([3]). 

In this section we illustrate the realization of the 5th 

Laboratory Project in Xcas. The codes for routhseries 

detrouthseries and stabtest functions (see [10], [13]) are 

saved in rouththeorem.cxx program file. The codes for 

linearsystemstability and nonlinearsystemstability functions 

(see [10], [13]) are saved in eigentest.cxx program file. 

 

Figure 1. Loading a program file in Xcas. 

Example 4.1 

Working in any session in Xcas, by writing in a command 

line read("rouththeorem.cxx") we can use routhseries, 

detrouthseries and stabtest functions.  
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routhseries function takes as arguments the characteristic 

polynomial of the linear differential equation and its variable. 

routhseries generates the first n minors of determinant 

1 0

3 2 1 0

5 4 3 2

1

0 0 ... 0

... 0

... ...

... ... ... ... ... ...

0 0 0 ...

0 0 0 0 ...

n

n n

n

a a

a a a a

a a a a

a a

a

−

∆ = . To calculate the first n 

minors of 
n

∆  we use detrouthseries function with arguments 

the characteristic polynomial and its variable. 

In Xcas environment, by writing read ("rouththeorem.cxx") 

we can generate the input of our programmed functions as 

presented below: 

rout series (a0*x^5+a1*x^4+a2*x^3+a3*x^2+a4*x+a5,x) 

 

routhseries(x^3+6*x^2+11*x+6,x) 

 

detrouthseries(x^3+6*x^2+11*x+6,x)  

6,60,360 

linearsystemstability and nonlinearsystemstability 

functions (see [10], [13]) are saved in eigentest.cxx program 

file and can be used in any session by writing 

read("eigentest.cxx"). linearsystemstability function takes 

system’s coefficient matrix as argument and returns 

«asymptotically stable» for systems with equilibrium state(s) 

and «unstable» for systems that have explosive behavior 

otherwise nonlinearsystemstability function takes as 

arguments the list of functions of the second part of the d.e. 

system ( )x f x
•

= , 
1( ,..., )T

nf f f= , the variable vector and 

the equilibrium point. nonlinearsystemstability function 

returns «asymptotically stable» for systems with equilibrium 

state(s) and «unstable» otherwise. 

 

Figure 2. The eigentest.cxx program file. 

5. Conclusions 

The lectures proposed provide thematic applications of the 

free computer algebra system Xcas to aid instruction of 

advanced topics in Symbolic Mathematics. The essential idea 

is to utilize all calculation modules to solve multivariable 

problems of computational nature. The solution procedure(s) 

presented can be used in a wide variety of courses in 

Sciences, Business and Engineering. 

The accompanied laboratory projects provide a general 

introduction to a symbolic language, the Xcas program editor. 

The lectures combine both analytical theoretical methods and 

practical programming applications. The importance of 

calculus methodology within an “all in” general purpose 

computing environment was highlighted. 
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