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Abstract

In this paper, we consider a non-autonomous stochastic SIR epidemic model. Some new
sufficient conditions which guarantee the permanence of the stochastic epidemic model
are obtained. The results in this paper imply that the intensity of white noise has no
effect on the permanence of the infective and the removed class of system.

1. Introduction

Epidemiology is the branch of biology which deals with the mathematical modeling of
spread of diseases, many problems arising in epidemiology may be described, in a first
formulation, by means of differential equations, this means that the models are
constructed by averaging some population and keeping only the time variable. To the
best of our knowledge the first mathematical model of epidemiology was formulated and
solved by Daniel Bernoulli in 1760. Since the time of Kermack and Mckendrick [5], the
study of mathematical epidemiology has grown rapidly, with a large variety of models
having been formulated and applied to infectious diseases[2, 3, 11]. Consider a
population which remains constant and which is divide into three classes: the susceptible,
denoted by S, who can catch the disease; the infective, denoted by 7, who are infected
and can transmit the disease to the susceptible, and the removed class, denoted by R, who
had the disease and recovered or died or have developed immunity or have been removed
from contact with the other classes. Since from the modeling perspective only the overall
state of a person with respect to the disease is relevant, the progress of individuals is
schematically described by S — I — R.

These types of models are known as SIR models. In recent years, many scholars pay
extensive attention to the dynamic behaviours of SIR epidemic models. We refer the
readers to [1, 6, 9, 10, 12] In [1], Bai and Zhou formulated a non-autonomous SIR
epidemic model with saturated incidence rate and constant removal rate by introducing
the periodic transmission rate £(¢) as follows:

BO)S)I(t)
k + k(1)

. _ BOSMI() _ _
1——k1+k21(t) (Uu+It)-h(), (1.1)

R = yI(t)+h(I) - HR(t),

S=a-us@) -

where «a is the recruitment rate, u is the natural death rate, y is the recovery rate of the
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infective, f(f) is the transmission rate at time ¢ and /4 is a
treatment function, which is a positive constant ¢ for 7 > 0,
and zero for/=0,and £ , > 0 , k, >0, however,

the growth rate in the biology species system should exhibit
random fluctuation[8]. Assume that the growth rate r is

Almost Sure Permanence of Stochastic SIR Epidemic Model

perturbed by environmental noise with » — r+0, B(t), as

we all know, the recruitment rate, natural death rate and the
recovery rate of the infective are not constant but vary with ¢
by utilizing the case, system (1.1) have the reasonable and
important stochastic model as follows:

BOS@0I(1)
ds(t) =[a(t) — u(H)S(t) - —=——=21dt —o.S(t)dB, (),
(0 =[a() - u®)S() k1+k21(t)] 1S()dB, (1)
HS@)I(t
a1y =POSOID )+ ye) 16y = h0 1t = 0,101, (1), (12)
k + k(1)
dR(1) =[Y(O)1(t) + h(I) = p(1)R(1)]dt — T, R(1)dB; (1),
Where B,(t) , B,(#) , B,(t) are independent standard equation
. . 2 2 2 . . .
Brownian motions, O, , 0,,0; are the intensity of white dx(t) + r(t)x()dt + ox()dB(t) = (1),  x(t,)=x, (2.1)
noise, A(?), a(t), u(t) and y(f) are bounded and continuous
functions, B(#) > 0, a(f) > 0, u(¥) > 0 and p(f) > 0 on  where B(t) is a standard Brownian motion and 0’ is the
tD[O, +°°) It is well known that the permanence is a very intensity of white noise, then
important and interesting topic in mathematical ecology, x(1,) [ rnduroB(s-+ o 6-n
which means that a biology species system will survive x(t)y=———— _[ Sf(s ) 2 ds.
forever. In general, a deterministic species system is eI By O
permanent, if system has the following properties
Proof. Setting
0<N< llmlnfx () <limsupx,(f)<sM <o, i=12,.n (1.3)
o ' o) = ejol r(u)du+UB(t)+%Uzt.
Lots of results about permanence have been obtained for
deterministic population models. As far as stochastic By lemma 2.1 we have
population models are concerned, it is natural and reasonable
to consider their permanence. Throughout this paper, we set d[x(®)y(O)] = x(t)dy(t) + y()dx(t) + dx(t).dy(¢). (2.2)
K =SUpH) 1 =infu@® a" =supa®) a =infa® Applying It"0’s formula, we deduce
10(0,00) 10(0,2) 10(0,00) 10(0,%0)
B =supB®) B =infB®) v =supy®) y =infno dy(t) = y(@)[r(t) + 0* dt + oy(1)dB(t) (2.3)
1(0.00) £0(0,00) 1(0.00) 10(0,00)
According to Eq. (2.1) we have
The remaining part of this paper is organized as follows: In
Section 2, we will state several definitions and lemmas which dx(t) = f()dt —r()x(t)dt — ox(t)dB(?). 2.4
will be useful in the proving of main results of this paper. In
Section 3, we obtain some new sufficient conditions for the From (2.3) and (2.4), we have
f syst 1.2).
permanence of system (1.2) dx(t).dy(t) = - x()y(0)dt, 2.5)
2. Preliminaries Y(Odx(t) = y(O) f()dt = x(O)y(O[F(D)dt + TdBD)),  (2.6)
Definition 2.1. ([7]) A stochastic system is said to be K(Odv(t) = x(OpO[(-(¢) + 0Vt + o dB(D)]. @7

almost surely stochastically permanent if for any initial value
X, ORY, the solution x(¢) = (x, (), x,(?),...,x,(?),) , satisfies

0 <N <liminf x,(¢) < limsupx, (1) <M <o, asi=12,.,n
-0 oo

Lemma 2.1. ([4]) Assume that X(t) and Y (t) are It"o
process, then we have

d[X@)Y()]=X(@)dY (t)+Y(t)dX () +dX(¢).dY (¢).

Lemma 2.2. Consider the linear stochastic differential

Substituty (2.5), (2.6) and (2.7) into (2.2), leads to

d[x(@) y(0)] = x()dy(t) + y()dx (1) + dx(1).dy(t) = f(6) y(1)dt.
Namely
d[x(t) I r(u)du+0'B(l)+ ﬂ[ f( ) I r(u)du+ﬂB(z)+ a? ’d[,

Integrating both sides from ¢, to ¢ gives, we get
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P 1 s—t 1 5
I r(u)dquUB(tVEozt J‘o r(u)du+ﬂB(s—z)+Eﬂ s

t
x(t)e” =x(t,) + j f(s)e ds,
fy
which yields
st 1
x(t ¢ r(u)du+oB(s—t)+=0° (s—t)
x(y =——)_ +f )t s,
f F(u)du+0B(1)+=0*t 1y
e’ 2
B(t
@) -1, as.,

llm}onf v2¢tInlnt -
(C1) According to Lemma 2.3 (i), for some 7, >0, there
must exist K > 0 such that

| B(t) < K, 0t 0[0,7, ], as..

Bt
(C2) From Lemma 2.3 (i), we have hm_w+)=o.

Hence for [e>0 , there is 70 > 0 such that
| B(t)|< €2,0¢ [0, ), a.s.,

In view the (C1) and (C2), we have the following lemma:

Lemma 2.4. Assume that the B(t) is the Brownian motion,
then for e >0, |B(t)|< K +&t,0¢0[0,0),a.5, where

K = sup |B(s)]|.

SC[0,7) ]

According Lemma 2.4, we have
(L) for Og& >0, there mustexist 7, >0 and K, >0

such That | B (¢)|< K, +&¢ forall t=0, where

O'+ Ko
MS :+’
M +5012 —&0,
+M K,0,
M, = p Sf X ,
k(W +y +50-2 —&,0,)
w, =M+

++1 2 _
H 50-3 &0,

Lemma 3.1. Assume that (H,) k,a” > "M, . Then the
susceptible S(t) of system (1.2) is almost stochastically
permanent, that is,

0<m, <liminf S(¢) < limsup S(¢) < M < oo,

{0

as.,

t— o

Where

This completes the proof.

Lemma 2.3. ([4]) The B(t) of the Brownian motion has the
following properties:

(1) (Continuity) The almost orbit of B(t) is continuous in

[0.+<0)
(ii)) (Asymptoticity) The Brownian motion of

one-dimensional standard satisfy the law of the
iterated logarithm, as following:

limsup&ﬂ as
‘e N2tInlnt ’
K, = sup | B,(s)].
s0.5]

(L,) for Og&, >0, there must exist 7, >0 and K, >0
such That | B,(¢)[< K, +&,t for t=0, where

K, = sup | B,(s)|.
|

SC00.7

(L,) for g >0, there must exist 7, >0 and K, >0
such That | B,(¢) |< K, +&;¢t for t=20, where

K, = SUP]IBs(S)I-

sO00,75

Here B,,B, and B, are defined as that in system (1.2).

3. Almost Sure Permanence

Setting:

ka —=B'M,

mg B

1
ke (p +5012+€101)

_ U -a

m;, = >

QU +y +%U§ +£,0,)e"”

— my
my = 1 B
- 2 -
(u +50'3 +£,0,)e""
+ K0 - _ +
M. = a‘e” - k,a —["M,
N s S

L1 T :
U+ 0l -0, ke (Wt 07+ 50)

Proof. From the first equation of system (1.2), we obtain

BOSDI(1)

aS@) =la@ - SO ===~ (1)

1dt =0, S(t)dB, (¢).

Thus
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dS)+ u)S@)+o,S(t)dB,(t) =[a(t) —%]dﬁ 3.1

By Lemma 2.2, set ¢, =0 we obtain

S(0 : )S(HI(s). [ uwrduraB (s-y+1a? (5-1)
S(t) =—; © ; +j [g(s)—M]ejo i 2! ds,
ejoy(u)du+olBl(t)+Eaft 0 k, +k,I(s)
Which yields
S(t) < S(O) +J-za( ) L:i,ﬂ(u)du-*-o']B](S—l)+%0’12(x—l)d < S(O) +a’+J.[ L:i,,u(u)du-#ﬂ]B](S—[)+%0'12(S—l)d
< s)e s L——— e s
L;u(u)duﬂlel(lH%afz 0 J‘;/l(u)d11+ﬂlBl(l)+%U]2[ 0
e e
s 1 _ _
< IS(O) +a+j’ew R
(W +-00)1=0,1B, (1) 0
According to (L, ) we have
S() < S(0) +a+.[’ (u‘%m%—mmuqwx—zud < S(0)e™ - K,ol.[' (u*%af—mxs—od
< e s L ———————— e e s
(;f+%a|2)z—al(K| +&1) 0 (/17*'%‘712‘51!71)1
S(0)ef atefa 1
@, -

=TT
(U +=07 ~g o))t .
2 1 1%1 ﬂ +50-1 _510-1 e

s 1 . .
We note that (y +5012 —£0,)>0, letting ¢ - o yields that

) a+ K o
limsup S(¢) < + =M, <o, as.

32
R — (32)

On the other hand, according to (3.2), for & >0, there exists 7, >0 such that
S(t)sSMg+¢g for t=T,.

According to Eq. (3.1) we have

BOSDI(1)

ds(t) + iSO+ a,SOdB, (1) =[a() -= = 1(t)

Jdt.

By Lemme 2.2, set ¢, =7, we have

\ s=t 1 5 _
S(t)=— S(T) N Il- [ (s) - ,6’(s)S(s)1(s)]ejU MG 00T 670
e_[(,/‘(“)d“*”lBl(’)*%”lz’ T kl +k21(S)
Then
' + ' s=t 1
Sz D) ypgm B M TE 1y et
eJ" M)t B 1)+ k, T
S S(T) tig- B (M +€1')]Jﬂ w’+§cr(>(s—t>fo.wl(s—t>\d
> . T A— —_—_— e S.
e(y*+%a|z)l+al\31(l)\ k, T

According to (L, ), we have
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ST g

_ ﬁ+ (MS + £1I ) ' +%012 Ns—t)=0;[K, +&s=1]]
- - 1| .e ds
(" +0y+oi (K +610) k,

NOE .

T

S(T _ (M, +E) pr W +iatvao sk S(THe™ ™ ka —B (M.+€) ¢t w+iatvaos—on
> 1 (1) +[a _ﬁ( N 1)]‘.‘.6 Pt IldSZ (11) + 2 ﬁ[g S I)J“e P ds
(/—1+*E‘712+5|U1)t*1{1‘7| kz i (#*J'EUlz*fl‘ﬁ)f kze 1% U
"\, K0 - + !
> S(T)e ™" + ka =B (Mg +§&) [1- 1
= i, 1 — —].
(U™ +- 07 +&0))t Ko, 2 (1 +507 +§0)(-T;)
e 2 kze : 1(/” +50-1 +£10'1) e 2

Letting & — 0 we have

SIHe | ka =M - 1

1 L
(W +5 0 +60)(1=T))

S@) = :
(U +-07 +&0))t

!
K0 2
e 2 k™ (U +50'1 +£0,) e

We note that k,0” > 8"M , letting ¢ — oo, we get

ka -=B"M;

liminf S(r) =

t -0

>0 as..
’ 33
ke +%(712 +£0)) 33

(3.2) and (3.3) yields the required assertion. This completes the proof.
Lemma 3.2. Assume that (H,) ¢ >0 . Then the infective I(t) of system (1.2), is almost stochastically permanent, that is,

0<m, <liminf I(¢) < limsup /() <M, <o, a.s.,

Where
M] - ﬁJr]‘lseKzgz . m, = /'[ - .
+ + l 2 - ~ l 2 K, 0,
k,(U" +y +502 —&,0,) Qu +y +502 +&,0,)e %
Proof. From the second equation of system (1.2), we obtain
_BOSHI() _ _ _
di(t) =[ kK1 (0) (u(@) + y@)1(t) - h(I)]dt — 0,1(t)dB, (). (3.4)
Thus
_BOSHI@) _
dl(2) +(p(2) + Y()1(t)dt +0,1(t)dB, (1) = [ K +510) h(I)]dt.

By Lemme 2.2, set ¢, =7, we have

st 1
Iu (H(u)+y(u))du+c,B, (x—z)+5022 (s—l)ds

1= I(T) o[ (BSOS gy

eﬂ(ﬂ(“)*'y(“))du*'ﬂzb’z (#5031 k +k,I(s)

(T (M, +E () du 0,8y (5=1)+2 02 (5-1)
(1) +ﬂ( s 1)J-T[Ie'[" () +y(u ua__slz_vzds
1

[ vundnr,, 1)+ o3 k,
e

M) FMre)

I

Y AL sy By (51)
e 2 s.

o
(W +y +-03)i=0,|B, ()] k,
e 2

According to ( L, ) we get
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I(0) <

I(T)) LB +&) J~z (ﬂ++V++%0§)(~Y—’)_U—z(1(z+fz\~‘"l\)d
kz p e A)

|
(U +y +Elfzz)l‘ffz(Kz +&1)

I(THe* (M +E)e% 1wy rid-eo s
< ( 1)1 + ﬂ ( S 1) '[ e 2 dS
(L +y +50§ —£0,)t kz T

10) B Mre)e !

+ + 1
kZ(lLI ty +50-22_£20-2) e

o1 + 1 . °
(U +y +50§—szaz>r (U +y +Ea%—szaz Xe=T,)

Let & — 0, we get

I(T))e*> N B'M " 1

(U + elg2 ) 1 [1_
H *y +205-60,)t + + 2
2 k(W +y +50-2 —£,0,) e

I(#) <

(ut+y* +%a§ -£0,)(1-T})

Taking &, >0, to satisfy (u* + )" +%(722 -¢&,0,) >0, letting ¢ — o, yields that

ﬁ+MS eKzﬂz

limsup /() <

t -0

1 =M, <0 as. (3.5)
kz(/'l++y++50-22_£20-2)

On the other hand, according to (3.4) we have

a1 =(FOSI0)
k +k,1(t)

BOSOI®) 0 o
k, +k,1(f) +U(t) = Qu@) + Yy (t) = h(D)]dt = 0,1 ()dB, (1)

= (@) + YN (1) — h(D)]dt — 0,1 (2)dB, ()
=[

Thus

BOSDI(1)

IO+ QA0+ YOO+ 10,0 =[5

+ p(0) = h(D)]dr.

By Lemma 2.2, let #, =0 we obtain

s=t 1,
I, Q)+ Y () du+ 03By (51423 (s=1) s

1(0) + jof[ﬁ(S)S ()1(s)

0= k, +k,I(s)

+u(s)—h(Dle

' 1 5
[, Cut +ywpdura, b, i+ 3t
e

1(0)

- ! 1 5
[, ut +ywpdura B, )+ a3
e

[\ Cutrsyundurer s, =053 (s

+[ (u(s)= (e ds
1(0)

s=t 1 5
¢ @u ) dut 0 By (s=1)[+ 03 (s=1)
>— e’ 2 ds.
[t yundirar B, 0+ o IO
e

+(u -0

According to ( L,), we have

1(0) QU a0y (K e ls-i) 1(0)e % W =0 1 Qu+y +La3+e0,)s-1)
- 272 2 272
I(t) = (2#*+y++laz)z+a (K, +&,1) +(ﬂ J)‘[Oe ds 2 Qut+ filozs * K20, J‘0 ds
2% 2 (K +Ey Mty 2‘7: £,0,)t e
1(0)e ™ U -o 1
> + [1-

Qut+y 4—11722 +6,0,)t

g QU +y +10% +80,)e

-1 .
K,0, Qu +y +Ef722+fz‘72)1
e
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We note that (4 >0, letting ¢ — oo, yields that

u -o

Qu +y +%U§ +£,0,)e"”

liminf 7(¢) =

t -

=m, >0 as. (3.6)

(3.5) and (3.6) yields the required assertion. This 7, >0 such that

completes the proof.

Lemma 3.3. The remove R(t) of system (1.2), is almost It)<M,+&, for t=2T,
stochastically permanent, that is,

L . From the third equation of system (1.2), we have
0<m, <liminf R(¢) <limsupR(¥) S M, <o, a.s.,

o dR (1) = [y 1(t) + h(1) = u(O)R(1))dt = T3 R(t)dB; (7).
Where
Then
_ M, +0)e™ _ my -
L . dR(6) * H(OR() + 0, R()dB, (1) = [YO)1(0)+ h(Ddr.  (3.7)
M+ 07— €0, (W +-0; +£0,)e"" .
2 2 By Lemma 2.2, set ¢, =7, we have

Proof. According to (3.5), for &, >0, there exists

R(T,)

L; () du+03By (1)+%a§1
e

s=t 1 5
Iu H(u)du+0;By (x—l)+5173“ (x—z)ds

R() = +[ L I(s) +h(De

L1
(W +03)(s=0)+03 B (s=0)]

R(Ty)

_ 1
(U *5‘732)””3\33(0\

Y (M, +,)+0]f e

According to (L, ) we get

R(T,) , L smra (s e lsi)
2 + 2
R(t)s— Hy' (M, +e)+alf e
(U +Eo§)r703(1<3+£3r) n
s '\ K, + ! K40,

R(Tz)eKlg3 . \ k.o ! (u*+%a§—£la3)(x—z) < R(T2)€ o + [y (M1 +£2)+J]e = [1_ 1
= L2 (M, +e)+alen BJ.r'e ST wla-eo N (W +L o -e0p)i-15)

e(u 0380 2 el 2777 U +Ea'3 -&,0, e 2

Letting & — 0, we have

'\ Kyo, + K30
RIS (M vt

++1 2 _
M +50:-60,

R(t) <

_ 1 1 N
(U +E{732 —&03)1 (" +EG§ —&03)(t-T)

. . 21 .
Taking & >0 to satisfy (4 +EU32 —&,0,) >0, letting ¢ — o, then we have

+ K0,

>0

- ) =My<o0o as. (3.8)
H +EU3 &0,

On the other hand, according to (3.6), for &, >0 there exists 7, >0 such that
It)zm, ~¢ for t=T,

According to Eq. (3.7), we have
dR(1) + p()R(1) + O3 R()dB; (1) = [Y()1 (1) + h(D)]dL.
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By lemma 2.2 set ¢, =T, , we have

Almost Sure Permanence of Stochastic SIR Epidemic Model

R(T) ' J.Hu(u)dma;B;(s—z)+lzf}z(s—l)
R() = 2 +'[, I(s)+h(1)e” 2 ds
( ) J.lu(u)du+a333(l)+la§r T [y( ) ( ) ( )]e
e 0 2
R(Ty) (K +303 X5=1)-03 B (5=

1
(u* *E"!Z )t+03|By (1)

According to (L, ), we have

R(T)

1
N LA
R(t)2———2——+(m,~&)y [ e *
<u*+50§>r+ag<1<z+szz> Ty
e

S R(]’; )e’KJUJ

+(m, —Sg)y"[;,e

U +=03 N(s=1)=03 (K3 +&3]s 1))

(m, —&)y

w %032 +£,03)t

Letting & — 0, we have

R(T)e™

1
(u +50'32+€30'3)e

my

R(t) =

oLy

Letting ¢ — o, then we have

my —_
= m,

liminf R(¢) 2 >0

a.s..
3.9
(u +§U32 +£,0,)e"% (39)

(3.8) and (3.9) yields the required assertion. This
completes the proof.

According to Lemma 3.1, Lemma 3.2 and Lemma 3.3, we
have the following theorem:

Theorem 3.1. If (H1) and (H2) are hold, then system (1.2)
is almost surely stochastically permanent.

4. Conclusion

This paper is concerned with the permanence of the
non-autonomous stochastic SIR model. The results in this
s k)
has no effect on the permanence of the infective and the
removed class of system (1.2). By Lemma 3.1, it is easy to

paper imply that the intensity of white noise (i.e., T,

see that the intensity of white noise (i.e., 0'12 ) on the

susceptible has some influence On the permanence of the
susceptible of system (1.2). From Lemma 3.2, we observe
that if the natural death rate 1 exceeds the positive constant o,
the infective is permanent. Without any condition, the
removed class of system (1.2) is always persistent.
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