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Abstract 
Although, there are lots of equivalent ways of formulating for computing the number of 

topological spaces in finite set. In this paper, we formulated special case for computing the 

number of chain topological spaces, and maximal elements with the natural generalization. 

We look at the concept of partial chain topologies on finite set with respect to the given 

subset. We determine the number of partial chain topologies with k open sets, and so the 

number of all chain topologies on finite set will be outlined. To support our study, some 

examples, and properties of this concept will be studied. Moreover, we determine the rule 

for computing the number of all maximal elements in the set of all chain topologies. 

1. Introduction 

A topology τ on the set X ≠ φ	is a subset of the power set P(X) that contains φ and X, 

and is closed under arbitrary unions and finite intersections. The number of topologies on 

a finite set is a problem that has been worked on by many Mathematicians. Moussa 

Benoumhani in [9], computed the number of topologies having k open sets T(n,k) on the 

finite set X, having n elements  for 2 ≤ k ≤ 12. Ern´e and Stege [4] provided the best 

methods, and gave the number of topologies on an n element set up to n = 14. B. 

Richmond [10] discussed method for counting finite topologies is to count associated 

quasiorders, and he proved that every quasiorder gives a topology and in the other 

direction, every topology gives a quasiorder. T. Richmond [11] discussed the idea of 

principal topologies or Alexandroff topologies. A principal topology is a topology that is 

closed under arbitrary intersections. Since we are working on a finite set, every topology 

on a finite set must be a principal topology because the arbitrary intersections will be 

finite which must be open from the definition of a topology. A chain topology on X, is a 

topology whose open sets are totally ordered by inclusion. Stephen in [17], proved that 

the number of chain topologies on X, having k open sets take the form 

���, �� � 	
��� ���, � 
 1� � �� 
 1�! ���, � 
 1�
���

���
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���
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In this paper, we look at the concept of partial chain topologies on any finite set with 

respect to the given subset. In the second section of this paper, we study the concept of 

partial chain topology on any finite set with respect to the given subset, and study some 

properties with respect to some concepts of topological spaces. In the third section of this 
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paper, we find the number of all partial chain topologies with 

respect to the given subset A to help us in obtaining the 

number of all chain topologies on it. Moreover, many 

examples will be studied. In the fourth section of this paper, 

we construct all maximal elements in the set of all chain 

topologies on finite set, and so we find the number of them. 

2. Partial Chain Topology with 

Respect to Sets 

In this section, we study the concept of partial chain 

topology on finite set with respect to the given subset, and 

study some properties with respect to some concepts of 

topological spaces. 

Definition 2.1. Let X be a finite set having n elements, for 

every � ⊂ �, the partial chain topology on X with respect to 

A is the chain topology on X which is defined as: 

�� = {�, φ,  ∶ � ⊂  } 
We can rewrite this concept as: 

�� = {�, φ, � =  �,  �,  #,  $, … . ,  �	 ∶ 	� ⊂  � ⊂  # ⊂  $⊂ ⋯ ⊂  �	} 
It is clear that 	�( ,	 having only indiscrete partial chain 

topology {�, φ}, and �φ, having any chain topology on the set 

X as a partial chain topology with respect to it. Therefore, in 

our study, we avoid the set � ⊂ � to be �	or φ. 

It is interested to show that the intersection of arbitrary 

partial chain topologies with respect to A is the partial chain 

topology with respect to it. Moreover, the union of partial 

chain topologies with respect to A is not in general a partial 

chain topology with respect to it, as studying in the following 

example. 

Example 2.1. Let the set � = {)�, )#, )$}, and A be the 

subset of X, where � = {)�}.  Then  �{*+} = {�, φ, {)�}, {)�, )#}}  and ,{*+} = {�, φ, {)�}, {)�, )$}} 
are two partial chain topologies with respect to A, and 

�{*+} ∪ ,{*+} = {�, φ, {)�}, {)�, )#}, {)�, )$}} 
is a topology on the set X, and not a partial chain topology with 

respect to A. 

Theorem 2.1. The family of closed sets of any partial chain 

topology with respect to A is a partial chain topology with 

respect to B, where B is the complement of maximum of all 

improper open subsets of X with respect to the inclusion 

relation. 

Theorem 2.2. Let X be a finite set having n elements, and let ��	be the partial chain topology on X with respect to A. Then 

any subset . ∈ �� is a dense subset. 

Proof. The proof is easy, since, if the closure of set V is .0 =  ,	and  ≠ �, then from Theorem (2.1), . ⊂  ⊂ �2 . 
This contradicts � ⊂ .,  and so the set   must be X. 

Therefore . ∈ �� is a dense subset. 

It is clear that the partial chain topological space with 

respect to any subset A of the nonempty set X is compact, 

Moreover, any partial chain topological space with respect to 

any subset A of X is connected space, since the only clopen 

(open and closed) subsets of the space X are �, φ.  

Theorem 2.3. The relative topology on a subspace B of a 

partial chain topological space with respect to the subset A on 

the set X is a partial chain topological space with respect to the 

subset � ∩ 4 on the set B. 

Theorem 2.4. Homeomorphic image of a partial chain 

topological space with respect to the subset A on the set X is a 

partial chain topological space with respect to the image of A 

on the image of X. 

3. Number of Partial Chain Topology 

with Respect to Sets 

In this section we find the number of all partial chain 

topologies with respect to the given subset A to help us in 

obtaining the number of all chain topologies on it. Moreover, 

many examples will be studied. 

Notations: Let X be a finite set having n elements. In our 

study, the set of all partial chain topology with respect to � ⊂ �	with k number of open sets will be denoted by 5���, ��, 5���, �� is the set of all partial chain topologies of 

all subsets of X, having r elements with k open sets, Moreover, 

the number of all partial chain topology with respect to � ⊂ � 

with k number of open sets will be denoted by  	����, �� =|5���, ��|, ����, �� = |5���, ��| is the number of all partial 

chain topologies of all subsets of X, having r elements with k 

open sets, Also, �����  is the number of all partial chain 

topology with respect to	� ⊂ �, ����� is the number of all 

partial chain topologies of all subsets of X, having r elements, 

and ���� is the number of all chain topologies on X. 

It is clear that the number k is a positive integer number, 

where	3 ≤ � ≤ � + 1. Moreover, :��, �� is the notation of 

permutations, and 
��� is the notation of combinations. 

Theorem 3.1. Let X be the set having n elements, and 

let	�	⊂	�, where	|�| is the number of elements of A. Then the 

number of all partial chain topologies with respect to A with k 

open sets is defined as: 

����, �� = :�� − |�|, � − 3�, where � − |�| + 2 ≥ � ≥3, � − 1 ≥ |�| ≥ 1  

Proof. Let 	�� ∈ 5���, �� , then 	�� = {�, =, �,  �,  #,  $, … . ,  ���$�} . We can choose  � 

with �� − |�|�  methods, and  #  with �� − |�| − 1� 
methods, and  >  with �� − |�| + 1 − ?�  methods, where � − 3 ≥ ? ≥ 3.  Therefore, by using the principle counting 

rule, we can choose 5���, �� with number of methods equal �� − |�|��� − |�| − 1��� − |�| − 2�… . . �� − |�| + 1 −�� − 3��, which is the permutation :�� − |�|, � − 3�. Which 

implies that 

����, �� = |5���, ��| = :�� − |�|, � − 3� 
Corollary 3.1. The number of all partial chain topologies 

with respect to A is 
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����� � 	 :�� 
 |�|, � − 3�
��|�|@#

��$
 

Theorem 3.2. The number of all partial chain topologies 

with respect to all subsets of X, having r elements with k open 

sets is defined as: 

����, �� = 	:��, � + � − 3��! , where � − � + 2 ≥ � ≥ 3,
� − 1 ≥ � ≥ 1 

Proof. From Theorem (3.1) 

����, �� = 	 ����, �� = 	 :�� − |�|, � − 3�
|�|��|�|��  

Since the number of all subsets of the set X, having r 

elements is the combination		
���, then by using the principle 

counting rule. It is follows that 

����, �� = 
��� :�� − �, � − 3� = :��, ��:�� − �, � − 3��!  

Since	:��, ��:�� − �, � − 3� = :��, � + � − 3�, then 

����, �� = 	:��, � + � − 3��! , where � − � + 2 ≥ �
≥ 3, � − 1 ≥ � ≥ 1 

Corollary 3.2. The number of all partial chain topologies 

with respect to all subsets of X, having r elements is defined 

as: 

����� = 1�! 	 :��, � + � − 3�
���@#

��$
 

Corollary 3.3. The number of all chain topologies on the 

finite set X, having n elements is defined as: 

���� = 	�����
���

���
=	A1�! 	 :��, � + � − 3�

���@#

��$
B

���

���
 

In the following two theorems we find the general formula 

for computing ����, ��, �����	by using recursively step. 

Theorem 3.3.  

��@���, �� = 	 �� − � − � + 3�����, ��� + 1 , where � − 2 ≥ � ≥ 1, 
����, �� = 	:��, � − 2�, � + 1 ≥ � ≥ 3 

Proof. From Theorem (3.2), we have that 

����, �� = 	:��, � + � − 3��!  

Since 

:��, � + � − 3� = ��� − 1��� − 2�…… . �� − � − � + 5��� − � − � + 4� 
= ��� − 1��� − 2�…… . �� − � − � + 5��� − � − � + 4��� − � − � + 3��� − � − � + 3� = :��, � + � − 2��� − � − � + 3� 

and :��, � + � − 2� = �� + 1�! 	��@���, ��, then 

����, �� = �� + 1�! 	��@���, ���! �� − � − � + 3� =
�� + 1�	��@���, ���� − � − � + 3�  

Therefore, 

��@���, �� = 	 �� − � − � + 3�����, ��� + 1 , where � − 2 ≥ � ≥ 1, 
����, �� = 	:��, � − 2�, � + 1 ≥ � ≥ 3 

Theorem 3.4. ��@���� = 	 2E����F��G�@� , where � − 2 ≥ � ≥ 1, 
����� = 	:��, 1� + :��, 2� + :��, 3� + ⋯+ :��, � − 1� 

Proof. From Corollary (3.2), we have that 

����� = 1�! 	 :��, � + � − 3� = 1�!
���@#

��$
A:��, �� + 	 :��, � + � − 3�

���@#

��H
B 

= 1�! A:��, �� + 	 :��, � + � − 2�
���@�

��$
B = 1�! F:��, �� + �� + 1�! 	��@����G 
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� :��, ���! + �� + 1�! 	��@�����! = 
��� + �� + 1�	��@���� 
Therefore, 

��@���� = 	����� − 

���� + 1 , where � − 2 ≥ � ≥ 1, 

����� = 	:��, 1� + :��, 2� + :��, 3� + ⋯+ :��, � − 1� 
Example 3.1. We tabulate the values of  ����, ��, ����� for  2 ≤ � ≤ 10, 3 ≤ � ≤ 11. 

k 

n 
3 4 5 6 7 8 9 10 11 JK�L� 

2 2         2 

3 3 6        9 
4 4 12 24       40 

5 5 20 60 120      205 

6 6 30 120 360 720     1236 
7 7 42 240 840 2520 5040    8689 

8 8 56 336 1680 6720 20160 40320   69280 

9 9 72 504 3024 15120 60480 181440 362880  623529 
10 10 90 720 5040 30240 151200 604800 1814400 3628800 6235300 

Example 3.2. We tabulate the values of  �#��, ��, �#��� for 3 ≤ � ≤ 10, 3 ≤ � ≤ 10. 
k 

n 
3 4 5 6 7 8 9 10 JM�L� 

3 3        3 

4 6 12       18 

5 10 30 60      100 

6 15 60 180 360     615 

7 21 105 420 1260 2520    4326 

8 28 168 840 3360 10080 20160   34636 

9 36 252 1512 7560 30240 90720 181440  311760 

10 45 360 2880 20160 120960 483840 1451520 2903040 4982805 

Example 3.3. We tabulate the values of  �$��, ��, �$��� for 4 ≤ � ≤ 10, 3 ≤ � ≤ 9. 

k 

n 
3 4 5 6 7 8 9 JO�L� 

4 4       4 

5 10 20      30 

6 20 60 120     200 

7 35 140 420 840    1435 

8 56 280 1120 3360 6720   11536 

9 84 504 2520 10080 30240 60480  103908 

10 120 840 5040 25200 100800 302400 604800 1039200 

Example 3.4. We tabulate the values of  �H��, ��, �H��� for 5 ≤ � ≤ 10, 3 ≤ � ≤ 8. 

k 

n 
3 4 5 6 7 8 JQ�L� 

5 5      5 

6 15 30     45 

7 35 105 210    350 

8 70 280 840 1680   2870 

9 126 630 2520 7560 15120  25956 

10 210 1260 6300 25200 151200 302400 486570 

Example 3.5. We tabulate the values of  �R��, ��, �R��� for 6 ≤ � ≤ 10, 3 ≤ � ≤ 7. 
k 

n 
3 4 5 6 7 JQ�L� 

6 6     6 

7 21 42    63 

8 56 168 336   560 

9 126 504 1512 3024  5166 

10 252 1260 5040 15120 30240 51912 
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4. Maximal Elements in the Set of All 

Chain Topologies on Finite Set 

In this section, we construct the family of all super 

topologies of partial chain topologies with respect to any set. 

Moreover, we prove that for any partial chain topology with 

respect to any set, there exists chain family, having this partial 

chain topology as a minimum element, providing all maximal 

elements in the set of all chain topologies on finite set, and so 

we find the number of them. 

Theorem 4.1. Let X be the set having n elements. For 

each	τ�∈	5���, ��, there exists Φ�> 	⊂		5���, � + ?�, such that � − |�| − � + 2 ≥ ? ≥ 0, and 

(i) τ� 	⊂	τ�> , for each	τ�> 	∈	Φ�> . 

(ii) Φ�� = {τ�}, |Φ�> | = :�� − |�| − � + 3, ?�. 
(iii) For each τ�>+ 	∈	Φ�>+ , there exists τ�>U 	∈	Φ�>U , for each ?# > ?�. 
Proof. 

(i) Let 

�� = {�, φ, � =  �,  �,  #,  $,  �, … . ,  ��$}∈	5���, ��. 
Then 

��	⊂	τ�> = �� ∪ { ��#,  ���, …… ,  ��$@>}∈	5���, � + ?�, 
For each s such that � − |�| − � + 2 ≥ ? ≥ 1  andτ�� =��. 

Taking Φ�>  to be the family {τ�> ∶ � − |�| − � + 2 ≥ ? ≥0}, completes the proof of (i). 

(ii) Since, we can choose  ��#  with � − |�| − � + 3 

methods,  ���  with � − |�| − � + 2	 methods, and 

so we can choose   ��$@> with � − |�| − � − ? + 4 

methods. Then by using the principle of counting rule, 

it follows that the number of elements of  Φ�> , 

|Φ�> | = �� − |�| − � + 3��� − |�| − � + 3�… �� − |�| − �− ? + 4� = :�� − |�| − � + 3, ?� 
(iii) Since, 

τ�>+ = �� ∪ { ��#,  ���, …… ,  ��$@>+} 
and 

τ�>U = �� ∪ { ��#,  ���, …… ,  ��$@>U} 
Then ?# > ?�, implies that τ�>U = τ�>+ ∪ { ��$@>+WX ∶ 	 ?# −?� > � > 0} 
Theorem 4.2. For each τ�∈	5���, �� , there exists the 

family ψYZ> , � − |�| − � + 2 ≥ ? ≥ 0 , such that ψYZ� ={{��}}, and the following two conditions are satisfied: 

Λ> ∈ ψYZ> 	⇒	Λ>  is chain of partial chain topologies with 

respect to A, with respect to the inclusion relation, having  �� 

as a minimum element. 

[ψYZ> [ = 	\:�� − |�| − � + 3, ��
>

���
 

Proof 

(i) We choose Λ� = {��}, and we construct the family 

Λ>, where  � − |�| − � + 2 ≥ ? ≥ 1	as follows: 

The first element belongs to Λ> is	��, the second element 

isτ�� 	∈	Φ�� , the third element isτ�# 	∈	Φ�#, whereτ�� 	⊂	τ�# , and so 

the �ℎ�  element isτ����	∈	Φ����, where τ���#	⊂	τ����, ? ≥ � ≥4. 
Hence, 	Λ> = {��, τ�� , τ�# , …… . . , τ�> } is chain with respect 

to the inclusion relation, having �� as the minimum element. 

Taking  ψYZ>  to be the family of all	Λ>, completes the proof 

of (i). 

(ii) Since |Φ�> | = :�� − |�| − � + 3, ?� , then by using 

the principle counting rule 

[ψYZ> [ = 	\:�� − |�| − � + 3, ��, � − |�| − � + 2 ≥ ? ≥ 1
>

���
 

Theorem 4.3. Let X be the set having n elements, then 

τ{*}∈	5{*}��, � + 1�; 	) ∈ � is a maximal element in the set of 

all partial chain topologies on X. 

Proof. Since	� = � + 1, |�| = 1, � − |�| − � + 2 ≥ ? ≥ 0, 

then	? = 0, and so	Φ{*}> = Φ{*}� = _τ{*}`. Therefore, from the 

construction of the chain	Λ>, it follows that	Λ> = Λ� = {�{*}}. 
Hence any chain of partial chain topologies with respect to {)} with � + 1 open set, with respect to the inclusion has 

only one element	τ{*}. Implies τ{*} is a maximal element in 

the set of all partial chain topologies. 

Theorem 4.4. Let X be the set having n elements, then the 

number of all maximal elements in the set of all chain 

topologies on X equal	�!. 
Proof. Since the family of all maximal elements in the set of 

all chain topologies on X is 	{τ{*}∈	5{*}��, � + 1� ∶ ) ∈ �} , 
and since 

����, �� = 	:��, � + � − 3��! , where � − � + 2 ≥ �
≥ 3, � − 1 ≥ � ≥ 1. 

Then the number of all maximal elements in the set of all 

chain topologies on X is 

����, � + 1� = 	:��, � + 1 + 1 − 3�1! =:��, � − 1�=n!
 

5. Conclusion 

Although, there are lots of equivalent ways of formulating 

for computing the number of topological spaces in finite set. 

In this paper, we formulated special case for computing the 

number of chain topological spaces, and maximal elements 

with the natural generalization. 

(1) Computing the number of all partial chain topologies 
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with respect to the given subset A, providing the number 

of all chain topologies on it. 

(2) Constructing all super topologies of partial chain 

topologies with respect to any set, providing all 

maximal elements in the set of all chain topologies on 

finite set, and so we find the number of them. 
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