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Abstract 
In the present work, the Van Leer and the Liou and Steffen Jr. flux vector splitting schemes 

are implemented to solve the three-dimensional Favre-averaged Navier-Stokes equations. 

The Granville algebraic model, the Coakley and the Wilcox two-equation models, and the 

Baldwin and Barth one-equation model are used in order to close the problem. The 

physical problem under study is the supersonic flow around a blunt body configuration. 

The results have demonstrated that the Van Leer scheme using the Granville turbulence 

model has yielded the best value of the stagnation pressure at the blunt body nose. 

1. Introduction 

Conventional non-upwind algorithms have been used extensively to solve a wide 

variety of problems ([1]). Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every different case in the same class of 

problems) artificial dissipation terms must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks and steep compression and expansion 

gradients may defy solution altogether. 

Upwind schemes are in general more robust but are also more involved in their 

derivation and application. Some upwind schemes that have been applied to the Euler 

equations are: [2-3]. A description of these methods is found in [4]. 

In relation to turbulent flow simulations, [5] applied the Navier-Stokes equations to 

transonic flows problems along a convergent-divergent nozzle and around the NACA 

0012 airfoil. The [6] model was used to close the problem. Three algorithms were 

implemented: the [7] explicit scheme, the [8] implicit scheme and the [9] explicit scheme. 

The results have shown that, in general terms, the [7] and the [9] schemes have presented 

better solutions. 

For a more detailed description of the motivation of the present study, as well some 

comments about different turbulence models the reader is encouraged to read [4]. 

In the present work, the [2-3] flux vector splitting schemes are implemented, on a 

finite-volume context. The three-dimensional Favre-averaged Navier-Stokes equations 

are solved using an upwind discretization on a structured mesh. The [10] algebraic model, 

the [11] and [12] k
1/2

-ω and k-ω two-equation models, respectively, and the [13] 

one-equation model are used in order to close the problem. The physical problem under 

study is the supersonic flow around a blunt body configuration. The implemented schemes 

are first-order accurate in space. The time integration uses a Runge-Kutta method of five 

stages and is second-order accurate. The algorithms are accelerated to the steady state 

solution using a spatially variable time step. This technique has proved excellent gains in 

terms of convergence rate as reported in [14-15]. The results have demonstrated that the 
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[2] scheme using the [10] turbulence model has yielded the 

best value of the stagnation pressure at the blunt body nose. 

2. Three-Dimensional Navier-Stokes 

Equations 

The three-dimensional flow is modeled by the 

Navier-Stokes equations, which express the conservation of 

mass and energy as well as the momentum variation of a 

viscous, heat conducting and compressible media, in the 

absence of external forces. The Navier-Stokes equations are 

presented in their two-equation turbulence model formulation. 

For the algebraic model, these two-equations are neglected 

and the [2-3] algorithms are applied only to the original five 

conservation equations. The one-equation model considers 

only one additional equation. The integral form of these 

equations may be represented by: 

( ) ( ) ( )e v x e v y e v z
V S V

t QdV E E n F F n G G n dS MdV 0 ∂ ∂ + − + − + − + = ∫ ∫ ∫ ,                     (1) 

where Q is written for a Cartesian system, V is the cell 

volume, nx, ny, and nz are components of the unity vector 

normal to the cell boundary, S is the flux area, Ee, Fe and Ge are 

the components of the convective, or Euler, flux vector, Ev, Fv 

and Gv are the components of the viscous, or diffusive, flux 

vector and M is the source term of the two-equation models. 

The vectors Q, Ee, Fe, Ge, Ev, Fv and Gv are, incorporating a k-s 

formulation, represented by: 
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{ }T
sk MM00000M = ,            (4) 

where the components of the viscous stress tensor are defined 

as: 
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( )
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(5) 

The components of the turbulent stress tensor (Reynolds 

stress tensor) are described by the following expressions: 
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Expressions to fx, fy and fz are given bellow: 
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   (7) 

where qx, qy and qz are the Fourier heat flux components and 

are given by: 
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         (8) 

The diffusion terms related to the k-s equations are defined 

as: 
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         (10) 

In the above equations, ρ is the fluid density; u, v and w are 

Cartesian components of the velocity vector in the x, y and z 

directions, respectively; e is the total energy per unit volume; 

p is the static pressure; k is the turbulence kinetic energy; s is 

the second turbulent variable, which is the vorticity (k
1/2

-ω or 

k-ω models) for this work; the t’s are viscous stress 
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components; τ’s are the Reynolds stress components; the q’s 

are the Fourier heat flux components; Mk takes into account 

the production and the dissipation terms of k; Ms takes into 

account the production and the dissipation terms of s; µM and 

µT are the molecular and the turbulent viscosities, respectively; 

PrL and PrT are the laminar and the turbulent Prandtl numbers, 

respectively; σk and σs are turbulence coefficients; γ is the 

ratio of specific heats; Re is the viscous Reynolds number, 

defined by: 

MREFREFlVRe µρ= ,                     (11) 

where VREF is a characteristic flow velocity and lREF is a 

configuration characteristic length. The internal energy of the 

fluid, ei, is defined as: 

( )222
i wvu5.0ρee ++−= .             (12) 

The molecular viscosity is estimated by the empiric 

Sutherland formula: 

( )TS1bT 21
M +=µ ,                   (13) 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([16]). 

The Navier-Stokes equations are dimensionless in relation 

to the freestream density, ρ∞, the freestream speed of sound, a∞, 

and the freestream molecular viscosity, µ∞. The system is 

closed by the state equation for a perfect gas: 

( )[ ]ρkwvu0.5ρe1)(γp 222 −++−−= ,        (14) 

considering the ideal gas hypothesis. The total enthalpy is 

given by ( ) ρ+= peH . 

The [2-3] flux vector splitting algorithms are described in 

detail in [4] and the interested reader is encouraged to read this 

work. The viscous implementation is also described in [4]. 

The three-dimensional configuration like: computational cell, 

flux surface areas, normal vectors and cell volume are 

described in [17]. The spatially variable time step is described 

in [4; 18] and the interested reader can found in these 

references the detailed implementation. 

3. Turbulence Models 

3.1. Granville Turbulence Model 

The problem of the turbulent simulation is in the calculation 

of the Reynolds stress. Expressions involving velocity 

fluctuations, originating from the average process, represent 

six new unknowns. However, the number of equations keeps 

the same and the system is not closed. The modeling function 

is to develop approximations to these correlations. To the 

calculation of the turbulent viscosity according to the [10] 

model, the boundary layer is divided in internal and external. 

Initially, the (νw) kinematic viscosity at wall and the (txy,w 

and txz,w) shear stresses at wall are calculated. After that, the (δ) 

boundary layer thickness is calculated. So, the (N) normal 

distance from the wall to the studied cell is calculated. The N
+
 

term is obtained from: 

wT NuReN ν=+ ,                     (15) 

where νw is the wall cinematic viscosity and uT is the friction 

velocity, defined as: 
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The van Driest damping factor is calculated by: 
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Defining now the dimensionless coordinates ξ and η, one 

has: 
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The ratio of tangential stress is given by: 
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Hence, for the internal layer, one has: 
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where ω  is the magnitude of the vortex vector, defined as: 
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In the external layer, 
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with: 
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( )β+−= 1724.001312.03/2CKleb ;          (26) 

Re

1

dx

du

u

N

T

max−=β ;                  (27) 

( ) ( )[ ]4
KlebKlebKlebcp C32C2C43C −−= .        (28) 

Hence, maxN  is the value of N where ωmixl D reached 

its maximum value and lmix is the Prandtl mixture length. The 

constant values are: 4.0=κ , 0168.0=α , and 25.0Cwk = . 

KlebF  is the intermittent function of Klebanoff given by: 

( )[ ] 16
maxKlebKleb NNC5.51)N(F

−
+= ,           (29) 

and difU  is the maximum velocity value in the boundary 

layer case. To free shear layers, 
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Finally, the turbulent viscosity is chosen from the internal 

and the external viscosities: ),(MIN TeTiT µµ=µ . 

3.2. Coakley Turbulence Model 

The [11] model is a k
1/2

-ω one. The turbulent Reynolds 

number is defined as 

MNkR ν= .                      (31) 

The production term of turbulent kinetic energy is given by 

Re
z

v

z

v

y

w

x

w

x

w

z

u

y

u

x

v

y

u
P













∂
∂









∂
∂+

∂
∂+

∂
∂









∂
∂+

∂
∂+

∂
∂









∂
∂+

∂
∂= . (32) 

The function χ is defined as 

1
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.                     (33) 

The damping function is given by 
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R

.                     (34) 

The turbulent viscosity is defined by 

ωρ=µ µ kDCReT ,                   (35) 

with: Cµ a constant to be defined. 

To the [11] model, the Gk and Gω terms have the following 

expressions: 

kkk DPG −−=    and   ωωω −−= DPG ,     (36) 
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where 045.0D405.0C1 += . The closure coefficients 

adopted for the [11] model are: 
k

1.0σ = ; 1.3ωσ = ; 

C 0.09µ = ; 
2

C 0.92= ; 5.0=β ; 0065.0=α ; PrdL = 0.72; 

PrdT = 0.9. 

3.3. Wilcox Turbulence Model 

In the [12] turbulence model, s = ω. The turbulent viscosity 

is expressed in terms of k and ω as: 

ωρ=µ kReT .                    (39) 

In this model, the quantities kσ  and ωσ  have the values 

*1 σ and σ1 , respectively, where *σ and σ are model 

constants. 

To the [12] model, the Gk and Gω terms have the following 

expressions: 
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where the closure coefficients adopted for the [12] model are: 

09.0* =β ; 403=β ; 5.0* =σ ; 5.0=σ ; 95=α ; PrdL = 

0.72; PrdT = 0.9. 

3.4. Barth and Baldwin Turbulence Model 

In this one-equation model, the partial differential equation 

considered is described as: 
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The terms n this equation are modeled as follows. The wall 

tension is defined by Eq. (16). The turbulent viscosity is 

defined as: 
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It is important to remember that due to the present 

nondimensionalization, the second and the third terms of the 

RHS of Eq. (44) are divided by the Reynolds number. 

The model constants have the following values: κ = 0.41, 
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4. Initial and Boundary Conditions 

The initial and boundary conditions to the [10] turbulence 

model are the same of those found in [19-20]. For the k
1/2

-ω 

and k-ω models, one has: 

4.1. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [21-22]. 

Therefore, the vector of conserved variables is defined as: 

}T2
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1
Q 1 M cos M sin cos M sin sin 0.5M t s

( 1)
∞ ∞ ∞ ∞ ∞ ∞


= α α θ α θ + γ γ−

,                          (51) 

where t∞ is the freestream turbulent kinetic energy and s∞ is the 

freestream turbulent vorticity or the squared of this value. 

These parameters assume the following values as using the [11] 

model: t∞ = 1.0x10
-3

 and ( )
REF

lu10s ∞∞ = , and as using the 

[12] model: t∞ = 1.0x10
-6

 and ( )
REF

lu10s ∞∞ = , with u∞ the 

freestream u Cartesian component and lREF a characteristic 

length, the same adopted in the definition of the Reynolds 

number. 

For the one-equation model: 

4.2. Initial Condition 

( ) }T
2

i, j,k T

1
Q 1 M cos M sin cos M sin sin 0.5M R

( 1)
∞ ∞ ∞ ∞ ∞


= α α θ α θ + ν γ γ −

, with ( ) ν=ν ∞ 5.0R T .          (52) 

4.3. Boundary Conditions 

For the k
1/2

-ω and k-ω models: 

The boundary conditions are basically of four types: solid 

wall, entrance, exit and far field. These conditions are 

implemented with the help of ghost cells. 

(1) Wall condition: At a solid boundary the non-slip 

condition is enforced. Therefore, the tangent velocity 

component of the ghost volume at wall has the same 

magnitude as the respective velocity component of its real 

neighbor cell, but opposite signal. In the same way, the normal 

velocity component of the ghost volume at wall is equal in 

value, but opposite in signal, to the respective velocity 

component of its real neighbor cell. 

The normal pressure gradient of the fluid at the wall is 

assumed to be equal to zero in a boundary-layer like condition. 

The same hypothesis is applied for the normal temperature 

gradient at the wall, assuming an adiabatic wall. The normal 
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gradient of the turbulence kinetic energy at the wall is also 

assumed to be equal to zero. 

From the above considerations, density and pressure are 

extrapolated from the respective values of its real neighbor 

volume (zero order extrapolation). The total energy is 

obtained by the state equation for a perfect gas. The turbulent 

kinetic energy and the turbulent vorticity at the ghost volumes 

are determined by the following expressions: 

0.0k ghost =  and ( ) ( )[ ]2
nM d338 βν=ω ,            (53) 

where β assumes the value 3/40 and dn is the distance of the 

first cell to the wall. 

(2) Entrance condition: 

(2.1) Subsonic flow: Six properties are specified and one 

extrapolated. This approach is based on information 

propagation analysis along characteristic directions in the 

calculation domain ([22]). In other words, for subsonic flow, 

six characteristic propagate information pointing into the 

computational domain. Thus six flow properties must be fixed 

at the inlet plane. Just one characteristic line allows 

information to travel upstream. So, one flow variable must be 

extrapolated from the grid interior to the inlet boundary. The 

pressure was the extrapolated variable from the real neighbor 

volumes, for the studied problem. Density and velocity 

components adopted values of freestream flow. The 

turbulence kinetic energy and the vorticity were fixed with the 

values of the initial condition. The turbulence kinetic energy 

receives the value 0.01 of K. The total energy is determined by 

the state equation of a perfect gas. 

(2.2) Supersonic flow: In this case no information travels 

upstream; therefore all variables are fixed with their of 

freestream values. 

(3) Exit condition: 

(3.1) Subsonic flow: Six characteristic propagate 

information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior 

information. The characteristic direction associated to the 

“(qnormal-a)” velocity should be specified because it points 

inward to the computational domain ([22]). In this case, the 

ghost volume pressure is specified from its initial value. 

Density, velocity components, the turbulence kinetic energy, 

and the vorticity are extrapolated. The total energy is obtained 

from the state equation of a perfect gas. 

(3.2) Supersonic flow: All variables are extrapolated from 

interior grid cells, as no flow information can make its way 

upstream. In other words, nothing can be fixed. 

(4) Far field condition: The mean flow kinetic energy is 

assumed to be 
2

u5.0K =  and the turbulence kinetic energy 

at the far field adopts the value kff = 0.01K, or 1% of K. The 

turbulence vorticity is determined by its freestream value. 

For the one-equation model: 

4.4. Boundary Conditions 

The boundary conditions are basically of three types: solid 

wall, entrance and exit. For the wall condition, one adopts 

( ) 0.0R wT =ν . For the entrance condition, it is assumed 0.5ν 

or zero-order extrapolation if the flow is pointing into the 

computational field or pointing out of the computational field, 

respectively. For the exit condition, one adopts zero-order 

extrapolation. 

5. Results 

Tests were performed in an INTEL Core i7 processor of 

2.10GHz and 8.0Gbytes of RAM microcomputer in a 

Windows 7.0 environment. Three orders of reduction of the 

maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of 

the discretized conservation equation. The entrance or attack 

angle was adopted equal to zero, as well the longitudinal angle. 

The ratio of specific heats, γ, assumed the value 1.4. 

Figure 1 shows the blunt body configuration, whereas Fig. 2 

shows the blunt body mesh. A mesh of 53x50x10 points or 

composed of 22,932 hexahedron cells and 26,500 nodes was 

generated, employing an exponential stretching of 5.0% in the 

η direction. 

 

Figure 1. Blunt body configuration. 

The initial data of the simulations is described in Tab. 1. 

Table 1. Initial Conditions. 

M∞ αααα θθθθ Altitude L∞ Re 

3.0 0.0o 0.0o 40,000m 2.0m 4.75x105 

 

Figure 2. Blunt body mesh. 
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5.1. Granville Results 

Figures 3 and 4 present the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [10] 

turbulence model in three-dimensions. Both fields are 

homogeneous and the pressure contours generated by the [2] 

scheme is more strength than the respective one generated by 

the [3] scheme. 

Figures 5 and 6 show the Mach number contours obtained 

by the [2] and [3] numerical schemes, respectively, as using 

the [10] turbulence model. Both Mach number fields are free 

of pre-shock oscillations and are homogeneous. The 

differences between these fields are only in qualitative terms. 

It is possible to see that the [2] solution develops a region of 

low Mach number contours close to the wall, resulting from 

the boundary layer formation. On the contrary, the [3] solution 

does not yields this region. 

 

Figure 3. Pressure contours ([2]). 

 

Figure 4. Pressure contours ([3]). 

 

Figure 5. Mach number contours ([2]). 

 

Figure 6. Mach number contours ([3]). 

 

Figure 7. Temperature contours ([2]). 
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Figure 8. Temperature contours ([3]). 

 

Figure 9. Cp distributions. 

 

Figure 10. Wall temperature distributions. 

Figures 7 and 8 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [10] turbulence model. The temperature contours 

generated by the [3] scheme is more intense than the 

respective one of the [2] scheme. However, the [2] solution 

presents a zone of high dissipation close to the wall, whereas 

the [3] scheme does not. There are qualitative differences 

between the two solutions, but both present homogeneous 

contours, without oscillations. Some problems with the [3] 

solution in the k = constant planes are observed, which 

prejudices the solution repetition in these planes. The [2] 

solution does not present such problems. 

Figure 9 exhibits the -Cp distributions generated by the [2] 

and [3] schemes as using the [10] turbulence model. The -Cp 

plateau of the [2] scheme is higher than the -Cp plateau of the 

[3] scheme. The -Cp peak at the body nose is the same for both 

schemes. Figure 10 presents the wall temperature distributions 

generated by the [2] and [3] numerical schemes as using the 

[10] turbulence model. The temperature distribution is 

smoother for the [2] scheme. The temperature distribution of 

the [3] scheme is more intense than the respective one of the [2] 

scheme. The maximum temperature obtained by the [2] 

scheme is about 720.0 K, whereas that obtained by the [3] 

scheme is about 855.0 K. 

5.2. Coakley Results 

Figure 11 and 12 present the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [11] 

turbulence model. Again, the pressure contours generated by 

the [2] scheme is more strength than the one generated by the 

[3] scheme. Good homogeneity is observed in both solutions. 

Figures 13 and 14 show the Mach number contours 

generated by the [2] and [3] schemes, respectively, as using 

the [11] turbulence model. Both solutions are identical in 

quantitative terms, only being different in qualitative terms. 

The subsonic region close to the body wall is again observed 

in the [2] solution. The subsonic region at the body nose is 

observed, as resulting from the shock slowdown. No 

pre-shock oscillations are observed in both solutions. 

 

Figure 11. Pressure contours ([2]). 
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Figure 12. Pressure contours ([3]). 

 

Figure 13. Mach number contours ([2]). 

 

Figure 14. Mach number contours ([3]). 

Figures 15 and 16 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [11] turbulence model. The [2] solution presents 

higher temperatures in the field than the [3] solution. 

 

Figure 15. Temperature contours ([2]). 

 

Figure 16. Temperature contours ([3]). 

Moreover, the [2] solution presents a zone of high 

dissipation close to body wall, resulting from intense heat 

energy exchange and boundary layer interaction. 

Figure 17 presents the –Cp distribution generated by the [2] 

and [3] schemes as using the [11] turbulence model. As can be 

seen the –Cp plateau obtained by the [2] scheme is higher than 

the respective one of the [3] scheme. The –Cp peak is 

approximately the same for both solutions. Figure 18 shows 

the wall translational temperature distributions originated by 

the [2] and [3] schemes as using the [11] turbulence model. 

The [2] temperature distribution is smoother than the [3] one. 

The temperature at the body nose is higher in the [2] solution. 

The [2] temperature distribution increases along the body. The 

[2] temperature at the body nose is 48.0 K higher than the [3] 
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temperature one. 

 

Figure 17. Cp distributions. 

 

Figure 18. Wall temperature distributions. 

5.3. Wilcox Results 

Figures 19 and 20 exhibit the pressure contours generated 

by the [2] and [3] schemes, respectively, as using the [12] 

turbulence model. The pressure field generated by the [2] 

scheme is higher than the respective one generated by the [3] 

scheme. Both pressure fields present good homogeneity 

properties. Figures 21 and 22 show the Mach number contours 

obtained by the [2] and [3] schemes, respectively, as using the 

[12] turbulence model. The Mach number field generated by 

the [2] scheme is more intense than the respective one of the [3] 

scheme. Particularly, the zone of low Mach number close to 

the body wall is only perceptible in the [2] solution. The 

region of subsonic Mach number at the body nose is well 

captured by both schemes. No pre-shock oscillations are 

observed in both figures. The shock wave is well captured in 

both solutions. 

 

Figure 19. Pressure contours ([2]). 

 

Figure 20. Pressure contours ([3]). 

 

Figure 21. Mach number contours ([2]). 
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Figure 22. Mach number contours ([3]). 

Good homogeneous properties are observed in both figures. 

The zone of intense energy exchange, close to the body wall, 

is observed in the [2] solution. Moreover, the zone of intense 

temperature is slightly observed at the body nose in both 

solutions, as expected. Good symmetry properties are noted in 

both solutions. 

Figures 23 and 24 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [12] turbulence model. The temperature field 

generated by the [2] scheme is again more intense than the 

respective one of the [3] scheme. 

 

Figure 23. Temperature contours ([2]). 

Figure 25 presents the –Cp distribution obtained by the [2] 

and [3] schemes as using the [12] turbulence model. In 

accordance to the observed in the ultimate solutions, the [2] 

scheme presents higher –Cp plateau than the [3] scheme; 

Moreover, both solutions present the same –Cp peak, at the 

body nose. Figure 26 shows the wall temperature distributions 

obtained by the [2] and [3] schemes as using the [12] 

turbulence model. Both solutions present different 

temperature peaks at the leading edge, the difference around 

45.0 K. Again the [2] solution presents an increase of the 

temperature along the body, whereas the [3] solution suffers a 

reduction along the body. The maximum temperature reached 

by the [2] scheme is about 840.0 K, whereas by the [3] scheme 

is 804.0 K. 

 

Figure 24. Temperature contours ([3]). 

 

Figure 25. Cp distributions. 

 

Figure 26. Wall temperature distributions. 



 Computational and Applied Mathematics Journal 2015; 1(4): 186-200  197 

 

5.4. Baldwin and Barth Results 

Figures 27 and 28 show the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [13] 

turbulence model. As can be observed, the [2] scheme predicts 

again more severe pressure field than the [3] scheme. The 

shock is well capture and good symmetry characteristics are 

noted. Good homogeneity in both solutions is also observed. 

 

Figure 27. Pressure contours ([2]). 

 

Figure 28. Pressure contours ([3]). 

Figures 29 and 30 present the Mach number contours 

generated by the [2] and [3] schemes, respectively, as using 

the [13] turbulence model. Good symmetry properties are 

observed, without pre-shock oscillations. Good homogeneity 

properties are noted. The Mach number fields are identical in 

quantitative terms, although in qualitative terms some 

discrepancies are observed. The zone of low Mach number 

close to the body wall is only noted in the [2] solution. 

Figures 31 and 32 show the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [13] turbulence model. As can be observed, the [3] 

temperature field is more intense than the [2] temperature field. 

The zone of intense energy exchange observed close to the 

body wall is only captured by the [2] scheme. Moreover, the 

intense temperature region at the body nose is again only 

observed in the [2] solution, being more discrete in the [3] case. 

Good symmetry properties are observed in both figures. 

 

Figure 29. Mach number contours ([2]). 

 

Figure 30. Mach number contours ([3]). 

Figure 33 exhibits the –Cp distributions at the wall obtained 

by the [2] and [3] schemes as using the [13] turbulence model. 

As observed in all solutions, the [2] scheme presents again a 

pressure plateau higher than the [3] scheme does, although 

both –Cp peaks at the body nose are approximately the same. 

Figure 34 shows the temperature distributions at wall 

generated by the [2] and [3] schemes as using the [13] 

turbulence model. The [2] temperature distributions is 

smoother than the [3] one. The [2] temperature distribution 

keeps approximately the same behavior along the body length, 

whereas the [3] temperature distribution increases and close to 

the body end reduces its value. The temperature values at the 
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body end are approximately 700.0 K to the [2] scheme and 

760.0 K to the [3] scheme. The maximum temperature values 

are 712.0 K to the [2] scheme and 800.0 K to the [3] scheme. 

 

Figure 31. Temperature contours ([2]). 

 

Figure 32. Temperature contours ([3]). 

 

Figure 33. Cp distributions. 

 

Figure 34. Wall temperature distributions. 

5.5. Quantitative Analysis 

A possibility to quantitative comparison of the turbulent 

cases is the determination of the stagnation pressure ahead of 

the configuration. [23] presents a table of normal shock wave 

properties in its B Appendix. This table permits the 

determination of some shock wave properties as function of 

the freestream Mach number. In front of the blunt body 

configuration, the shock wave presents a normal shock 

behavior, which permits the determination of the stagnation 

pressure, behind the shock wave, from the tables encountered 

in [23]. So it is possible to determine the ratio ∞prpr0  from 

[23], where pr0 is the stagnation pressure in front of the 

configuration and pr∞ is the freestream pressure (equals to 1/γ 

to the present dimensionless). 

Hence, to this problem, M∞ = 3.0 corresponds to ∞prpr0 = 

12.06 and remembering that pr∞  = 0.714, it is possible to 

conclude that pr0 = 8.61. Values of the stagnation pressure to 

the turbulent cases and respective percentage errors are shown 

in Tab. 2. They are obtained from Figures 3, 4, 11, 12, 19, 20, 

27 and 28. As can be observed, the [2] scheme using the [10] 

turbulence model has presented the best result, with a 

percentage error of 0.46%. It is important to observe that, 

although first order schemes were used, the percentage 

relative errors were inferior to 5.50%. 

Finally, Table 3 exhibits the computational data of the 

present simulations. It can be noted that the most efficient is 

the [2] scheme using the [12] turbulence model. All schemes 

used a CFL number of 0.10, not necessarily being the 

maximum CFL number of each one. 

Table 2. Values of the stagnation pressure and respective percentage errors. 

Model: Scheme: pr0: Error (%): 

[10] [2] 8.65 0.46 

 [3] 8.32 3.37 

[11] [2] 8.70 1.05 

 [3] 8.25 4.18 

[12] [2] 8.74 1.51 

 [3] 8.16 5.23 

[13] [2] 8.74 1.51 

 [3] 8.54 0.81 
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Table 3. Computational data. 

Model: Scheme: CFL: Iterations: 

[10] [2] 0.10 2,704 

 [3] 0.10 2,278 

[11] [2] 0.10 746 

 [3] 0.10 3,099 

[12] [2] 0.10 729 

 [3] 0.10 3,200 

[13] [2] 0.10 2,572 

 [3] 0.10 2,429 

As final conclusion of this study, the [10] turbulence model 

was the best when comparing these four turbulence models: 

[10], [11], [12] and [13]. In a next paper, the present author 

will study more four different turbulent models to this same 

problem trying to identify the best of each group of four and to 

perform a final analysis to found the best one. 

6. Conclusions 

In the present work, the [2-3] flux vector splitting schemes 

are implemented, on a finite-volume context. The 

three-dimensional Favre-averaged Navier-Stokes equations 

are solved using an upwind discretization on a structured mesh. 

The [10] algebraic model, the [11] and [12] k
1/2

-ω and k-ω 

two-equation models, respectively, and the [13] one-equation 

model are used in order to close the problem. The physical 

problem under study is the supersonic flow around a blunt 

body configuration. The implemented schemes are first-order 

accurate in space. The time integration uses a Runge-Kutta 

method of five stages and is second-order accurate. The 

algorithms are accelerated to the steady state solution using a 

spatially variable time step. This technique has proved 

excellent gains in terms of convergence rate as reported in 

[14-15]. 

The results have demonstrated that the [2] scheme using the 

[10] turbulence model has yielded the best value of the 

stagnation pressure at the blunt body nose and is the best 

choice for this study. The most efficient scheme has been the 

[2] one using the [12] turbulence model. 
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