

Computational and Applied Mathematics Journal
2015; 1(5): 307-318

Published online July 10, 2015 (http://www.aascit.org/journal/camj)

Keywords
Imperialist Competitive

Algorithm,

Nelder-Mead,

Hybrid Algorithm,

Electric Motor Design

Received: June 8, 2015

Revised: June 22, 2015

Accepted: June 23, 2015

Hybrid Nelder-Mead Imperialist
Competitive Algorithm Applied to
Electric Motor Design

Julien Lepagnot
1
, Lhassane Idoumghar

1
, Daniel Fodorean

2

1LMIA Laboratory (EA 3993), University of Haute-Alsace, Mulhouse, France
2Electrical Machines & Drives Department, Technical University of Cluj-Napoca, Cluj-Napoca,

Romania

E-mail address
julien.lepagnot@uha.fr (J. Lepagnot), lhassane.idoumghar@uha.fr (L. Idoumghar)

Citation
Julien Lepagnot, Lhassane Idoumghar, Daniel Fodorean. Hybrid Nelder-Mead Imperialist

Competitive Algorithm Applied to Electric Motor Design. Computational and Applied

Mathematics Journal. Vol. 1, No. 5, 2015, pp. 307-318.

Abstract
In this paper, a hybrid metaheuristic based on Imperialist Competitive Algorithm (ICA)

and on the Nelder-Mead simplex method (NM) is proposed. The purpose of NM is to

improve both the diversification and the intensification capabilities of ICA. The proposed

algorithm, called ICA-NM, is validated and compared with ICA and two other

well-known metaheuristics using the benchmark of the CEC’2005 congress. The results

show the efficiency of the proposed algorithm. Then, ICA-NM is used to design an

optimal motor for an electric scooter in terms of both its mass and its output power. For

this practical problem, ICA-NM outperforms several well-known metaheuristics used for

this problem. Finally, the solution found by ICA-NM is validated by building and testing

the corresponding prototype motor.

1. Introduction

Imperialist competitive algorithm (ICA) [1] is a population based metaheuristic in

which there are two types of individuals, called countries: colonies and imperialists that

form together a set of empires. ICA is based on imperialistic competition between these

empires. During this competition, weak empires collapse and powerful ones take

possession of their colonies until only one empire remains.

We propose to hybridize ICA with the Nelder-Mead simplex [2] in order to improve its

performances. We have selected this simplex search method because it is easy to program,

fast and widely used. Hybridizing NM with metaheuristics like evolutionary algorithms,

particle swarm optimization and ant colony optimization has been a very popular approach

to improve their intensification capabilities [3, 4, 5, 6]. In this paper, NM is also used to

improve the diversification capabilities of ICA. As soon as a stagnation criterion is

satisfied for ICA, NM is run in order to either escape the reached local optimum or speed

up the convergence to it.

The proposed hybrid algorithm, called ICA-NM, is evaluated using the benchmark of

the 2005 IEEE Congress on Evolutionary Computation (CEC2005) special session on

real-parameter optimization [7]. This experimental analysis shows the performance of

ICA-NM for different kinds of problems. It shows also that ICA-NM obtains good

performances compared to other well-known metaheuristics. Then, it is successfully used

to design a permanent-magnet machine used to motorize an electric scooter. The solutions

found by ICA-NM for this practical problem are better than the ones obtained by ICA and

other leading approaches used for this problem. This paper is structured as follows:

Section 2 presents an overview of ICA and NM. The proposed ICA-NM algorithm is then

308 Julien Lepagnot et al.: Hybrid Nelder-Mead Imperialist Competitive Algorithm Applied to Electric Motor Design

described in detail in Section 3. Experimental protocol and

parameter setting are presented in Section 4. Experimental

results are discussed in Section 5. Finally, a conclusion is

given in Section 6.

2. Presentation of the Hybridized

Components

2.1. Overview of Imperialist Competitive

Algorithm

Imperialist Competitive Algorithm (ICA) [1] is a recent

evolutionary optimization approach inspired by imperialism

and the imperialistic competition process. In this algorithm, all

individuals are grouped in several empires. The mechanisms

in the algorithm are designed to bring out an empire, stronger

than the others, and that finds the best solutions. Imperialistic

competition aims to destroy the weakest empire and

strengthen the strongest empire. The main steps of the

algorithm are summarized in Algorithm 1.

Algorithm 1. Imperialist Competitive Algorithm.

1: Initialize and evaluate the empires

2: while stop condition is not satisfied do

3: Move the colonies toward their relevant imperialist

4: if a colony in an empire has a lower cost than the

imperialist then

5: Switch the positions of that colony and of the

imperialist

6: end if

7: Compute the total cost of all empires

8: if the distance between two empires is less than

Uniting Threshold then

9: Merge the two empires

10: end if

11: Imperialistic competition

12: if there is an empire with no colony then

13: Destroy this empire

14: end if

15: end while

2.1.1. Initial Empires
Like all evolutionary algorithms, ICA starts with an initial

population of solutions, called countries, of size popN . From

these countries, impN best solutions are selected to be

imperialists and the remaining
col

N countries form the

colonies of these imperialists. The initial empires are formed

by dividing the colonies among imperialists according to their

normalized power:

=1

= n

n N
imp

i

i

C
p

C∑
 (1)

where = max in n i
C c c− ,

n
c is the cost of th

n imperialist

and
n

C is its normalized cost.

The number of colonies
n

NC that form an empire is

computed according to (2):

= ()
n n col

NC round p N⋅ (2)

where the round function rounds a number to the nearest

integer.

2.1.2. Movement of Each Colony

Imperialist countries attract colonies toward themselves

using the assimilation policy illustrated in Fig. 1. To update its

position, each colony moves toward its imperialist using (3):

1
= (,)

t t
x x d Uβ γ θ θ+ + ⋅ ⋅ ⋅ − (3)

where t is an iteration number, > 1β causes the colonies to

get closer to the imperialist, d is the distance between the

colony and its imperialist, γ is a small number that

corresponds to an assimilation coefficient (0 < < 1γ), and θ

is a parameter that adjusts the deviation from the original

direction, which enables searching around the imperialist.

Fig. 1. The movement of a colony toward its imperialist.

2.1.3. Total Cost

The total cost of each empire is defined by the cost of its

imperialist plus its average colonies’ cost, as expressed by (4):

= ()

(())

n n

n

TC Cost Imperialist

mean Cost coloniesofempireξ+ ⋅
 (4)

where ξ is a positive number considered to be less than 1.

2.1.4. Imperialistic Competition
All empires try to take possession of the colonies of other

empires and to control them. This imperialistic competition is

modeled by picking the weakest colony(ies) from the weakest

empires and giving it (them) to the empire that has the highest

likelihood to possess it (them). To start the competition, the

possession probability p
n

P of each empire must be defined

as:

=1

= n

p Nn imp

i

i

NTC
P

NTC∑
 (5)

 Computational and Applied Mathematics Journal 2015; 1(5): 307-318 309

where = max in n i
NTC TC TC− ,

n
TC and

n
NTC are the

total cost and the normalized total cost of th
n empire

respectively.

To divide the mentioned colonies among empires based on

their possession probability, a vector P is formed:

1 2 3
= [, , ,...,]

p p p p
N

imp

P P P P P (6)

Then a vector with the same size as P, filled with random

numbers, is created:

1 2 3= [, , ,...,]N
imp

R r r r r (7)

where
i

r are random numbers between 0 and 1. Finally, a

vector A is formed by subtracting R from P.

1 2
1 2

= [, ,...,]
p p p N

N imp
imp

A P r P r P r− − − (8)

Referring to vector A, the mentioned colonies will be

assigned to an empire whose relevant index in A is maximum.

2.2. The Nelder-Mead Simplex

The Nelder-Mead simplex search method (NM), first

proposed by Spendley et al. [8] and later refined by Nelder and

Mead [2], is a derivative-free line search method that was

particularly designed for traditional unconstrained

minimization scenarios, such as the problems of nonlinear

least squares and nonlinear simultaneous equations.

Fig. 2. Illustration of the Nelder-Mead simplex algorithm. Either the worst

point
1

V is replaced with S ,
e

S ,
c

S or
c

S ′ , or the simplex is shrinked.

A simplex is a polytope of 1n + vertices in a n

-dimensional space. The algorithm starts with an initial

simplex and evolves by using four elementary geometric

transformations: reflection, expansion, contraction and

shrinkage. Through these operations, the simplex can improve

itself and come closer and closer to a local optimum. An

example of the function minimization of two variables, taken

from [3], is given to illustrate the basic procedure of NM. The

function to minimize is denoted by f . Firstly, the method

starts with an initial simplex designed with the points

(solutions) denoted by
1

V ,
2

V and
3

V , as illustrated in Fig.

2. Suppose
1

(V)f is the highest (the worst) of the three

function values. Then,
1

V has to be replaced. In this case, a

reflection is made through the centroid of the other points (the

midpoint M) to the point S . The reflected solution is given

by (9).

1
S = M (M V)+ − (9)

Suppose
3 2 1

(V) < (V) < (V)f f f . At this stage, three

situations can arise:

1. If
3

(S) < (V)f f , an extension is made to the point
e

S

according to (10), where χ is called the expansion

coefficient and it has a standard value of 2 . Then, we keep

S or
e

S as a replacement for
1

V , depending on which

function value is lower.

e 1
S = M (M V)χ+ − (10)

2. If
3

(S) > (V)f f , a contraction is made to the point
c

S or

c
S ′ according to (11) and (12), depending on whether

1
(V)f or (S)f is lower. In these equations, ρ is called

the contraction coefficient and it has a standard value of

0.5 .

c 1
S = M (M V)ρ− − (11)

c 1
S = M (M V)ρ′ + − (12)

3. If
c

(S)f or
c

(S)f ′ is greater than
3

(V)f , then the

contraction has failed and we perform a shrinkage operation.

The shrinkage operation reduces the size of the simplex by

moving all but the best point
3

V halfway towards
3

V .

3. The Proposed Hybrid ICA-NM

Algorithm

The goal of combining ICA and NM is to take advantage of

strengths from both methods. NM is a very efficient local

search procedure. Hence, it can be used to improve the ICA

intensification capabilities. Besides, the local optimum found

by NM depends on the starting points selected to form the

initial simplex. Then, NM could also be used to improve the

diversification capabilities of ICA. Indeed, by using a proper

set of points to initialize NM, it can converge to a solution

located in a promising or unexplored area of the search space.

From these considerations, we propose to run several

iterations of NM as soon as a stagnation criterion is satisfied.

The number of iterations performed is denoted by
it

N , and

=
it it

N c dim× where
it

c is a predefined coefficient and

dim is the number of dimensions of the search space. The

criterion used to trigger an execution of NM is satisfied if the

ICA algorithm is showing signs of a possible premature

convergence. Then, the use of NM can guide ICA towards new

promising areas of the search space.

Each time NM is run, a new initial simplex is used. This

310 Julien Lepagnot et al.: Hybrid Nelder-Mead Imperialist Competitive Algorithm Applied to Electric Motor Design

initial simplex is a set of 1dim + points in the search space.

We denote this set by V , and the th
i point of this set by V

i
.

The set V is computed from another set of 1dim + points,

denoted by U . We propose to use the 1dim + best ICA

imperialists as the set of points U . If there is not enough

imperialists to form U , i.e. if < 1impN dim + where impN is

the number of imperialists, then the missing (1) impdim N+ −

points are randomly generated according to a uniform

distribution in the search space. The computation of the initial

simplex V from the set of points U is described in

Algorithm 2, where spxc is a variable of ICA-NM initialized

to = 1spxc at the beginning of ICA-NM. The variable spxc is

decreased after each run of NM (line 6 of Algorithm 3), in

order to initialize the initial simplex of NM with vertices that

are closer and closer to the best imperialist.

Algorithm 2. Computation of the initial simplex of NM.

1: bi ← index of the best imperialist in U

2: V U
bi bi

←

3: for all U U
i
∈ such that i bi≠ do

4: ()V U U U
i bi spx i bi

c← + −

5: end for

The stagnation criterion used to trigger an execution of NM

is satisfied if no improvement of the best imperialist

(replacement with a better colony) is observed during
t

δ

iterations (not necessarily successive ones) of ICA, where
t

δ

is a predefined threshold. The execution of NM takes place at

the end of an ICA iteration, i.e. after the th14 line of

Algorithm 1. The pseudocode inserted at this place in

Algorithm 1 is presented in Algorithm 3, where
i

count is the

number of non-improving iterations of the th
i imperialist and

dampc is a predefined coefficient (a strictly positive real value

lower or equal to 1).

Algorithm 3. Integration of NM into ICA

1: best ← index of the empire of the best imperialist

2: if >
best t

count δ then

3: 0
best

count ←

4: Perform
it

N iterations of NM

5: round it

it

damp

N
N

c

←

6: spx spx dampc c c← ×

7: end if

If the solution found by NM is better than the best

imperialist, then it replaces the best imperialist. This way, the

use of NM can improve not only the diversification

capabilities of ICA, but also its intensification capabilities by

fine-tuning the best imperialist.

4. Experimental Protocol and

Parameter Setting

4.1. The CEC 2005 Benchmark

In order to evaluate the performance of ICA-NM, nine

commonly used benchmark functions from the CEC 2005

special session are employed [7]. These functions are shifted

and rotated variants of the classical mathematical functions in

order to provide difficult test cases. The objective is to find

their global minimum, using a maximum number of

evaluations of a function equal to 10000 dim× , where dim

is the dimension of the function. The performance of the

algorithm is evaluated using = 50dim and = 100dim . Table

1 lists the aforementioned functions respectively, where

Range is the boundary of the function’s search space, and

minf is the value of the global minimum of the function. Their

detailed description is available in the CEC 2005 technical

report [7].

Table 1. Benchmark functions.

Name Description Range minf

1F Shifted Sphere [-100, 100] -450

2F Shifted Schwefel’s Problem 1.2 [-100, 100] -450

3F Shifted Rotated High Conditioned Elliptic [-100, 100] -450

4F Schwefel’s Problem 2.6 (Optimum on Bounds) [-100, 100] -310

5F Shifted Rosenbrock’s [-100, 100] 390

6F Shifted Rastrigin’s [-5, 5] -330

7F Shifted Rotated Rastrigin’s [-5, 5] -330

8F Shifted Rotated Weierstrass [-0.5, 0.5] 90

9F Schwefel’s Problem 2.13 [- π , π] -460

4.2. Defining the Application

The autonomy of an electric vehicle (EV), or electric

scooter, is reduced by the heavy components installed on

board. Consequently, if we reduce the mass of the equipment,

we will increase the EV’s autonomy.

The main elements from an electric traction chain of an EV

are: the battery, the converter and the electric motor. The

battery volume and weight are imposed by its capacity to store

 Computational and Applied Mathematics Journal 2015; 1(5): 307-318 311

energy and of the used material: lead-acid (heavier, but

cheaper), lithium-ion (lighter, but more expensive). The

converter has several electronic devices which do not weight

much. The main element in the traction system which can be

reduced in its weight, by that reducing its cost too, is the

electric motor. Thus, our goal is to have a lighter motorization

with decreased investment.

The motorization of an electric vehicle can be realized with

mechanical transmission or without it. The mechanical

transmission supposes that the electric motor is placed on the

chassis and the torque is transmitted to the wheels via a belt,

gear or a distribution system.

The other variant is to use a non-transmission motorization,

meaning that the electric motor is mounted within the wheel of

the EV. For the electric scooter, in order to spare space and to

reduce its weight, it is better to place the motor inside the

wheel (without mechanical transmission). In such case, the

motor has the rotor outside (it rotates with the tire), and the

stator armature is inside. Such a motor is called in-wheel

motor.

Fig. 3 depicts the power flow of the traction chain for the

studied experimental scooter. Here, we can distinguish:

� the battery (which assures the necessary input energy) ;

� the converter (a 3-phase inverter in this case, used to

transfer the energy from the battery to the electric

motor) ;

� the in-wheel motor (which will produce the necessary

torque and speed to run the scooter).

Fig. 3. The electrical circuit for the traction of an electric scooter.

The authors’ goal is to reduce, as much as possible, the mass

of the electric motor. The main design data of the electric

scooter motorization is: 1200W for the power, 48Vdc for the

battery, 34Nm for the rated torque, 420 r/min for the rated

speed (corresponds to the scooter maximum speed, 50 km/h).

Related to the used motorization, the studied motor has an

outer-rotor, excited with permanent magnets, while the stator

is inside; thus, the motor is called outer rotor permanent

magnet synchronous machine (OR-PMSM). The output

performances expected at the motor’s shaft are: 1.5 kW for the

power, 420 r/min for the rated speed, meaning that the torque

will be 34.1 Nm. After the calculations, the phase rated current

of the motor will be 21 A. For in-wheel motors, it is very

important to have a very compact volume for the machine,

meaning a reduced mass. This is achieved with a higher

number of poles, which also offers the possibility to employ a

specific winding (of fractional slot type) which will produce a

very smooth torque [9]. In this case, the number of poles pair

is 17 and the three phase winding is installed in 39 slots. The

reader can have an idea about the machine’s configuration by

looking at Fig. 4. Here, one can see also the geometrical

parameters which will be used in the optimization process.

The initial value and the limits of these parameters are

presented in Table 2, and they will establish the intervals

which will define the space of available solutions in which the

global optimum will be searched.

(a)

(b)

Fig. 4. The studied OR-PMSM: (a) cross section and geometrical parameters

used in the optimization process ; (b) the active parts of the motor: PMs, rotor

and stator iron.

The optimization approach will try to maximize the power

density of the machine (i.e., the ratio between the output

power and the mass of the active parts of the machine). Since

we do not have the interest of increasing the power (which is

demanded by the application), the optimization problem given

here consists in minimizing the mass of the machine. The

components of the active parts of the OR-PMSM which we are

trying to minimize are: the PMs, the rotor and stator iron.

312 Julien Lepagnot et al.: Hybrid Nelder-Mead Imperialist Competitive Algorithm Applied to Electric Motor Design

Fig. 5. Evolution of the average value of the best solution found by ICA-NM, ICA, SPSO2011 and DE for the CEC 2005 benchmark functions using = 50dim . A

solid line is used for ICA, a dashed line is used for SPSO2011, a dotted line is used for DE and a dash-dot line is used for ICA-NM. For more clarity, we used a

logarithmic scale for the ordinates.

 Computational and Applied Mathematics Journal 2015; 1(5): 307-318 313

Fig. 6. Evolution of the average value of the best solution found by ICA-NM, ICA, SPSO2011 and DE for the CEC 2005 benchmark functions using =100dim .

A solid line is used for ICA, a dashed line is used for SPSO2011, a dotted line is used for DE and a dash-dot line is used for ICA-NM. For more clarity, we used

a logarithmic scale for the ordinates.

314 Julien Lepagnot et al.: Hybrid Nelder-Mead Imperialist Competitive Algorithm Applied to Electric Motor Design

To conclude, the optimization problem consists in

optimizing two given objective functions:

Table 2. The main parameters used in the optimization process of the

OR-PMSM.

Symbol Description Value Variation limits

Dir Rotor inner diameter 207 mm [185; 210] mm

hjr Rotor yoke height 8 mm [5; 10] mm

his Tooth isthmus height 2 mm [1; 3] mm

hjs Stator yoke height 6.5 mm [5; 10] mm

ld Tooth width 7 mm [4; 10] mm

gap Air-gap length 1 mm [0.5; 1.5] mm

hmp PM height 3 mm [2.5; 7] mm

Lm Machine’s length 50 mm [30; 80] mm

Tm Motor torque 34.1 Nm [34; 34.2] Nm

Pout Output power 1500 W [1490; 1510] W

Is Motor phase current 21 A [15; 21.5] A

1. The first objective function concerns the minimization of

the mass of the active parts of the machine, here called

tot
m . The total mass of the active parts of the machine

needs to be minimized.
tot

m represents the sum of all

active parts of the machine:

=tot copper stat rot PMm m m m m+ + + (13)

where copperm is the mass of copper used for windings,
stat

m

is the mass of the stator core (teeth and yoke),
rot

m is the

mass of the rotor core and
PM

m is the mass of the PMs.

2. The second objective function consists in the

maximization of the output power
out

P which is equal to

the difference between the input power and the losses:

=
out in

P P Losses−∑ (14)

The sum of losses contains mainly the iron and copper

losses; the mechanical losses (usually estimated at 0.5% of the

output power) are neglected here. The objective function to

optimize using our algorithm is represented by:

=
motor

Minimizef RPM penality− + (15)

with

= out

tot

P
RPM

m

3
7

=1

=

0 if all constraints are respected

| |
10

| Upper Bound() Lower Bound() |

otherwise

i i

i

penality

C Limit

i i

 −

× −

∑

and

Lower Bound() if < Lower Bound()
=

Upper Bound() if > Upper Bound()

i

i

i

i C i
Limit

i C i

4.3. Parameter Setting

The values of the ICA and ICA-NM parameters used for the

CEC 2005 benchmark, as well as for the electric machine

design problem, are defined in Table 3. They have been

determined empirically for these problems.

Table 3. ICA and ICA-NM parameters.

 Parameter
Value

CEC 2005 Motor design

ICA

Number of initial countries popN 24 100

Number of Initial Imperialists impN 8 6

Assimilation coefficient β 2 2

Assimilation angle coefficient γ 0.4 0.35

Coefficient ξ used in (4) 0.05 0.065

UnitingThreshold used to merge empires 0.02 0.005

ICA-NM only

tδ used in the starting criterion of NM 15 50

itc (to initialize the first run of NM) 10 60

dampc (to initialize the next runs of NM) 0.96 0.99

The performances of ICA-NM are not only compared to

those of ICA, but also to those of other well-known

optimization algorithms. These algorithms and their parameter

setting, empirically fitted, are defined below (see references

for more details on these algorithms and their parameter

fitting).

� SPSO2011 (Standard Particle Swarm Optimization in its

2011 version) [10] using a number of particles equal to

= 24S , an inertia weight equal to = 0.721w , learning

factors
1

c and
2

c equal to 1.193, and = 3K for the

parameter K used to generate the particles

neighborhood ;

 Computational and Applied Mathematics Journal 2015; 1(5): 307-318 315

� DE (Differential Evolution) [11] using the DE/rand/1/bin

strategy, a population size equal to = 24NP , a

weighting factor = 0.8F , and a crossover constant

= 0.9CR .

5. Experimental Results and

Discussion

5.1. Results for the CEC 2005 Benchmark

The convergence of ICA and ICA-NM are studied and

compared in Fig. 5 and Fig. 6 for the CEC 2005 benchmark

functions using = 50dim and = 100dim . For each function,

the evolution of the fitness of the best solution found by an

algorithm is presented, averaged over 20 runs. As one can see

on each graph, the solution found by ICA-NM is better than

the one found by ICA for almost all evaluations.

Moreover, ICA, ICA-NM, SPSO2011 and DE are run 20

times using each benchmark function. The average value of

the best solution found by each algorithm at the end of its

execution, with its standard deviation, is presented in Table 4

for every function. The Kruskal-Wallis statistical test has been

used to determine if a significant difference exists between the

results obtained by the algorithms. This test indicates at 95%

confidence level that there is a significant difference between

the performances of the algorithms for all test cases. Then, the

Tukey-Kramer post hoc test is used to determine which

algorithms perform differently from ICA-NM. The results of

this test are presented in Table 4, where the letter W appears

under the results that are significantly worse than the ones of

ICA-NM, and the letter B appears under the results that are

significantly better than the ones of ICA-NM. As one can see,

hybridizing ICA with the NM simplex method significantly

improves the performance of the algorithm for all test cases.

Compared to SPSO2011, ICA-NM is able to produce better

results for 16 test cases, and similar ones for the 2 others.

Compared to DE, ICA-NM is able to produce better results for

9 test cases, and similar ones for 7 test cases. It is only

outperformed by DE for 2 test cases among 18 (
1

F using

= 50dim and = 100dim).

5.2. Results for the Electric Motor Design

Problem

The results obtained by ICA-NM for the motor design

problem are compared to those of ICA and several

well-known multiobjective algorithms: ASREA [12], AMGA

[13] and OMNIOPT [14]. The parameters of each algorithm

have been fitted to the problem experimentally. Each

algorithm is run 100 times, and the best solution found during

these runs is kept. The maximum number of evaluations is set

to 1E+5 for each algorithm. These solutions are presented in

Table 5, along with the reference solution for this problem,

given in [9]. As we can see, every algorithm is able to produce

a better solution than the reference one. However, the solution

found by ICA-NM is better than the ones found by the other

algorithms. The use of ICA-NM enables a mass reduction of

the motor of 46.5% with regard to the reference solution.

To further compare the performance of ICA and ICA-NM

for this problem, the values of RPM found by ICA and

ICA-NM, averaged over 100 runs of each algorithm, are

computed. All the solutions found by both algorithms are

feasible. The average value and standard deviation of RPM
obtained by ICA and ICA-NM are 346.22 19.45± and

378.80 18.20± , respectively. The Friedman statistical test

indicates at 95% confidence level that there is a significant

difference between the results of ICA and ICA-NM for this

problem. As one can see, the performance of ICA-NM is

significantly better than the one of ICA for this problem.

The convergence of both algorithms is compared in Fig. 7,

where the evolution of the average value of 400
motor

f + over

100 runs of each algorithm is illustrated. We add 400 to the

value of the objective function in order to enable the use of a

logarithmic scale for the ordinates. As one can see, the

solution found by ICA-NM is better than the one found by

ICA for almost all evaluations. The Friedman statistical test

indicates at 95% confidence level that there is a significant

difference between the results of ICA and ICA-NM from the
th

5580 evaluation to the last one. Hence, ICA-NM is able to

produce significantly better solutions than ICA from the
th

5580 evaluation.

Fig. 7. Evolution of the average value of the best solution found by ICA and

ICA-NM for the electric motor design problem. A solid line is used for ICA,

and a dashed line is used for ICA-NM. For more clarity, the values are shifted

by 400 in order to use a logarithmic scale for the ordinates.

5.3. Validation of the Optimization Algorithm

Via Experimental Results Measured on

the Constructed Prototype

Fig. 8. The experimental bench for testing the constructed prototype.

316 Julien Lepagnot et al.: Hybrid Nelder-Mead Imperialist Competitive Algorithm Applied to Electric Motor Design

We have constructed a prototype of the electric motor and

we have tested on a measurement bench.

The test bench of the studied in-wheel motor used for the

motorization of an electric scooter is presented in Fig. 8. Here,

one can distinguish the constructed prototype. The main parts

of the prototype (which were optimized), meaning the rotor

and the stator, are presented also in Fig. 8-top. The mechanical

performances are measured with a torque-speed transducer

(DataFlex22). The load is assured via an electric machine and

the control and the data acquisition are used with a

dSPACE1103, board installed on a PC. The converter is made

of IRFZ48-mosfet switches.

Fig. 9. The measured results of the electric motor.

Table 4. Average value and standard deviation of the best solution found by ICA-NM, ICA, SPSO2011 and DE for each benchmark function. The letter W is

written under the results that are significantly worse than the ones of ICA-NM. The letter B is written under the results that are significantly better than the ones

of ICA-NM. No letter appears under the results that are not significantly different.

dim Function
Fitness ± Standard deviation

ICA-NM ICA SPSO2011 DE

50

1
F 4.72E − 14 ± 1.04E − 14

2.01E + 04 ± 5.89E + 03

W

1.26E − 13 ± 3.79E − 14

W

2.05E − 14 ± 9.90E − 15

B

2
F 3.31E − 13 ± 9.21E − 14

5.06E + 04 ± 2.70E + 04

W

1.81E − 12 ± 4.16E − 13

W

4.52E − 02 ± 3.47E − 02

W

3
F 1.59E + 04 ± 4.93E + 03

1.16E + 08 ± 9.39E + 07

W

2.88E + 05 ± 8.50E + 04

W

1.01E + 06 ± 3.01E + 05

W

4
F 3.31E + 03 ± 3.23E + 02

2.70E + 04 ± 4.77E + 03

W

1.53E + 04 ± 2.26E + 03

W
2.78E + 03 ± 4.63E + 02

5
F 1.90E + 02 ± 2.86E + 02

9.98E + 09 ± 6.28E + 09

W
2.56E + 02 ± 2.34E + 02 4.22E + 01 ± 3.91E + 01

6
F 4.23E + 01 ± 1.31E + 01

2.55E + 02 ± 6.10E + 01

W

1.62E + 02 ± 2.24E + 01

W
6.94E + 01 ± 1.88E + 01

7
F 1.30E + 02 ± 2.68E + 01

6.29E + 02 ± 1.12E + 02

W

2.17E + 02 ± 5.23E + 01

W

3.00E + 02 ± 1.16E + 02

W

8
F 2.63E + 01 ± 6.80E + 00

6.49E + 01 ± 3.57E + 00

W

5.56E + 01 ± 6.79E + 00

W

7.12E + 01 ± 1.01E + 01

W

9
F 1.17E + 04 ± 9.76E + 03

1.31E + 06 ± 3.30E + 05

W

4.71E + 04 ± 4.04E + 04

W
3.54E + 04 ± 3.32E + 04

100

1
F 9.38E − 14 ± 8.03E − 15

1.15E + 05 ± 2.78E + 04

W

2.94E − 13 ± 4.90E − 14

W

3.74E − 14 ± 2.35E − 15

B

2
F 1.52E − 09 ± 1.32E − 09

1.93E + 05 ± 6.57E + 04

W

3.97E − 07 ± 2.13E − 07

W

5.29E + 02 ± 2.02E + 02

W

3
F 1.33E + 05 ± 3.50E + 04

5.19E + 08 ± 2.50E + 08

W

1.29E + 06 ± 3.66E + 05

W

4.48E + 06 ± 1.52E + 06

W

 Computational and Applied Mathematics Journal 2015; 1(5): 307-318 317

dim Function
Fitness ± Standard deviation

ICA-NM ICA SPSO2011 DE

4F 6.16E + 03 ± 1.01E + 03
6.44E + 04 ± 7.79E + 03

W

3.96E + 04 ± 3.86E + 03

W
7.10E + 03 ± 1.50E + 03

5F 8.91E + 01 ± 1.91E + 00
7.26E + 10 ± 3.40E + 10

W
9.32E + 01 ± 1.99E + 01 1.49E + 02 ± 5.69E + 01

6F 1.72E + 02 ± 2.14E + 01
6.98E + 02 ± 1.22E + 02

W

4.92E + 02 ± 7.33E + 01

W
1.84E + 02 ± 4.44E + 01

7F 3.43E + 02 ± 4.05E + 01
1.98E + 03 ± 2.22E + 02

W

7.24E + 02 ± 9.15E + 01

W

7.13E + 02 ± 3.30E + 02

W

8F 6.03E + 01 ± 1.20E + 01
1.48E + 02 ± 6.67E + 00

W

1.37E + 02 ± 7.95E + 00

W

1.61E + 02 ± 1.51E + 00

W

9F 2.91E + 04 ± 2.44E + 04
7.32E + 06 ± 1.77E + 06

W

3.56E + 05 ± 2.20E + 05

W

2.56E + 05 ± 1.49E + 05

W

Table 5. Properties of the best solution found by each algorithm among 100 runs.

Property Reference solution ICA ICA-NM ASREA AMGA OMNIOPT

totm (kg)
7.1207 3.9097 3.8097 5.8946 4.2863 3.8652

 − 45.094 (%) − 46.498 (%) − 17.218 (%) − 39.805 (%) − 45.718 (%)

RPM (W/kg)
210.67 385.18 391.37 255.09 347.90 389.47

 + 82.84 (%) + 85.77 (%) + 21.08 (%) + 65.14 (%) + 84.87 (%)

To validate the design and the optimization algorithm, and

to check if the prototype satisfies the application’s demands,

we will check mainly the output power, the current level and

the torque of the machine (based on the input and output

power, one can get also the efficiency of the motor).

The measured results are presented in Fig. 9, being obtained

by load variation, from zero up to the rated torque.

The load current at rated operation is 21.05 A, which is very

close to the analytically obtained value. Based on the input

(1665 W) and output (1500 W) power, we can get the

efficiency of our motor: 90.1%, also very close to the

analytical value. Also, we can see that the desired torque (34

Nm) is obtained.

Thus, we can conclude that the designed and optimized

electric motor satisfies the application demands.

6. Conclusion

A new hybrid algorithm that combines an Imperialist

Competitive Algorithm (ICA) with the Nelder-Mead simplex

method (NM) has been proposed. This algorithm, called

ICA-NM, has been designed in order to improve both

diversification and intensification capabilities of ICA. A

comparison of the performances of ICA-NM with the ones of

ICA and several well-known metaheuristics has been

presented, using benchmark functions of the CEC 2005

congress. This comparison shows the efficiency of our

hybridization. Then, ICA-NM is used to design a motor for an

electric scooter. It is able to produce better results than several

multiobjective algorithms used for this practical problem. The

solution found by ICA-NM leads to a 46.5% mass reduction

of the motor with regard to the reference solution.

In works in progress, we are working on the integration of

machine learning techniques to ICA-NM in order to guide the

search towards possible more promising areas of the search

space. The critical parameters of ICA-NM could also be

automatically adjusted through this kind of techniques.

Besides, we also plan to apply ICA-NM to other real-world

problems.

References

[1] E. Atashpaz-Gargari and C. Lucas, “Imperialist competitive
algorithm: An algorithm for optimization inspired by
imperialistic competition,” in Proceedings of IEEE Congress
on Evolutionary Computation, Singapore, September 2007, pp.
4661–4667.

[2] J. Nelder and R. Mead, “A simplex method for function
minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–
313, 1965.

[3] E. Zahara, S.-K. S. Fan, and D.-M. Tsai, “Optimal
multi-thresholding using a hybrid optimization approach,”
Pattern Recognition Letters, vol. 26, no. 8, pp. 1082–1095, 2005.

[4] J. Dréo and P. Siarry, “An ant colony algorithm aimed at
dynamic continuous optimization,” Applied Mathematics and
Computation, vol. 181, no. 1, pp. 457–467, 2006.

[5] A. Liu and M.-T. Yang, “A new hybrid nelder-mead particle
swarm optimization for coordination optimization of
directional overcurrent relays,” Mathematical Problems in
Engineering, vol. 2012, pp. 1–18, 2012.

[6] M. Joorabian and E. Afzalan, “Optimal power flow under both
normal and contingent operation conditions using the hybrid
fuzzy particle swarm optimisation and Nelder-Mead algorithm
(HFPSO-NM),” Applied Soft Computing, vol. 14, no. 0, pp.
623–633, 2014.

[7] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A.
Auger, and S. Tiwari, “Problem definitions and evaluation
criteria for the CEC 2005 special session on real-parameter
optimization,” Nanyang Technological University, ETH Zurich,
Indian Institute of Technology, National Chiao Tung University,
Tech. Rep. 2005005, 2005.

318 Julien Lepagnot et al.: Hybrid Nelder-Mead Imperialist Competitive Algorithm Applied to Electric Motor Design

[8] W. Spendley, G. R. Hext, and F. R. Himsworth, “Sequential
application of simplex designs in optimization and
evolutionary operation,” Technometrics, vol. 4, pp. 441–461,
1962.

[9] S. Giurgea, D. Fodorean, G. Cirrincione, A. Miraoui, and M.
Cirrincione, “Multimodel optimization based on the response
surface of the reduced FEM simulation model with application
to a PMSM,” IEEE Transactions on Magnetics, vol. 44, no. 9,
pp. 2153–2157, 2008.

[10] M. Clerc et al., “The Particle Swarm Central website,”
http://www.particleswarm.info, 2014.

[11] K. Price, R. Storn, and J. Lampinen, Differential Evolution - A
Practical Approach to Global Optimization. Springer, 2005.

[12] D. Sharma and P. Collet, “An archived-based stochastic
ranking evolutionary algorithm for multiobjective
optimization,” in Proceedings of the 12th Annual Conference
on Genetic and Evolutionary Computation. Portland, Oregon,
USA: ACM, July 2010, pp. 479–486.

[13] S. Tiwari, G. Fadel, P. Koch, and K. Deb, “Performance
assessment of the hybrid archive-based micro genetic
algorithm on the CEC09 test problems,” in Proceedings of
IEEE Congress on Evolutionary Computation, Trondheim,
Norway, May 2009, pp. 1935–1942.

[14] K. Deb and S. Tiwari, “Omni-Optimizer: A generic
evolutionary algorithm for single and multiobjective
optimization,” European Journal of Operational Research, vol.
185, no. 3, pp. 1062–1087, 2008.

