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Abstract 
In this paper, a hybrid metaheuristic based on Imperialist Competitive Algorithm (ICA) 

and on the Nelder-Mead simplex method (NM) is proposed. The purpose of NM is to 

improve both the diversification and the intensification capabilities of ICA. The proposed 

algorithm, called ICA-NM, is validated and compared with ICA and two other 

well-known metaheuristics using the benchmark of the CEC’2005 congress. The results 

show the efficiency of the proposed algorithm. Then, ICA-NM is used to design an 

optimal motor for an electric scooter in terms of both its mass and its output power. For 

this practical problem, ICA-NM outperforms several well-known metaheuristics used for 

this problem. Finally, the solution found by ICA-NM is validated by building and testing 

the corresponding prototype motor. 

1. Introduction 

Imperialist competitive algorithm (ICA) [1] is a population based metaheuristic in 

which there are two types of individuals, called countries: colonies and imperialists that 

form together a set of empires. ICA is based on imperialistic competition between these 

empires. During this competition, weak empires collapse and powerful ones take 

possession of their colonies until only one empire remains. 

We propose to hybridize ICA with the Nelder-Mead simplex [2] in order to improve its 

performances. We have selected this simplex search method because it is easy to program, 

fast and widely used. Hybridizing NM with metaheuristics like evolutionary algorithms, 

particle swarm optimization and ant colony optimization has been a very popular approach 

to improve their intensification capabilities [3, 4, 5, 6]. In this paper, NM is also used to 

improve the diversification capabilities of ICA. As soon as a stagnation criterion is 

satisfied for ICA, NM is run in order to either escape the reached local optimum or speed 

up the convergence to it. 

The proposed hybrid algorithm, called ICA-NM, is evaluated using the benchmark of 

the 2005 IEEE Congress on Evolutionary Computation (CEC2005) special session on 

real-parameter optimization [7]. This experimental analysis shows the performance of 

ICA-NM for different kinds of problems. It shows also that ICA-NM obtains good 

performances compared to other well-known metaheuristics. Then, it is successfully used 

to design a permanent-magnet machine used to motorize an electric scooter. The solutions 

found by ICA-NM for this practical problem are better than the ones obtained by ICA and 

other leading approaches used for this problem. This paper is structured as follows: 

Section 2 presents an overview of ICA and NM. The proposed ICA-NM algorithm is then  
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described in detail in Section 3. Experimental protocol and 

parameter setting are presented in Section 4. Experimental 

results are discussed in Section 5. Finally, a conclusion is 

given in Section 6. 

2. Presentation of the Hybridized 

Components 

2.1. Overview of Imperialist Competitive 

Algorithm 

Imperialist Competitive Algorithm (ICA) [1] is a recent 

evolutionary optimization approach inspired by imperialism 

and the imperialistic competition process. In this algorithm, all 

individuals are grouped in several empires. The mechanisms 

in the algorithm are designed to bring out an empire, stronger 

than the others, and that finds the best solutions. Imperialistic 

competition aims to destroy the weakest empire and 

strengthen the strongest empire. The main steps of the 

algorithm are summarized in Algorithm 1. 

Algorithm 1. Imperialist Competitive Algorithm. 

1:   Initialize and evaluate the empires 

2:   while stop condition is not satisfied do 

3:      Move the colonies toward their relevant imperialist 

4:      if a colony in an empire has a lower cost than the 

imperialist then 

5:         Switch the positions of that colony and of the 

imperialist 

6:      end if 

7:      Compute the total cost of all empires 

8:      if the distance between two empires is less than 

Uniting Threshold then 

9:         Merge the two empires 

10:      end if 

11:      Imperialistic competition 

12:      if there is an empire with no colony then 

13:         Destroy this empire 

14:      end if 

15:   end while 

2.1.1. Initial Empires 
Like all evolutionary algorithms, ICA starts with an initial 

population of solutions, called countries, of size popN . From 

these countries, impN  best solutions are selected to be 

imperialists and the remaining 
col

N  countries form the 

colonies of these imperialists. The initial empires are formed 

by dividing the colonies among imperialists according to their 

normalized power: 

=1

= n

n N
imp

i

i

C
p

C∑
                   (1) 

where = max in n i
C c c− , 

n
c  is the cost of th

n  imperialist 

and 
n

C  is its normalized cost. 

The number of colonies 
n

NC  that form an empire is 

computed according to (2): 

= ( )
n n col

NC round p N⋅             (2) 

where the round  function rounds a number to the nearest 

integer. 

2.1.2. Movement of Each Colony 

Imperialist countries attract colonies toward themselves 

using the assimilation policy illustrated in Fig. 1. To update its 

position, each colony moves toward its imperialist using (3): 

1
= ( , )

t t
x x d Uβ γ θ θ+ + ⋅ ⋅ ⋅ −          (3) 

where t  is an iteration number, > 1β  causes the colonies to 

get closer to the imperialist, d  is the distance between the 

colony and its imperialist, γ  is a small number that 

corresponds to an assimilation coefficient ( 0 < < 1γ ), and θ  

is a parameter that adjusts the deviation from the original 

direction, which enables searching around the imperialist. 

 

Fig. 1. The movement of a colony toward its imperialist. 

2.1.3. Total Cost 

The total cost of each empire is defined by the cost of its 

imperialist plus its average colonies’ cost, as expressed by (4): 

= ( )

( ( ))

n n

n

TC Cost Imperialist

mean Cost coloniesofempireξ+ ⋅
    (4) 

where ξ  is a positive number considered to be less than 1. 

2.1.4. Imperialistic Competition 
All empires try to take possession of the colonies of other 

empires and to control them. This imperialistic competition is 

modeled by picking the weakest colony(ies) from the weakest 

empires and giving it (them) to the empire that has the highest 

likelihood to possess it (them). To start the competition, the 

possession probability p
n

P  of each empire must be defined 

as: 

=1

= n

p Nn imp

i

i

NTC
P

NTC∑
                   (5) 
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where = max in n i
NTC TC TC− , 

n
TC  and 

n
NTC  are the 

total cost and the normalized total cost of th
n  empire 

respectively. 

To divide the mentioned colonies among empires based on 

their possession probability, a vector P is formed: 

1 2 3
= [ , , ,..., ]

p p p p
N

imp

P P P P P                 (6) 

Then a vector with the same size as P, filled with random 

numbers, is created: 

1 2 3= [ , , ,..., ]N
imp

R r r r r              (7) 

where 
i

r  are random numbers between 0 and 1. Finally, a 

vector A is formed by subtracting R from P. 

1 2
1 2

= [ , ,..., ]
p p p N

N imp
imp

A P r P r P r− − −      (8) 

Referring to vector A, the mentioned colonies will be 

assigned to an empire whose relevant index in A is maximum. 

2.2. The Nelder-Mead Simplex 

The Nelder-Mead simplex search method (NM), first 

proposed by Spendley et al. [8] and later refined by Nelder and 

Mead [2], is a derivative-free line search method that was 

particularly designed for traditional unconstrained 

minimization scenarios, such as the problems of nonlinear 

least squares and nonlinear simultaneous equations. 

 

Fig. 2. Illustration of the Nelder-Mead simplex algorithm. Either the worst 

point 
1

V  is replaced with S , 
e

S , 
c

S  or 
c

S ′ , or the simplex is shrinked. 

A simplex is a polytope of 1n +  vertices in a n

-dimensional space. The algorithm starts with an initial 

simplex and evolves by using four elementary geometric 

transformations: reflection, expansion, contraction and 

shrinkage. Through these operations, the simplex can improve 

itself and come closer and closer to a local optimum. An 

example of the function minimization of two variables, taken 

from [3], is given to illustrate the basic procedure of NM. The 

function to minimize is denoted by f . Firstly, the method 

starts with an initial simplex designed with the points 

(solutions) denoted by 
1

V , 
2

V  and 
3

V , as illustrated in Fig. 

2. Suppose 
1

(V )f  is the highest (the worst) of the three 

function values. Then, 
1

V  has to be replaced. In this case, a 

reflection is made through the centroid of the other points (the 

midpoint M ) to the point S . The reflected solution is given 

by (9). 

1
S = M (M V )+ −                  (9) 

Suppose 
3 2 1

(V ) < (V ) < (V )f f f . At this stage, three 

situations can arise: 

1. If 
3

(S) < (V )f f , an extension is made to the point 
e

S  

according to (10), where χ  is called the expansion 

coefficient and it has a standard value of 2 . Then, we keep 

S  or 
e

S  as a replacement for 
1

V , depending on which 

function value is lower. 

e 1
S = M (M V )χ+ −              (10) 

2. If 
3

(S) > (V )f f , a contraction is made to the point 
c

S  or 

c
S ′  according to (11) and (12), depending on whether 

1
(V )f  or (S)f  is lower. In these equations, ρ  is called 

the contraction coefficient and it has a standard value of 

0.5 . 

c 1
S = M (M V )ρ− −             (11) 

c 1
S = M (M V )ρ′ + −             (12) 

3. If 
c

(S )f  or 
c

(S )f ′  is greater than 
3

(V )f , then the 

contraction has failed and we perform a shrinkage operation. 

The shrinkage operation reduces the size of the simplex by 

moving all but the best point 
3

V  halfway towards 
3

V . 

3. The Proposed Hybrid ICA-NM 

Algorithm 

The goal of combining ICA and NM is to take advantage of 

strengths from both methods. NM is a very efficient local 

search procedure. Hence, it can be used to improve the ICA 

intensification capabilities. Besides, the local optimum found 

by NM depends on the starting points selected to form the 

initial simplex. Then, NM could also be used to improve the 

diversification capabilities of ICA. Indeed, by using a proper 

set of points to initialize NM, it can converge to a solution 

located in a promising or unexplored area of the search space. 

From these considerations, we propose to run several 

iterations of NM as soon as a stagnation criterion is satisfied. 

The number of iterations performed is denoted by 
it

N , and 

=
it it

N c dim×  where 
it

c  is a predefined coefficient and 

dim  is the number of dimensions of the search space. The 

criterion used to trigger an execution of NM is satisfied if the 

ICA algorithm is showing signs of a possible premature 

convergence. Then, the use of NM can guide ICA towards new 

promising areas of the search space. 

Each time NM is run, a new initial simplex is used. This 
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initial simplex is a set of 1dim +  points in the search space. 

We denote this set by V , and the th
i  point of this set by V

i
. 

The set V  is computed from another set of 1dim +  points, 

denoted by U . We propose to use the 1dim +  best ICA 

imperialists as the set of points U . If there is not enough 

imperialists to form U , i.e. if < 1impN dim +  where impN  is 

the number of imperialists, then the missing ( 1) impdim N+ −  

points are randomly generated according to a uniform 

distribution in the search space. The computation of the initial 

simplex V  from the set of points U  is described in 

Algorithm 2, where spxc  is a variable of ICA-NM initialized 

to = 1spxc  at the beginning of ICA-NM. The variable spxc  is 

decreased after each run of NM (line 6 of Algorithm 3), in 

order to initialize the initial simplex of NM with vertices that 

are closer and closer to the best imperialist. 

Algorithm 2. Computation of the initial simplex of NM. 

1:   bi ←  index of the best imperialist in U  

2:   V U
bi bi

←  

3:   for all U U
i
∈  such that i bi≠  do 

4:      ( )V U U U
i bi spx i bi

c← + −  

5:   end for 

The stagnation criterion used to trigger an execution of NM 

is satisfied if no improvement of the best imperialist 

(replacement with a better colony) is observed during 
t

δ  

iterations (not necessarily successive ones) of ICA, where 
t

δ  

is a predefined threshold. The execution of NM takes place at 

the end of an ICA iteration, i.e. after the th14  line of 

Algorithm 1. The pseudocode inserted at this place in 

Algorithm 1 is presented in Algorithm 3, where 
i

count  is the 

number of non-improving iterations of the th
i  imperialist and 

dampc  is a predefined coefficient (a strictly positive real value 

lower or equal to 1). 

Algorithm 3. Integration of NM into ICA 

1:   best ←  index of the empire of the best imperialist 

2:   if >
best t

count δ  then 

3:      0
best

count ←  

4:      Perform 
it

N  iterations of NM 

5:      round it

it

damp

N
N

c

 
←   

 
 

6:      spx spx dampc c c← ×  

7:   end if 

If the solution found by NM is better than the best 

imperialist, then it replaces the best imperialist. This way, the 

use of NM can improve not only the diversification 

capabilities of ICA, but also its intensification capabilities by 

fine-tuning the best imperialist. 

4. Experimental Protocol and 

Parameter Setting 

4.1. The CEC 2005 Benchmark 

In order to evaluate the performance of ICA-NM, nine 

commonly used benchmark functions from the CEC 2005 

special session are employed [7]. These functions are shifted 

and rotated variants of the classical mathematical functions in 

order to provide difficult test cases. The objective is to find 

their global minimum, using a maximum number of 

evaluations of a function equal to 10000 dim× , where dim  

is the dimension of the function. The performance of the 

algorithm is evaluated using = 50dim  and = 100dim . Table 

1 lists the aforementioned functions respectively, where 

Range is the boundary of the function’s search space, and 

minf  is the value of the global minimum of the function. Their 

detailed description is available in the CEC 2005 technical 

report [7]. 

Table 1. Benchmark functions. 

Name Description Range minf  

1F  Shifted Sphere [-100, 100] -450 

2F  Shifted Schwefel’s Problem 1.2 [-100, 100] -450 

3F  Shifted Rotated High Conditioned Elliptic [-100, 100] -450 

4F  Schwefel’s Problem 2.6 (Optimum on Bounds) [-100, 100] -310 

5F  Shifted Rosenbrock’s [-100, 100] 390 

6F  Shifted Rastrigin’s [-5, 5] -330 

7F  Shifted Rotated Rastrigin’s [-5, 5] -330 

8F  Shifted Rotated Weierstrass [-0.5, 0.5] 90 

9F  Schwefel’s Problem 2.13 [- π , π ] -460 

 

4.2. Defining the Application 

The autonomy of an electric vehicle (EV), or electric 

scooter, is reduced by the heavy components installed on 

board. Consequently, if we reduce the mass of the equipment, 

we will increase the EV’s autonomy. 

The main elements from an electric traction chain of an EV 

are: the battery, the converter and the electric motor. The 

battery volume and weight are imposed by its capacity to store 
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energy and of the used material: lead-acid (heavier, but 

cheaper), lithium-ion (lighter, but more expensive). The 

converter has several electronic devices which do not weight 

much. The main element in the traction system which can be 

reduced in its weight, by that reducing its cost too, is the 

electric motor. Thus, our goal is to have a lighter motorization 

with decreased investment. 

The motorization of an electric vehicle can be realized with 

mechanical transmission or without it. The mechanical 

transmission supposes that the electric motor is placed on the 

chassis and the torque is transmitted to the wheels via a belt, 

gear or a distribution system. 

The other variant is to use a non-transmission motorization, 

meaning that the electric motor is mounted within the wheel of 

the EV. For the electric scooter, in order to spare space and to 

reduce its weight, it is better to place the motor inside the 

wheel (without mechanical transmission). In such case, the 

motor has the rotor outside (it rotates with the tire), and the 

stator armature is inside. Such a motor is called in-wheel 

motor. 

Fig. 3 depicts the power flow of the traction chain for the 

studied experimental scooter. Here, we can distinguish: 

� the battery (which assures the necessary input energy) ; 

� the converter (a 3-phase inverter in this case, used to 

transfer the energy from the battery to the electric 

motor) ; 

� the in-wheel motor (which will produce the necessary 

torque and speed to run the scooter). 

 

Fig. 3. The electrical circuit for the traction of an electric scooter. 

The authors’ goal is to reduce, as much as possible, the mass 

of the electric motor. The main design data of the electric 

scooter motorization is: 1200W for the power, 48Vdc for the 

battery, 34Nm for the rated torque, 420 r/min for the rated 

speed (corresponds to the scooter maximum speed, 50 km/h). 

Related to the used motorization, the studied motor has an 

outer-rotor, excited with permanent magnets, while the stator 

is inside; thus, the motor is called outer rotor permanent 

magnet synchronous machine (OR-PMSM). The output 

performances expected at the motor’s shaft are: 1.5 kW for the 

power, 420 r/min for the rated speed, meaning that the torque 

will be 34.1 Nm. After the calculations, the phase rated current 

of the motor will be 21 A. For in-wheel motors, it is very 

important to have a very compact volume for the machine, 

meaning a reduced mass. This is achieved with a higher 

number of poles, which also offers the possibility to employ a 

specific winding (of fractional slot type) which will produce a 

very smooth torque [9]. In this case, the number of poles pair 

is 17 and the three phase winding is installed in 39 slots. The 

reader can have an idea about the machine’s configuration by 

looking at Fig. 4. Here, one can see also the geometrical 

parameters which will be used in the optimization process. 

The initial value and the limits of these parameters are 

presented in Table 2, and they will establish the intervals 

which will define the space of available solutions in which the 

global optimum will be searched. 

 

(a) 

 

(b) 

Fig. 4. The studied OR-PMSM: (a) cross section and geometrical parameters 

used in the optimization process ; (b) the active parts of the motor: PMs, rotor 

and stator iron. 

The optimization approach will try to maximize the power 

density of the machine (i.e., the ratio between the output 

power and the mass of the active parts of the machine). Since 

we do not have the interest of increasing the power (which is 

demanded by the application), the optimization problem given 

here consists in minimizing the mass of the machine. The 

components of the active parts of the OR-PMSM which we are 

trying to minimize are: the PMs, the rotor and stator iron. 
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Fig. 5. Evolution of the average value of the best solution found by ICA-NM, ICA, SPSO2011 and DE for the CEC 2005 benchmark functions using = 50dim . A 

solid line is used for ICA, a dashed line is used for SPSO2011, a dotted line is used for DE and a dash-dot line is used for ICA-NM. For more clarity, we used a 

logarithmic scale for the ordinates. 
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Fig. 6. Evolution of the average value of the best solution found by ICA-NM, ICA, SPSO2011 and DE for the CEC 2005 benchmark functions using =100dim . 

A solid line is used for ICA, a dashed line is used for SPSO2011, a dotted line is used for DE and a dash-dot line is used for ICA-NM. For more clarity, we used 

a logarithmic scale for the ordinates. 
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To conclude, the optimization problem consists in 

optimizing two given objective functions: 

Table 2. The main parameters used in the optimization process of the 

OR-PMSM. 

Symbol Description Value Variation limits 

Dir Rotor inner diameter 207 mm [185; 210] mm 

hjr Rotor yoke height 8 mm [5; 10] mm 

his Tooth isthmus height 2 mm [1; 3] mm 

hjs Stator yoke height 6.5 mm [5; 10] mm 

ld Tooth width 7 mm [4; 10] mm 

gap Air-gap length 1 mm [0.5; 1.5] mm 

hmp PM height 3 mm [2.5; 7] mm 

Lm Machine’s length 50 mm [30; 80] mm 

Tm Motor torque 34.1 Nm [34; 34.2] Nm 

Pout Output power 1500 W [1490; 1510] W 

Is Motor phase current 21 A [15; 21.5] A 

1. The first objective function concerns the minimization of 

the mass of the active parts of the machine, here called 

tot
m . The total mass of the active parts of the machine 

needs to be minimized. 
tot

m  represents the sum of all 

active parts of the machine: 

=tot copper stat rot PMm m m m m+ + +      (13) 

where copperm  is the mass of copper used for windings, 
stat

m  

is the mass of the stator core (teeth and yoke), 
rot

m  is the 

mass of the rotor core and 
PM

m  is the mass of the PMs. 

2. The second objective function consists in the 

maximization of the output power 
out

P  which is equal to 

the difference between the input power and the losses: 

=
out in

P P Losses−∑              (14) 

The sum of losses contains mainly the iron and copper 

losses; the mechanical losses (usually estimated at 0.5% of the 

output power) are neglected here. The objective function to 

optimize using our algorithm is represented by: 

=
motor

Minimizef RPM penality− + (15) 

with 

= out

tot

P
RPM

m
 

3
7

=1

=

0 if all constraints are respected

| |
10

| Upper Bound( ) Lower Bound( ) |

otherwise

i i

i

penality

C Limit

i i




 −

× −




∑
 

and 

Lower Bound( ) if < Lower Bound( )
=

Upper Bound( ) if > Upper Bound( )

i

i

i

i C i
Limit

i C i





 

4.3. Parameter Setting 

The values of the ICA and ICA-NM parameters used for the 

CEC 2005 benchmark, as well as for the electric machine 

design problem, are defined in Table 3. They have been 

determined empirically for these problems. 

Table 3. ICA and ICA-NM parameters. 

 Parameter 
Value 

CEC 2005 Motor design 

ICA 

Number of initial countries popN  24 100 

Number of Initial Imperialists impN  8 6 

Assimilation coefficient β  2 2 

Assimilation angle coefficient γ  0.4 0.35 

Coefficient ξ  used in (4) 0.05 0.065 

UnitingThreshold used to merge empires 0.02 0.005 

ICA-NM only 

tδ  used in the starting criterion of NM 15 50 

itc  (to initialize the first run of NM) 10 60 

dampc  (to initialize the next runs of NM) 0.96 0.99 

 

The performances of ICA-NM are not only compared to 

those of ICA, but also to those of other well-known 

optimization algorithms. These algorithms and their parameter 

setting, empirically fitted, are defined below (see references 

for more details on these algorithms and their parameter 

fitting). 

� SPSO2011 (Standard Particle Swarm Optimization in its 

2011 version) [10] using a number of particles equal to 

= 24S , an inertia weight equal to = 0.721w , learning 

factors 
1

c  and 
2

c  equal to 1.193, and = 3K  for the 

parameter K  used to generate the particles 

neighborhood ; 
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� DE (Differential Evolution) [11] using the DE/rand/1/bin 

strategy, a population size equal to = 24NP , a 

weighting factor = 0.8F , and a crossover constant 

= 0.9CR . 

5. Experimental Results and 

Discussion 

5.1. Results for the CEC 2005 Benchmark 

The convergence of ICA and ICA-NM are studied and 

compared in Fig. 5 and Fig. 6 for the CEC 2005 benchmark 

functions using = 50dim  and = 100dim . For each function, 

the evolution of the fitness of the best solution found by an 

algorithm is presented, averaged over 20 runs. As one can see 

on each graph, the solution found by ICA-NM is better than 

the one found by ICA for almost all evaluations. 

Moreover, ICA, ICA-NM, SPSO2011 and DE are run 20 

times using each benchmark function. The average value of 

the best solution found by each algorithm at the end of its 

execution, with its standard deviation, is presented in Table 4 

for every function. The Kruskal-Wallis statistical test has been 

used to determine if a significant difference exists between the 

results obtained by the algorithms. This test indicates at 95% 

confidence level that there is a significant difference between 

the performances of the algorithms for all test cases. Then, the 

Tukey-Kramer post hoc test is used to determine which 

algorithms perform differently from ICA-NM. The results of 

this test are presented in Table 4, where the letter W appears 

under the results that are significantly worse than the ones of 

ICA-NM, and the letter B appears under the results that are 

significantly better than the ones of ICA-NM. As one can see, 

hybridizing ICA with the NM simplex method significantly 

improves the performance of the algorithm for all test cases. 

Compared to SPSO2011, ICA-NM is able to produce better 

results for 16 test cases, and similar ones for the 2 others. 

Compared to DE, ICA-NM is able to produce better results for 

9 test cases, and similar ones for 7 test cases. It is only 

outperformed by DE for 2 test cases among 18 (
1

F  using 

= 50dim  and = 100dim ). 

5.2. Results for the Electric Motor Design 

Problem 

The results obtained by ICA-NM for the motor design 

problem are compared to those of ICA and several 

well-known multiobjective algorithms: ASREA [12], AMGA 

[13] and OMNIOPT [14]. The parameters of each algorithm 

have been fitted to the problem experimentally. Each 

algorithm is run 100 times, and the best solution found during 

these runs is kept. The maximum number of evaluations is set 

to 1E+5 for each algorithm. These solutions are presented in 

Table 5, along with the reference solution for this problem, 

given in [9]. As we can see, every algorithm is able to produce 

a better solution than the reference one. However, the solution 

found by ICA-NM is better than the ones found by the other 

algorithms. The use of ICA-NM enables a mass reduction of 

the motor of 46.5%  with regard to the reference solution. 

To further compare the performance of ICA and ICA-NM 

for this problem, the values of RPM found by ICA and 

ICA-NM, averaged over 100 runs of each algorithm, are 

computed. All the solutions found by both algorithms are 

feasible. The average value and standard deviation of RPM
obtained by ICA and ICA-NM are 346.22 19.45± and

378.80 18.20± , respectively. The Friedman statistical test 

indicates at 95% confidence level that there is a significant 

difference between the results of ICA and ICA-NM for this 

problem. As one can see, the performance of ICA-NM is 

significantly better than the one of ICA for this problem. 

The convergence of both algorithms is compared in Fig. 7, 

where the evolution of the average value of 400
motor

f +  over 

100 runs of each algorithm is illustrated. We add 400  to the 

value of the objective function in order to enable the use of a 

logarithmic scale for the ordinates. As one can see, the 

solution found by ICA-NM is better than the one found by 

ICA for almost all evaluations. The Friedman statistical test 

indicates at 95% confidence level that there is a significant 

difference between the results of ICA and ICA-NM from the 
th

5580  evaluation to the last one. Hence, ICA-NM is able to 

produce significantly better solutions than ICA from the 
th

5580  evaluation. 

 

Fig. 7. Evolution of the average value of the best solution found by ICA and 

ICA-NM for the electric motor design problem. A solid line is used for ICA, 

and a dashed line is used for ICA-NM. For more clarity, the values are shifted 

by 400 in order to use a logarithmic scale for the ordinates. 

5.3. Validation of the Optimization Algorithm 

Via Experimental Results Measured on 

the Constructed Prototype 

 

Fig. 8. The experimental bench for testing the constructed prototype. 
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We have constructed a prototype of the electric motor and 

we have tested on a measurement bench. 

The test bench of the studied in-wheel motor used for the 

motorization of an electric scooter is presented in Fig. 8. Here, 

one can distinguish the constructed prototype. The main parts 

of the prototype (which were optimized), meaning the rotor 

and the stator, are presented also in Fig. 8-top. The mechanical 

performances are measured with a torque-speed transducer 

(DataFlex22). The load is assured via an electric machine and 

the control and the data acquisition are used with a 

dSPACE1103, board installed on a PC. The converter is made 

of IRFZ48-mosfet switches. 

 

 

 

Fig. 9. The measured results of the electric motor. 

Table 4. Average value and standard deviation of the best solution found by ICA-NM, ICA, SPSO2011 and DE for each benchmark function. The letter W is 

written under the results that are significantly worse than the ones of ICA-NM. The letter B is written under the results that are significantly better than the ones 

of ICA-NM. No letter appears under the results that are not significantly different. 

dim Function 
Fitness ±  Standard deviation 

ICA-NM ICA SPSO2011 DE 

50 

1
F  4.72E − 14 ±  1.04E − 14 

2.01E + 04 ±  5.89E + 03 

W  

1.26E − 13 ±  3.79E − 14 

W  

2.05E − 14 ±  9.90E − 15 

B  

2
F  3.31E − 13 ±  9.21E − 14 

5.06E + 04 ±  2.70E + 04 

W  

1.81E − 12 ±  4.16E − 13 

W  

4.52E − 02 ±  3.47E − 02 

W  

3
F  1.59E + 04 ±  4.93E + 03 

1.16E + 08 ±  9.39E + 07 

W  

2.88E + 05 ±  8.50E + 04 

W  

1.01E + 06 ±  3.01E + 05 

W  

4
F  3.31E + 03 ±  3.23E + 02 

2.70E + 04 ±  4.77E + 03 

W  

1.53E + 04 ±  2.26E + 03 

W  
2.78E + 03 ±  4.63E + 02 

5
F  1.90E + 02 ±  2.86E + 02 

9.98E + 09 ±  6.28E + 09 

W  
2.56E + 02 ±  2.34E + 02 4.22E + 01 ±  3.91E + 01 

6
F  4.23E + 01 ±  1.31E + 01 

2.55E + 02 ±  6.10E + 01 

W  

1.62E + 02 ±  2.24E + 01 

W  
6.94E + 01 ±  1.88E + 01 

7
F  1.30E + 02 ±  2.68E + 01 

6.29E + 02 ±  1.12E + 02 

W  

2.17E + 02 ±  5.23E + 01 

W  

3.00E + 02 ±  1.16E + 02 

W  

8
F  2.63E + 01 ±  6.80E + 00 

6.49E + 01 ±  3.57E + 00 

W  

5.56E + 01 ±  6.79E + 00 

W  

7.12E + 01 ±  1.01E + 01 

W  

9
F  1.17E + 04 ±  9.76E + 03 

1.31E + 06 ±  3.30E + 05 

W  

4.71E + 04 ±  4.04E + 04 

W  
3.54E + 04 ±  3.32E + 04 

100 

1
F  9.38E − 14 ±  8.03E − 15 

1.15E + 05 ±  2.78E + 04 

W  

2.94E − 13 ±  4.90E − 14 

W  

3.74E − 14 ±  2.35E − 15 

B  

2
F  1.52E − 09 ±  1.32E − 09 

1.93E + 05 ±  6.57E + 04 

W  

3.97E − 07 ±  2.13E − 07 

W  

5.29E + 02 ±  2.02E + 02 

W  

3
F  1.33E + 05 ±  3.50E + 04 

5.19E + 08 ±  2.50E + 08 

W  

1.29E + 06 ±  3.66E + 05 

W  

4.48E + 06 ±  1.52E + 06 

W  
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dim Function 
Fitness ±  Standard deviation 

ICA-NM ICA SPSO2011 DE 

4F  6.16E + 03 ±  1.01E + 03 
6.44E + 04 ±  7.79E + 03 

W  

3.96E + 04 ±  3.86E + 03 

W  
7.10E + 03 ±  1.50E + 03 

5F  8.91E + 01 ±  1.91E + 00 
7.26E + 10 ±  3.40E + 10 

W  
9.32E + 01 ±  1.99E + 01 1.49E + 02 ±  5.69E + 01 

6F  1.72E + 02 ±  2.14E + 01 
6.98E + 02 ±  1.22E + 02 

W  

4.92E + 02 ±  7.33E + 01 

W  
1.84E + 02 ±  4.44E + 01 

7F  3.43E + 02 ±  4.05E + 01 
1.98E + 03 ±  2.22E + 02 

W  

7.24E + 02 ±  9.15E + 01 

W  

7.13E + 02 ±  3.30E + 02 

W  

8F  6.03E + 01 ±  1.20E + 01 
1.48E + 02 ±  6.67E + 00 

W  

1.37E + 02 ±  7.95E + 00 

W  

1.61E + 02 ±  1.51E + 00 

W  

9F  2.91E + 04 ±  2.44E + 04 
7.32E + 06 ±  1.77E + 06 

W  

3.56E + 05 ±  2.20E + 05 

W  

2.56E + 05 ±  1.49E + 05 

W  

Table 5. Properties of the best solution found by each algorithm among 100 runs. 

Property Reference solution ICA ICA-NM ASREA AMGA OMNIOPT 

totm  (kg) 
7.1207 3.9097 3.8097 5.8946 4.2863 3.8652 

 −  45.094 (%) −  46.498 (%) −  17.218 (%) −  39.805 (%) −  45.718 (%) 

RPM  (W/kg) 
210.67 385.18 391.37 255.09 347.90 389.47 

 +  82.84 (%) +  85.77 (%) +  21.08 (%) +  65.14 (%) +  84.87 (%) 

 

To validate the design and the optimization algorithm, and 

to check if the prototype satisfies the application’s demands, 

we will check mainly the output power, the current level and 

the torque of the machine (based on the input and output 

power, one can get also the efficiency of the motor). 

The measured results are presented in Fig. 9, being obtained 

by load variation, from zero up to the rated torque. 

The load current at rated operation is 21.05 A, which is very 

close to the analytically obtained value. Based on the input 

(1665 W) and output (1500 W) power, we can get the 

efficiency of our motor: 90.1%, also very close to the 

analytical value. Also, we can see that the desired torque (34 

Nm) is obtained. 

Thus, we can conclude that the designed and optimized 

electric motor satisfies the application demands. 

6. Conclusion 

A new hybrid algorithm that combines an Imperialist 

Competitive Algorithm (ICA) with the Nelder-Mead simplex 

method (NM) has been proposed. This algorithm, called 

ICA-NM, has been designed in order to improve both 

diversification and intensification capabilities of ICA. A 

comparison of the performances of ICA-NM with the ones of 

ICA and several well-known metaheuristics has been 

presented, using benchmark functions of the CEC 2005 

congress. This comparison shows the efficiency of our 

hybridization. Then, ICA-NM is used to design a motor for an 

electric scooter. It is able to produce better results than several 

multiobjective algorithms used for this practical problem. The 

solution found by ICA-NM leads to a 46.5%  mass reduction 

of the motor with regard to the reference solution. 

In works in progress, we are working on the integration of 

machine learning techniques to ICA-NM in order to guide the 

search towards possible more promising areas of the search 

space. The critical parameters of ICA-NM could also be 

automatically adjusted through this kind of techniques. 

Besides, we also plan to apply ICA-NM to other real-world 

problems. 
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