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Abstract 
In the present work, the Van Leer and the Liou and Steffen Jr. flux vector splitting schemes 

are implemented to solve the three-dimensional Favre-averaged Navier-Stokes equations. 

The Sparlat and Allmaras one-equation model, and the Menter and Rumsey and the 

Gibson and Dafa’Alla two-equation models are used in order to close the problem. The 

physical problem under study is the supersonic flow around a blunt body. The results have 

demonstrated that the Van Leer scheme using the Menter and Rumsey turbulence model in 

its SST variant has yielded the best value of the stagnation pressure and is the most 

efficient scheme. 

1. Introduction 

Conventional non-upwind algorithms have been used extensively to solve a wide 

variety of problems ([1]). Conventional algorithms are somewhat unreliable in the sense 

that for every different problem (and sometimes, every different case in the same class of 

problems) artificial dissipation terms must be specially tuned and judicially chosen for 

convergence. Also, complex problems with shocks and steep compression and expansion 

gradients may defy solution altogether. 

Upwind schemes are in general more robust but are also more involved in their 

derivation and application. Some upwind schemes that have been applied to the Euler 

equations are: [2-3]. A description of these methods is found in [4]. 

In relation to turbulent flow simulations, [5] applied the Navier-Stokes equations to 

transonic flows problems along a convergent-divergent nozzle and around the NACA 

0012 airfoil. The [6] model was used to close the problem. Three algorithms were 

implemented: the [7] explicit scheme, the [8] implicit scheme and the [9] explicit scheme. 

The results have shown that, in general terms, the [7] and the [9] schemes have presented 

better solutions. 

For a more detailed description of the motivation of the present study, as well some 

comments about different turbulence models the reader is encouraged to read [4]. 

In the present work, the [2-3] flux vector splittin g schemes are implemented, on a 

finite-volume context. The three-dimensional Favre-averaged Navier-Stokes equations 

are solved using an upwind discretization on a structured mesh. The [10] one-equation 

model, and the [11] and [12] k-ω and k
1/2

-ζ two-equation models, respectively, are used in 

order to close the problem. The physical problem under study is the supersonic flow 

around a blunt body configuration. The implemented schemes are first-order accurate in 

space. The time integration uses a Runge-Kutta method of five stages and is second-order 

accurate. The algorithms are accelerated to the steady state solution using a spatially  
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variable time step. This technique has proved excellent gains 

in terms of convergence rate as reported in [13-14]. The 

results have demonstrated that the [2] scheme using the [11] 

turbulence model in its SST variant has yielded the best value 

of thestagnation pressure and is the most efficient 

computational scheme. 

2. Three-Dimensional Navier-Stokes 

Equations 

The three-dimensional flow is modeled by the 

Navier-Stokes equations, which express the conservation of 

mass and energy as well as the momentum variation of a 

viscous, heat conducting and compressible media, in the 

absence of external forces. The Navier-Stokes equations are 

presented in their two-equation turbulence model formulation. 

The one-equation model considers only one additional 

equation that is solved in place of the two-equation 

formulation. The integral form of these equations may be 

represented by: 

 

( ) ( ) ( )e v x e v y e v z
V S V

t QdV E E n F F n G G n dS MdV 0 ∂ ∂ + − + − + − + = ∫ ∫ ∫ ,                                (1) 

where Q is written for a Cartesian system, V is the cell volume, 

nx, ny, and nz are components of the unity vector normal to the 

cell boundary, S is the flux area, Ee, Fe and Ge are the 

components of the convective, or Euler, flux vector, Ev, Fv and 

Gv are the components of the viscous, or diffusive, flux vector 

and M is the source term of the two-equation models. The 

vectors Q, Ee, Fe, Ge, Ev, Fv, Gv, and M are, incorporating a k-s 

formulation, represented by: 
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{ }T
sk MM00000M = ,          (4) 

where the components of the viscous stress tensor are defined 

as: 

( )
( )
( )

( ) ( )
( )

( ) ( )

xx M M

xy M

xz M

yy M M

yz M

zz M M

t 2 u x 2 3 u x v y w z Re;

t u y v x Re;

t u z w x Re;

t 2 v y 2 3 u x v y w z Re;

t v z w y Re;
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(5) 

The components of the turbulent stress tensor (Reynolds 

stress tensor) are described by the following expressions: 

( )
( )
( )

( ) ( )
( )

( ) ( )

xx T T

xy T

xz T

yy T T

yz T

zz T T

2 u x 2 3 u x v y w z Re -2 3 k;

u y v x Re;

u z w x Re;
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v z w y Re;

2 w z 2 3 u x v y w z Re-2 3 k.

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ + ∂ ∂ ρ  

τ = µ ∂ ∂ + ∂ ∂

τ = µ ∂ ∂ + ∂ ∂

τ = µ ∂ ∂ − µ ∂ ∂ + ∂ ∂ + ∂ ∂ ρ  

τ = µ ∂ ∂ + ∂ ∂
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(6) 

Expressions to fx, fy and fz are given below: 

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

x xx xx xy xy xz xz x

y xy xy yy yy yz yz y

z xz xz yz yz zz zz z
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f t u t v t w q
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= + τ + + τ + + τ −

= + τ + + τ + + τ −

,   (7) 

where qx, qy and qz are the Fourier heat flux components and 

are given by: 

( )
( )
( )

x M L T T i

y M L T T i

z M L T T i

q Re Pr Pr e x ;

q Re Pr Pr e y;

q Re Pr Pr e z.

= − γ µ + µ ∂ ∂

= − γ µ + µ ∂ ∂

= − γ µ + µ ∂ ∂

        (8) 

The diffusion terms related to the k-s equations are defined 

as: 

( )
( )
( )

x M T k

y M T k

z M T k

1 Re k x ;

1 Re k y;

1 Re k z;

α = µ + µ σ ∂ ∂

α = µ + µ σ ∂ ∂

α = µ + µ σ ∂ ∂

                   (9) 

( )
( )
( )

x M T s

y M T s

z M T s

1 Re s x ;

1 Re s y;

1 Re s z.

β = µ + µ σ ∂ ∂

β = µ + µ σ ∂ ∂

β = µ + µ σ ∂ ∂

                 (10) 

In the above equations, ρ is the fluid density; u, v and w are 

Cartesian components of the velocity vector in the x, y and z 

directions, respectively; e is the total energy per unit volume; 
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p is the static pressure; k is the turbulence kinetic energy; s is 

the second turbulent variable, which is the vorticity (k-ω 

model) or the rate of dissipation (k
1/2

-ζ model) for this work; 

the t’s are viscous stress components; τ’s are the Reynolds 

stress components; the q’s are the Fourier heat flux 

components; Mk takes into account the production and the 

dissipation terms of k; Ms takes into account the production 

and the dissipation terms of s; µM and µT are the molecular and 

the turbulent viscosities, respectively; PrL and PrT are the 

laminar and the turbulent Prandtl numbers, respectively; σk 

and σs are turbulence coefficients; γ is the ratio of specific 

heats; Re is the viscous Reynolds number, defined by: 

,                     (11) 

where VREF is a characteristic flow velocity and lREF is a 

configuration characteristic length. The internal energy of the 

fluid, ei, is defined as: 

.             (12) 

The molecular viscosity is estimated by the empiric 

Sutherland formula: 

,                   (13) 

where T is the absolute temperature (K), b = 1.458x10
-6

 

Kg/(m.s.K
1/2

) and S = 110.4 K, to the atmospheric air in the 

standard atmospheric conditions ([15]). 

The Navier-Stokes equations are dimensionless in relation 

to the freestream density, ρ∞, the freestream speed of sound, a∞, 

and the freestream molecular viscosity, µ∞. The system is 

closed by the state equation for a perfect gas: 

( )[ ]ρkwvu0.5ρe1)(γp 222 −++−−= ,         (14) 

considering the ideal gas hypothesis. The total enthalpy is 

given by ( ) ρ+= peH . 

The [2-3] flux vector splitting algorithms are described in 

detail in [4] and the interested reader is encouraged to read this 

work. The viscous implementation is also described in [4]. 

The three-dimensional configuration like: computational cell, 

flux surface areas, normal vectors and cell volume are 

described in [16]. The spatially variable time step is described 

in [4; 17] and the interested reader can found in these 

references the detailed implementation. 

3. Turbulence Models 

3.1. Sparlat and Allmaras Turbulence Model 

The purpose of the [10] one-equation model was overcome 

the algebraic model limitations and, at the same time, to avoid 

the difficulties in the implementation of the two-equation 

models or the Reynolds stress equations. This model employs 

a transport turbulent viscosity to solve the turbulence scaling. 

Such model takes naturally into account the turbulence and 

diffusion histories, which improves its accuracy. 

 The transport equation to the work turbulent kinematic 

viscosity is described by: 

( )( ) ( )[ ] 2

w1w
2

2b1b
N

~
)r(fc~c~~1~S

~
c

Dt

~D







 ν−ν∇+ν∇ν+ν•∇
σ

+ν=ν
.  (15) 

In this equation, the first term of the right-hand-side is the 

production contribution to the work kinematic viscosity; the 

second term is the viscosity diffusion; and the last term is the 

destruction of the work kinematic viscosity. The turbulent 

viscosity is defined by: 

1vT f~νρ=µ .                    (16) 

With the purpose of assuring that ν~  becomes equal to 

ww,xyNK ρτ××  in the logarithmic layer and in the 

viscous sub-layer, the 1vf damping function is defined by: 

                  (17) 

as function of the νν=λ ~  variable. The S
~

 function, 

representing the deformation work of the mean flow, is 

determined as follows: 
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in which 
v2

f  has the following expression: 

.                (19) 

The destruction term should disappear at the external region 

of the boundary layer. [17] purposes the following function to 

reproduce such behavior: 

61

6
3w

6
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w
cg
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g)r(f












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+
= , ( )rrcrg 6

2w −+= , , (20) 

where r is the argument and wf  is a function reaching the 

value 1.0 at the logarithmic layer and decreasing at the 

external region. The g function is merely a limiter to prevent 

wf  high values. The [10] model constants are: 

1,7c,3,0c,622,0c,1355,0c 1v2w2b1b ==== , 

.     (21) 

The [10] model is marched in time using a LU-SGS 

(“Lower-Upper Factorization – Symmetrical Gauss-Seidel”) 

implicit method. Details of the implicit implementation in 

two-dimensions are found in [10]. The extension to 

three-dimensions is straightforward. 
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In this work, the term referent to the diffusion of the work 

kinematic viscosity was not implemented. The studied model 

considers only the production and dissipation terms of the 

work kinematic viscosity. 

 

3.2. Menter and Rumsey Turbulence Model 

The [11] model presents four variants: k-ω model of Wilcox, 

k-ε of two layers, BSL model of [18], and SST (Shear Stress 

Transport) model of [18]. They are defined as follows: 

k-ω model of Wilcox. Constants of the k-ω model of [19]: 

09.0*
1 =β , 5.0*

1 =σ , 41.01 =κ , 9/51 =γ , 5.01 =σ  and ; 

Constants of the standard k-ε model of [20]: 

09.0C =µ
, 44.1C 1 =ε

, 92.1C 2 =ε
, σk = 1.0, and σε = 1.17; 

Constants of the equivalent k-ε model: 

µ=β C*
2 , k

*
2 /1 σ=σ , 41.02 =κ , γ2 = 0.1C 1 −ε , εσ=σ /12 , and ( ) µε −=β C0.1C 22 ; 

Weighting function, F1: 

F1 = 1.0; 

Turbulent viscosity: 

ωρ=µ kReT ;                                                  (22) 

k-ε model of two layers. Constants of the k-ω model of [19]: 

09.0*
1 =β , 5.0*

1 =σ , 41.01 =κ , 9/51 =γ , 4.01 =σ  and ; 

Constants of the equivalent k-ε model: 

09.0*
2 =β , 0.1*

2 =σ , 41.02 =κ , γ2 = 0.44, 857.02 =σ , and ;  

Weighting function, F1: 

1
Γ  parameter: 

( )ωυ=Γ 2
M1 n/500 ,              (23) 

with: ρµ=υ /MM  and  n = normal distance from the wall 

to the cell under study; 

Coefficient CDk-ω: 





















∂
ω∂

∂
∂ωρσ= −

ω−
20

2k 10,Re
yy

k
/2MAXCD ;   (24) 

2
Γ  parameter: 

( )ω−ρσ=Γ k
2
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M
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( )21M ,MIN ΓΓ=Γ ;                 (26) 

( )4
M1 TANHF Γ= ;                 (27) 

Turbulent viscosity: 

;                  (28) 

Menter’s BSL model. Constants of the k-ω model of [19]: 

, , , ,  and 

; 

Constants of the equivalent k-ε model: 

09.0*
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; 

Weighting function, F1: 
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3Γ  parameter: 

;                   (29) 

MΓ  parameter: 

;             (30) 

; 

Turbulent viscosity: 

ωρ=µ /kReT ;                   (31) 

Menter’s SST model. Constants of the k-ω model of [19]: 

09.0*
1 =β , 5.0*

1 =σ , 41.01 =κ , 9/51 =γ , 5.01 =σ  and 

*
1
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2
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




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Constants of the equivalent k-ε model: 

09.0*
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and 
*
2

*
2

2
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
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

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( )4
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( )13M ,2MIN ΓΓ=Γ ;                (32) 

( )2
M2 TANHF Γ= ;                 (33) 

xwzvyu ∂∂+∂∂+∂∂=Ω ;          (34) 

Turbulent viscosity: 

( )[ ]ReF/ka,/kMIN 21T Ωωρ=µ ,         (35) 

where a1 = 0.31. 

With these definitions, each model can determine the 

following additional constants: 

( ) *
211

*
1

* F1F σ−+σ=σ ;              (36) 

( ) 2111 F1F σ−+σ=σ ;               (37) 

*
k /1 σ=σ    and   σ=σω /1 ;          (38) 

2111 )F1(F γ−+γ=γ ;              (39) 

2111 )F1(F β−+β=β ;              (40) 

*
211

*
1

* )F1(F β−+β=β .             (41) 

The source term denoted by G in the governing equations 

contains the production and dissipation terms of k and ω. To 

the [11] model, the Gk and ωG  terms have the following 

expressions: 
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with: ρµ=υ /TT . 

3.3. Gibson and Dafa’Alla Turbulence Model 

In the [12] turbulence model, k is replaced by q and s = ζ, 

where the equivalence between k and q is k = q
2
. This model 

has two variants based on the works of [20] and [21]. Initially, 

it is necessary to calculate the turbulent Reynolds number 
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where 
w,Mw

w,xy N
ReN

υρ

τ
=+

 and N is the normal 

distance from the surface to the cell under study.  

The turbulent viscosity is expressed in terms of q and ζ as: 

ζρ=µ µµ 2qfCRe 3
T .              (49) 

To the [12] model, the Gq and Gζ terms have the following 

expressions: 

qqq DPG +−=    and   ζζζ +−= DPG ,         (50) 

where: 

Re
z

v

y

w

z

v

x

w

x

w

z

u

y

u

x

v

y

u
P Tq













∂
∂









∂
∂+

∂
∂+

∂
∂









∂
∂+

∂
∂+

∂
∂









∂
∂+

∂
∂ργ= ; (51) 

;            (52) 

 and ,(53) 

where: 

           (54) 

;              (55) 

; ;    (56) 

.            (57) 

where the closure coefficients adopted for the [12] model are 

defined in Tab. 1. 

Table 1. Closure coefficients. 

Constant [20] [21] 

σq 1.0 1.0 

σζ 1.3 1.3 

Cµ 0.09 0.09 

Ce1 1.44 1.35 

Ce2 1.92 1.80 

fe1 1.0 1.0 

4. Initial and Boundary Conditions 

The initial and boundary conditions to the [10] turbulence 

model are the same of those found in [22-23]. To the [11] 

turbulence model are the same of those found in [4; 24]. For 

the k
1/2

-ζ, one has: 

4.1. Initial Condition 

Freestream values, at all grid cells, are adopted for all flow 

properties as initial condition, as suggested by [25-26]. 

Therefore, the vector of conserved variables is defined as: 

}T
2 1/2

i, j,k

1
Q 1 M cos M sin cos M sin sin 0.5M k

( 1)
∞ ∞ ∞ ∞ ∞ ∞


= α α θ α θ + ζ γ γ −

,                      (58) 

where k∞ is the freestream turbulent kinetic energy and ζ∞ is 

the freestream turbulent dissipation rate. These parameters 

assume the following values: ∞∞ = M05.0k 2/1
 and 

∞∞ =ζ M . 

4.2. Boundary Conditions 

The boundary conditions are basically of four types: solid 

wall, entrance, exit and lateral planes. These conditions are 

implemented with the help of ghost cells. 

(1) Wall condition: At a solid boundary the non-slip 

condition is enforced. Therefore, the tangent velocity 

component of the ghost volume at wall has the same 

magnitude as the respective velocity component of its real 

neighbor cell, but opposite signal. In the same way, the normal 

velocity component of the ghost volume at wall is equal in 

value, but opposite in signal, to the respective velocity 

component of its real neighbor cell. 

The normal pressure gradient of the fluid at the wall is 

assumed to be equal to zero in a boundary-layer like condition. 

The same hypothesis is applied for the normal temperature 

gradient at the wall, assuming an adiabatic wall. The normal 

gradient of the turbulence kinetic energy at the wall is also 

assumed to be equal to zero. 

From the above considerations, density and pressure are 

extrapolated from the respective values of its real neighbor 

volume (zero order extrapolation). The total energy is 

obtained by the state equation for a perfect gas. The turbulent 

kinetic energy at the ghost volume is extrapolated from the 

neighbor cell and the turbulent dissipation rate at the ghost 

volume is determined by the following expression: 

( ) ( )n

2

ghost
2/14/3

ghostghost d41.0kC5.0 ρρ=ζ µ ,      (59) 

where dn is the distance of the first cell to the wall. The wall 

law is used to specify the u component of velocity. Details of 

the wall law are found in [4]. 

(2) Entrance condition: 

(2.1) Subsonic flow: Six properties are specified and one 

extrapolated. This approach is based on information 

propagation analysis along characteristic directions in the 

calculation domain ([26]). In other words, for subsonic flow, 

six characteristic propagate information pointing into the 

computational domain. Thus six flow properties must be fixed 

at the inlet plane. Just one characteristic line allows 

information to travel upstream. So, one flow variable must be 

extrapolated from the grid interior to the inlet boundary. The 

pressure was the extrapolated variable from the real neighbor 
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volumes, for the studied problem. Density and velocity 

components adopted values of freestream flow. The squared 

root of the turbulence kinetic energy is fixed with the value 

0.05ughost and the turbulent dissipation rate was fixed with the 

value: ( )ghost
2/12

ghostghost ku05.0 ρ=ζ . The total energy is 

determined by the state equation of a perfect gas. 

(2.2) Supersonic flow: In this case no information travels 

upstream; therefore all variables are fixed with their of 

freestream values. 

(3) Exit condition: 

(3.1) Subsonic flow: Six characteristic propagate 

information outward the computational domain. Hence, the 

associated variables should be extrapolated from interior 

information. The characteristic direction associated to the 

“(qnormal-a)” velocity should be specified because it points 

inward to the computational domain ([26]). In this case, the 

ghost volume pressure is specified from its initial value. 

Density, velocity components, the turbulence kinetic energy, 

and the turbulent dissipation rate are extrapolated. The total 

energy is obtained from the state equation of a perfect gas. 

(3.2) Supersonic flow: All variables are extrapolated from 

interior grid cells, as no flow information can make its way 

upstream. In other words, nothing can be fixed. 

(4) Lateral plane conditions: The flow tangency condition is 

stipulated for these boundaries. An Euler boundary is set up. 

5. Results 

Tests were performed in an INTEL Core i7 processor of 

2.10GHz and 8.0Gbytes of RAM microcomputer in a 

Windows 7.0 environment. Three orders of reduction of the 

maximum residual in the field were considered to obtain a 

converged solution. The residual was defined as the value of 

the discretized conservation equation. The entrance or attack 

angle was adopted equal to zero, as well the longitudinal angle. 

The ratio of specific heats, γ, assumed the value 1.4. 

 

 

Figure 1. Blunt body configuration. 

The initial data of the simulations is described in Tab. 2. 

Table 2. Initial Conditions. 

M∞ αααα θθθθ Altitude L∞ Re 

3.0 0.0o 0.0o 40,000m 2.0m 4.75x105 

Figure 1 shows the blunt body configuration, whereas Fig. 2 

shows the blunt body mesh. A mesh of 53x50x10 points or 

composed of 22,932 hexahedron cells and 26,500 nodes was 

generated, employing an exponential stretching of 5.0% in the 

η direction. 

 

Figure 2. Blunt body mesh. 

5.1. Sparlat and Allmaras Results 

Figures 3 and 4 present the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [10] 

turbulence model in three-dimensions. Both fields are 

homogeneous and the pressure contours generated by the [2] 

scheme is more strength than the respective one generated by 

the [3] scheme. Good symmetry properties are observed in 

both figures. The shock wave is well captured by both 

schemes as using the [10] turbulence model. 

 

Figure 3. Pressure contours ([2]). 

Figures 5 and 6 show the Mach number contours obtained 

by the [2] and [3] numerical schemes, respectively, as using 

the [10] turbulence model. Both Mach number fields are free 

of pre-shock oscillations and are homogeneous. The 
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differences between these fields are only in qualitative terms. 

 

Figure 4. Pressure contours ([3]). 

 

Figure 5. Mach number contours ([2]). 

 

Figure 6. Mach number contours ([3]). 

 

Figure 7. Temperature contours ([2]). 

 

Figure 8. Temperature contours ([3]). 

It is possible to see that the [2] solution develops a region of 

low Mach number contours close to the wall, resulting from 

the boundary layer formation. 

Figures 7 and 8 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [10] turbulence model. The temperature contours 

generated by the [3] scheme is more intense than the 

respective one of the [2] scheme. However, the [2] solution 

presents a zone of high dissipation close to the wall, whereas 

the [3] scheme does not. There are qualitative differences 

between the two solutions, but both present homogeneous 

contours, without oscillations. Some problems with the [3] 

solution in the k = constant planes are observed, which 

prejudices the solution repetition in these planes. The [2] 

solution does not present such problems. 

Figure 9 exhibits the -Cp distributions generated by the [2] 

and [3] schemes as using the [10] turbulence model. The -Cp 

plateau of the [2] scheme is higher than the -Cp plateau of the 
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[3] scheme. The -Cp peak at the body nose is the same for both 

schemes. Figure 10 presents the wall temperature distributions 

generated by the [2] and [3] numerical schemes as using the 

[10] turbulence model. The temperature distribution is 

smoother for the [2] scheme. The temperature distribution of 

the [3] scheme is more intense than the respective one of the [2] 

scheme. The maximum temperature obtained by the [2] 

scheme is about 708.0 K, whereas that obtained by the [3] 

scheme is about 814.0 K. 

 

Figure 9. -Cp distributions. 

 

Figure 10. Wall temperature distributions. 

5.2. Menter and Rumsey Results 

The results of this model are divided in its four variants, 

presented in the following order: Wilcox variant, k-ε variant, 

BSL variant, and SST variant. 

5.2.1. Wilcox Variant 

Figure 11 and 12 present the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [11] 

turbulence model in its Wilcox variant. Again, the pressure 

contours generated by the [2] scheme is more strength than the 

one generated by the [3] scheme. Good homogeneity is 

observed in both solutions, as well good symmetry properties. 

 

Figure 11. Pressure contours ([2]). 

 

Figure 12. Pressure contours ([3]). 

 

Figure 13. Mach number contours ([2]). 



328 Edisson S. G. Maciel:  Assessment of Several Turbulence Models Applied to Supersonic Flows in Three-Dimensions – Part III  

 

 

Figure 14. Mach number contours ([3]). 

Figures 13 and 14 show the Mach number contours 

generated by the [2] and [3] schemes, respectively, as using 

the [11] turbulence model in its Wilcox variant. The [2] 

solution is more intense than the [3] solution. The subsonic 

region close to the body wall is again observed only in the [2] 

solution. The subsonic region at the body nose is observed, as 

resulting from the shock slowdown. No pre-shock oscillations 

are observed in both solutions. 

Figures 15 and 16 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [11] turbulence model in its Wilcox variant. The [2] 

solution presents higher temperatures in the field than the [3] 

solution. Moreover, the [2] solution presents a zone of high 

dissipation close to body wall, resulting from intense heat 

energy exchange and boundary layer interaction. 

 

Figure 15. Temperature contours ([2]). 

Figure 17 presents the –Cp distribution generated by the [2] 

and [3] schemes as using the [11] turbulence model in its 

Wilcox variant. 

 

Figure 16. Temperature contours ([3]). 

 

Figure 17. –Cp distributions. 

 

Figure 18. Wall temperature distributions. 
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As can be seen the –Cp plateau obtained by the [2] scheme 

is higher than the respective one of the [3] scheme. The –Cp 

peak is approximately the same for both solutions. Figure 18 

shows the wall translational temperature distributions 

originated by the [2] and [3] schemes as using the [11] 

turbulence model in its Wilcox variant. The [2] temperature 

distribution is smoother than the [3] one. The temperature at 

the body nose is higher in the [2] solution. The [2] temperature 

distribution increases along the body. The [2] temperature at 

the body nose is 45.0 K higher than the [3] temperature one. 

5.2.2. k-ε Variant 

Figures 19 and 20 exhibit the pressure contours generated 

by the [2] and [3] schemes, respectively, as using the [11] 

turbulence model in its k-ε variant. The pressure field 

generated by the [2] scheme is higher than the respective one 

generated by the [3] scheme. Both pressure fields present good 

homogeneity properties, as well good symmetry properties. 

 

Figure 19. Pressure contours ([2]). 

 

Figure 20. Pressure contours ([3]). 

 

Figure 21. Mach number contours ([2]). 

 

Figure 22. Mach number contours ([3]). 

Figures 21 and 22 show the Mach number contours 

obtained by the [2] and [3] schemes, respectively, as using the 

[11] turbulence model in its k-ε variant. The Mach number 

field generated by the [2] scheme is more intense than the 

respective one of the [3] scheme. Particularly, the zone of low 

Mach number close to the body wall is only perceptible in the 

[2] solution. The region of subsonic Mach number at the body 

nose is well captured by both schemes. 

Figures 23 and 24 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [11] turbulence model in its k-ε variant. The 

temperature field generated by the [2] scheme is again more 

intense than the respective one of the [3] scheme. Good 

homogeneous properties are observed in both figures. The 

zone of intense energy exchange, close to the body wall, is 

observed in the [2] solution. Moreover, the zone of intense 

temperature is slightly observed at the body nose in both 

solutions. Good symmetry properties are noted in both figures. 
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Figure 23. Temperature contours ([2]). 

 

Figure 24. Temperature contours ([3]). 

 

Figure 25. –Cp distributions. 

Figure 25 presents the –Cp distribution obtained by the [2] 

and [3] schemes as using the [11] turbulence model in its k-ε 

variant. In accordance to the observed in the ultimate solutions, 

the [2] scheme presents higher –Cp plateau than the [3] 

scheme; Moreover, both solutions present the same –Cp peak, 

at the body nose. Figure 26 shows the wall temperature 

distributions obtained by the [2] and [3] schemes as using the 

[11] turbulence model in its k-ε variant. Both solutions present 

different temperature peaks at the leading edge, the difference 

around 45.0 K. Again the [2] solution presents an increase of 

the temperature along the body, whereas the [3] solution 

suffers an increase and posteriorly a reduction of temperature. 

The maximum temperature reached by the [2] scheme is about 

840.0 K, whereas by the [3] scheme is 816.0 K. 

 

Figure 26. Wall temperature distributions. 

5.2.3. BSL Variant 

Figures 27 and 28 exhibit the pressure contours generated 

by the [2] and [3] schemes, respectively, as using the [11] 

turbulence model in its BSL variant. The pressure field 

generated by the [2] scheme is higher than the respective one 

generated by the [3] scheme. Both pressure fields present good 

homogeneity properties, as well good symmetry properties. 

Some problems in the [3] solution are related with the no 

repetition of the solution in all k planes. It was noted before 

and it repeats now. It is important to note that the [2] solution 

does not present such problem. 

Figures 29 and 30 show the Mach number contours 

obtained by the [2] and [3] schemes, respectively, as using the 

[11] turbulence model in its BSL variant. The Mach number 

field generated by the [2] scheme is more intense than the 

respective one of the [3] scheme. Particularly, the zone of low 

Mach number close to the body wall is only perceptible in the 

[2] solution. The region of subsonic Mach number at the body 

nose is well captured by both schemes. Not pre-shock 

oscillations are observed in the solutions. Good symmetry and 

homogenous properties are noted in both figures. 
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Figure 27. Pressure contours ([2]). 

 

Figure 28. Pressure contours ([3]). 

 

Figure 29. Mach number contours ([2]). 

 

Figure 30. Mach number contours ([3]). 

 

Figure 31. Temperature contours ([2]). 

 

Figure 32. Temperature contours ([3]). 
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Figures 31 and 32 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [11] turbulence model in its BSL variant. The 

temperature field generated by the [2] scheme is again more 

intense than the respective one of the [3] scheme. Good 

homogeneous properties are observed in both figures. The 

zone of intense energy exchange, close to the body wall, is 

observed in the [2] solution. Moreover, the zone of intense 

temperature is slightly observed at the body nose in both 

solutions. Good symmetry properties are noted in both figures. 

 

Figure 33. –Cp distributions. 

 

Figure 34. Wall temperature distributions. 

Figure 33 presents the –Cp distribution obtained by the [2] 

and [3] schemes as using the [11] turbulence model in its BSL 

variant. In accordance to the observed in the ultimate solutions, 

the [2] scheme presents higher –Cp plateau than the [3] 

scheme; Moreover, both solutions present the same –Cp peak, 

at the body nose. Figure 34 shows the wall temperature 

distributions obtained by the [2] and [3] schemes as using the 

[11] turbulence model in its BSL variant. Both solutions 

present different temperature peaks at the leading edge, the 

difference around 45.0 K. Again the [2] solution presents an 

increase of the temperature along the body, whereas the [3] 

solution suffers an increase and posteriorly a reduction of 

temperature. The maximum temperature reached by the [2] 

scheme is near 840.0 K, whereas by the [3] scheme is 816.0 K. 

5.2.4. SST Variant 

Figures 35 and 36 present the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [11] 

turbulence model in its SST variant in three-dimensions. Both 

fields are homogeneous and the pressure contours generated 

by the [2] scheme is more strength than the respective one 

generated by the [3] scheme. Good symmetry properties are 

observed in both figures. The shock wave is well captured by 

both schemes as using the [11] turbulence model in its SST 

variant. 

 

Figure 35. Pressure contours ([2]). 

 

Figure 36. Pressure contours ([3]). 
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Figure 37. Mach number contours ([2]). 

 

Figure 38. Mach number contours ([3]). 

Figures 37 and 38 show the Mach number contours 

obtained by the [2] and [3] numerical schemes, respectively, 

as using the [11] turbulence model in its SST variant. Both 

Mach number fields are free of pre-shock oscillations and are 

homogeneous. The Mach number field generated by the [2] 

scheme is slightly more intense than that of the [3] scheme. It 

is possible to see that the [2] solution develops a region of low 

Mach number contours close to the wall, resulting from the 

boundary layer formation. On the contrary, the [3] solution 

does not yields this region. 

Figures 39 and 40 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [11] turbulence model in its SST variant. The 

temperature contours generated by the [2] scheme is again 

more intense than the respective one of the [3] scheme. The [2] 

solution presents a zone of high dissipation close to the wall, 

whereas the [3] scheme does not. There are qualitative 

differences between the two solutions, but both present 

homogeneous contours, without oscillations. Some problems 

with the [3] solution in the k = constant planes are observed, 

which prejudices the solution repetition in these planes. The [2] 

solution does not present such problems. 

 

Figure 39. Temperature contours ([2]). 

 

Figure 40. Temperature contours ([3]). 

Figure 41 exhibits the -Cp distributions generated by the [2] 

and [3] schemes as using the [11] turbulence model in its SST 

variant. The -Cp plateau of the [2] scheme is again higher than 

the -Cp plateau of the [3] scheme. The -Cp peak at the body 

nose is approximately the same for both schemes. Figure 42 

presents the wall temperature distributions generated by the [2] 

and [3] numerical schemes as using the [11] turbulence model 

in its SST variant. The temperature distribution is smoother 

for the [2] scheme. The temperature distribution of the [2] 

scheme is more intense than the respective one of the [3] 

scheme. The maximum temperature obtained by the [2] 

scheme is about 840.0 K, whereas that obtained by the [3] 

scheme is about 819.0 K. 
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Figure 41. –Cp distributions. 

 

Figure 42. Wall temperature distributions. 

5.3. Gibson and Dafa’Alla Results 

These results are presented in the four variants of the [12] 

turbulence models. 

5.3.1. Launder and Sharma Option to 

Constants and fµ 

Figures 43 and 44 exhibit the pressure contours generated 

by the [2] and [3] schemes, respectively, as using the [12] 

turbulence model in its LS-LS variant. The pressure field 

generated by the [2] scheme is higher than the respective one 

generated by the [3] scheme. Both pressure fields present good 

homogeneity properties, as well good symmetry properties. 

Figures 45 and 46 show the Mach number contours 

obtained by the [2] and [3] schemes, respectively, as using the 

[12] turbulence model in its LS-LS variant. The Mach number 

field generated by the [2] scheme is the same in relation to the 

respective one of the [3] scheme, in quantitative terms. The 

differences are in qualitative terms. Particularly, the zone of 

low Mach number close to the body wall is only perceptible in 

the [2] solution. The region of subsonic Mach number at the 

body nose is well captured by both schemes. No pre-shock 

oscillations are observed in both figures. The shock wave is 

well captured in both solutions. Good homogeneous and 

symmetry properties are observed in both solutions. 

 

Figure 43. Pressure contours ([2]). 

 

Figure 44. Pressure contours ([3]). 

Figures 47 and 48 exhibit the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [12] turbulence model in its LS-LS variant. The 

temperature field generated by the [3] scheme is more intense 

than the respective one of the [2] scheme. Good homogeneous 

properties are observed in both figures. The zone of intense 

energy exchange, close to the body wall, is observed only in 

the [2] solution. Moreover, the zone of intense temperature is 

slightly observed at the body nose in both solutions. Good 

symmetry properties are noted in both solutions. 

Figure 49 presents the –Cp distribution obtained by the [2] 

and [3] schemes as using the [12] turbulence model in its 

LS-LS variant. 
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Figure 45. Mach number contours ([2]). 

 

Figure 46. Mach number contours ([3]). 

 

Figure 47. Temperature contours ([2]). 

 

Figure 48. Temperature contours ([3]). 

 

Figure 49. –Cp distributions. 

 

Figure 50. Wall temperature distributions. 
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Opposed to the observed in the ultimate solutions, the [3] 

scheme presents higher –Cp plateau than the [2] scheme; 

Moreover, both solutions present the same –Cp peak, at the 

body’s nose. 

Figure 50 shows the wall temperature distributions obtained 

by the [2] and [3] schemes as using the [12] turbulence model 

in its LS-LS variant. Both solutions present the same 

temperature peaks at the leading edge. The [3] solution 

presents a decrease of temperature along the body, whereas the 

[2] solution suffers a reduction and an increase of temperature 

along the body. 

5.3.2. Launder and Sharma Option to 

Constants and Chien to fµ 

Figures 51 and 52 show the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [12] 

turbulence model in its LS-C variant. As can be observed, the 

[2] scheme predicts again more severe pressure field than the 

[3] scheme. The shock is well capture and good symmetry 

characteristics are noted. Good homogeneity in both solutions 

is also observed. 

 

Figure 51. Pressure contours ([2]). 

Figures 53 and 54 present the Mach number contours 

generated by the [2] and [3] schemes, respectively, as using 

the [12] turbulence model in its LS-C variant. Good symmetry 

properties are observed, without pre-shock oscillations. Good 

homogeneity properties are noted. The Mach number fields 

are identical in quantitative terms, although in qualitative 

terms some discrepancies are observed. The zone of low Mach 

number close to the body wall is only noted in the [2] solution. 

Figures 55 and 56 show the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [12] turbulence model in its LS-C variant. As can be 

observed, the [3] temperature field is more intense than the [2] 

temperature field. The zone of intense energy exchange 

observed close to the body wall is only captured by the [2] 

scheme. Moreover, the intense temperature region at the body 

nose is observed in both solutions. 

 

Figure 52. Pressure contours ([3]). 

 

Figure 53. Mach number contours ([2]). 

 

Figure 54. Mach number contours ([3]). 



 Computational and Applied Mathematics Journal 2015; 1(5): 319-343  337 

 

 

Figure 55. Temperature contours ([2]). 

 

Figure 56. Temperature contours ([3]). 

 

Figure 57. –Cp distributions. 

Figure 57 exhibits the –Cp distributions at the wall obtained 

by the [2] and [3] schemes as using the [12] turbulence model 

in its LS-C variant. As observed in the [12] solutions, the [3] 

scheme presents again a pressure plateau higher than the [2] 

scheme does, although both –Cp peaks at the body nose are 

approximately the same. Figure 58 shows the temperature 

distributions at wall generated by the [2] and [3] schemes as 

using the [12] turbulence model in its LS-C variant. The [3] 

temperature distributions is smoother than the [2] one. The [2] 

temperature distribution decreases and increases along the 

body, whereas the [3] temperature distribution decreases until 

reach a constant value. The temperature values at the body end 

are approximately 620.0 K to the [2] scheme and 470.0 K to 

the [3] scheme. The maximum temperature value, at the body 

leading edge, for both solutions is 700.0 K. 

 

Figure 58. Wall temperature distributions. 

5.3.3. Chien Option to Constants and Launder 

and Sharma to fµ 

Figures 59 and 60 show the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [12] 

turbulence model in its C-LS variant. As can be observed, the 

[2] scheme predicts again more severe pressure field than the 

[3] scheme. The shock is well capture and good symmetry 

characteristics are noted. Good homogeneity in both solutions 

is also observed. 

Figures 61 and 62 present the Mach number contours 

generated by the [2] and [3] schemes, respectively, as using 

the [12] turbulence model in its C-LS variant. Good symmetry 

properties are observed, without pre-shock oscillations. Good 

homogeneity properties are noted. The Mach number fields 

are identical in quantitative terms, although in qualitative 

terms some discrepancies are observed. The zone of low Mach 

number close to the body wall is only noted in the [2] solution. 

The subsonic region located at the body nose is captured by 

both schemes. 

Figures 63 and 64 show the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [12] turbulence model in its C-LS variant. 
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Figure 59. Pressure contours ([2]). 

 

Figure 60. Pressure contours ([3]). 

 

Figure 61. Mach number contours ([2]). 

 

Figure 62. Mach number contours ([3]). 

 

Figure 63. Temperature contours ([2]). 

 

Figure 64. Temperature contours ([3]). 
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As can be observed, the [3] temperature field is more 

intense than the [2] temperature field. The zone of intense 

energy exchange observed close to the body wall is again only 

captured by the [2] scheme. Moreover, the intense temperature 

region at the body nose is observed in both solutions. Good 

symmetry properties are noted in both figures. 

 

Figure 65. –Cp distributions. 

 

Figure 66. Wall temperature distributions. 

Figure 65 exhibits the –Cp distributions at the wall obtained 

by the [2] and [3] schemes as using the [12] turbulence model 

in its C-LS variant. As observed in the [12] solutions, the [3] 

scheme presents again a pressure plateau higher than the [2] 

scheme does, although both –Cp peaks at the body nose are 

approximately the same. Figure 66 shows the temperature 

distributions at wall generated by the [2] and [3] schemes as 

using the [12] turbulence model in its C-LS variant. The [3] 

temperature distributions is smoother than the [2] one. The [2] 

temperature distribution decreases and increases along the 

body, whereas the [3] temperature distribution decreases until 

reach a constant value. The temperature values at the body end 

are approximately 620.0 K to the [2] scheme and 470.0 K to 

the [3] scheme. The maximum temperature value, at the body 

leading edge, for both solutions is 700.0 K. 

5.3.4. Chien Options to Constants and fµ 

Figures 67 and 68 show the pressure contours obtained by 

the [2] and [3] schemes, respectively, as using the [12] 

turbulence model in its C-C variant. As can be observed, the [2] 

scheme predicts again more severe pressure field than the [3] 

scheme. This behavior has occurred in all solutions in this 

work. The shock is well capture and good symmetry 

characteristics are noted. Good homogeneity in both solutions 

is also observed. 

 

Figure 67. Pressure contours ([2]). 

 

Figure 68. Pressure contours ([3]). 

Figures 69 and 70 present the Mach number contours 

generated by the [2] and [3] schemes, respectively, as using 

the [12] turbulence model in its C-C variant. Good symmetry 

properties are observed, without pre-shock oscillations. Good 

homogeneity properties are noted. The Mach number fields 

are identical in quantitative terms, although in qualitative 

terms some discrepancies are observed. 
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Figure 69. Mach number contours ([2]). 

 

Figure 70. Mach number contours ([3]). 

The zone of low Mach number close to the body wall is 

only noted in the [2] solution. The subsonic region located at 

the body nose is captured by both schemes. 

Figures 71 and 72 show the translational temperature 

contours obtained by the [2] and [3] schemes, respectively, as 

using the [12] turbulence model in its C-C variant. As can be 

observed, the [3] temperature field is again more intense than 

the [2] temperature field. The zone of intense energy exchange 

observed close to the body wall is again only captured by the 

[2] scheme. Moreover, the intense temperature region at the 

body nose is observed in both solutions. Good symmetry 

properties are noted in both figures. 

Figure 73 exhibits the –Cp distributions at the wall obtained 

by the [2] and [3] schemes as using the [12] turbulence model 

in its C-C variant. As observed in the [12] solutions, the [3] 

scheme presents again a pressure plateau higher than the [2] 

scheme does, although both –Cp peaks at the body nose are 

approximately the same. 

 

Figure 71. Temperature contours ([2]). 

 

Figure 72. Temperature contours ([3]). 

 

Figure 73. –Cp distributions. 
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Figure 74. Wall temperature distributions. 

Figure 74 shows the temperature distributions at wall 

generated by the [2] and [3] schemes as using the [12] 

turbulence model in its C-C variant. The [3] temperature 

distribution is smoother than the [2] one. The [2] temperature 

distribution decreases and increases along the body, whereas 

the [3] temperature distribution decreases until reach a 

constant value. The temperature values at the body end are 

approximately 620.0 K to the [2] scheme and 470.0 K to the [3] 

scheme. The maximum temperature value, at the body leading 

edge, for both solutions is 700.0 K. 

5.4. Quantitative Analysis 

A possibility to quantitative comparison of the turbulent 

cases is the determination of the stagnation pressure ahead of 

the configuration. [27] presents a table of normal shock wave 

properties in its B Appendix. This table permits the 

determination of some shock wave properties as function of 

the freestream Mach number. In front of the blunt body 

configuration, the shock wave presents a normal shock 

behavior, which permits the determination of the stagnation 

pressure, behind the shock wave, from the tables 

encountered in [27]. So it is possible to determine the ratio 

∞prpr0  from [27], where pr0 is the stagnation pressure in 

front of the configuration and pr∞ is the freestream pressure 

(equals to 1/γ to the present dimensionless). 

Hence, to this problem, M∞ = 3.0 corresponds to ∞prpr0 = 

12.06 and remembering that pr∞  = 0.714, it is possible to 

conclude that pr0 = 8.61. Values of the stagnation pressure to 

the turbulent cases and respective percentage errors are shown 

in Tab. 3. They are obtained from Figures 3, 4, 11, 12, 19, 20, 

27, 28, 35, 36, 43, 44, 51, 52, 59, 60, 67, and 68. As can be 

observed, the [2] scheme using the [11] turbulence model for 

all variants has presented the best result, with a percentage 

error of 0.81%. It is important to observe that, although first 

order schemes were used, the percentage relative errors were 

inferior to 7.50%. 

 

Table 3. Values of the stagnation pressure and respective percentage errors. 

Model: Scheme - Variant: pr0: Error (%): 

[10] [2] 9.23 7.20 

 [3] 8.47 1.63 

 [2] – Wilcox 8.68 0.81 

 [2] – k-ε 8.68 0.81 

 [2] – BSL 8.68 0.81 

[11] [2] – SST 8.68 0.81 

 [3] – Wilcox 8.17 5.11 

 [3] – k-ε 8.17 5.11 

 [3] – BSL 8.17 5.11 

 [3] – SST 8.17 5.11 

 [2] – LS-LS 8.35 3.02 

 [2] – LS-C 8.35 3.02 

 [2] – C-LS 8.35 3.02 

[12] [2] – C-C 8.35 3.02 

 [3] – LS-LS 8.15 5.34 

 [3] – LS-C 8.15 5.34 

 [3] – C-LS 8.15 5.34 

 [3] – C-C 8.15 5.34 

Finally, Table 4 exhibits the computational data of the 

present simulations. It can be noted that the most efficient is 

the [2] scheme using the [11] turbulence model in its SST 

variant. All schemes used a CFL number of 0.10, not 

necessarily being the maximum CFL number of each one. 

Table 4. Computational data. 

Model: Scheme – Variant: CFL: Iterations: 

[10] [2] 0.10 3,463 

 [3] 0.10 3,403 

 [2] – Wilcox 0.10 731 

 [2] – k-ε 0.10 731 

 [2] – BSL 0.10 731 

[11] [2] – SST 0.10 730 

 [3] – Wilcox 0.10 2,531 

 [3] – k-ε 0.10 2,474 

 [3] – BSL 0.10 2,349 

 [3] – SST 0.10 2,343 

 [2] – LS-LS 0.10 4,845 

 [2] – LS-C 0.10 4,849 

 [2] – C-LS 0.10 4,845 

[12] [2] – C-C 0.10 4,849 

 [3] – LS-LS 0.10 5,748 

 [3] – LS-C 0.10 5,747 

 [3] – C-LS 0.10 5,747 

 [3] – C-C 0.10 5,746 

As final conclusion of this study, the [11] turbulence model 

in its SST variant was the best when comparing these three 
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turbulence models: [10], [11], and [12]. This choice is based 

on the best estimative of the stagnation pressure and in the 

computational efficiency to reach steady state. In a next paper, 

the present author will study more three different turbulent 

models to this same problem trying to identify the best of each 

group and to perform a final analysis to found the best one. 

6. Conclusions 

In the present work, the [2-3] flux vector splitting schemes 

are implemented, on a finite-volume context. The 

three-dimensional Favre-averaged Navier-Stokes equations 

are solved using an upwind discretization on a structured mesh. 

The [10] algebraic model, and the [11] and [12] k-ω and k
1/2

-ζ 

two-equation models, respectively, are used in order to close 

the problem. The physical problem under study is the 

supersonic flow around a blunt body configuration. The 

implemented schemes are first-order accurate in space. The 

time integration uses a Runge-Kutta method of five stages and 

is second-order accurate. The algorithms are accelerated to the 

steady state solution using a spatially variable time step. This 

technique has proved excellent gains in terms of convergence 

rate as reported in [13-14]. 

The results have demonstrated that the [2] scheme using the 

[11] turbulence model in its SST variant has yielded the best 

value of the stagnation pressure at the blunt body nose, is the 

most efficient scheme in the simulations and is the best choice 

for this study. 
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