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Abstract 
Based on putting dynamic discrete-time hyperchaotic systems under forced two levels 

hierarchical structure, to derive new sufficient conditions of asymptotic stability, a new 

strategy of control is formulated for hyperchaos synchronization of two identical 3D 

Hénon maps. The designed state feedback controller ensures that the state variables of 

both controlled hyperchaotic slave system globally synchronize with the state variables of 

the hyperchaotic master system. Numerical simulations are carried out to assess the 

performance of the proposed contributions in the important field of encryption and 

decryption through hyperchaotic synchronization phenomenon. 

1. Introduction 

Chaos and its applications in the field of secure communication have stimulated intense 

attentions during the last two decades. Indeed, the pioneering work done in the 

synchronization of chaotic systems, that was initiated by Pecora and Carroll [1-2], and the 

random-like behaviour of chaotic signals provide the potential for many applications. 

Among them, the introduction of chaos into secure communication field. In recent years, a 

growing number of cryptosystems based on chaos synchronization have been proposed 

such as: chaotic masking, chaotic modulation, chaotic shift keying [3-8].  

The main purpose of this work is to determine necessary and sufficient conditions for 

the asymptotic stability of the error states between two identical hyperchaotic d 

iscrete-time processes. In fact, these processes can not only reach chaos synchronization, 

starting with different initial conditions but also can be applied to two secure 

communication channels based on chaotic systems. The proposed stabilizing conditions 

for nonlinear discrete-time two levels hierarchical systems are based on the Borne and 

Gentina practical criterion for stability study [14-17] associated to the forced arrow form 

matrix for system description [18-23]. 

The paper is organized as following. Hierarchical nonlinear systems structure and 

properties of arrow form matrices are presented in Section II. In Section III, is proposed an 

approach to design a linear state feedback, effective and systematic in achieving 

synchronization of discrete-time hyperchaotic systems, guarantying the asymptotic 

stability for the synchronization errors, characterized in the state space, by a forced arrow 

form matrix. The implementation of the proposed synchronization approach to two secure 

chaotic communication channels, using two identical discrete-time hyperchaotic Hénon 

systems will be performed in Section IV. In Section V, numerical simulations are carried  
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out using this kind of discrete-time hyperchaotic systems, 

and the proposed secure communication scheme is provided 

in Section VI. Then, some concluding remarks are given. 

2. Studied Two Levels Hierarchical 

Nonlinear Systems Description 

2.1. Hierarchical Nonlinear Systems 

Structure 

The studied hierarchical nonlinear systems ( )S ,  composed 

of r  subsystems ( )
i

S ,  Fig. 1., are described by the 

following differential equation: 

( )1x(k ) A k, x(k) x(k)+ =             (1) 

where A  is the instantaneous characteristic matrix of ( )S  

and 
ii

A  of subsystems ( )iS ,  i 1, , r∀ = …  [5-6,14-23]. 

 

Fig. 1. Two levels hierarchical nonlinear systems structure. 

2.2. Models Formulation 

Three general kinds of the matrix A,  called later arrow 

form matrices are introduced to represent the two levels 

hierarchical systems structure:  

� the Thick Arrow Form matrix TAFA (2), with 

ii rr irA ,  A ,  A  and riA ,  respectively, an 

( ) ( ) ( )i i r r i rn n ,  n n ,  n n× × ×  and ( )r in n×  matrices, 

such that, 
r

i

i 1

n n :
=

=∑  

            (2) 

� the Generalized thin Arrow Form matrix 
GtAF

A  (3), 

where 
ii

A  are scalar elements designed by: 

ii
a ,  i 1, r 1,∀ = −…  

rr ir
A ,  A  and 

ri
A  

( ) ( )(n r 1) (n r 1) ,  1 (n r 1) ,− + × − + × − +  ( )(n r 1) 1− + ×  

and ( )(n r 1) (n r 1)− + × − +  matrices, respectively: 

11 1r 1n

r 1,r 1 r 1,r r 1,n

GtAF
rr rnr1 r,r 1

nr nnn1 n,r 1

a a a

a a a
A

a a a a

a a a a

− − − −

−

−

 
 
 
 
 
 
 
 
  

=

⋯

⋱ ⋮ ⋮

⋯

⋯ ⋯

⋮ ⋮ ⋮ ⋱ ⋮

⋯ ⋯

     (3) 

� and the thin Arrow Form matrix 
tAF

A ,  where 
ii ni

A ,  A  

and 
in

A ,  i 1, , n,∀ = …  are scalar elements. 

Many physical linear or nonlinear systems can be directly 

described by characteristic matrices in arrow forms; for a large 

class of other systems, it is possible to introduce this form, as 

shown in Section III [22]. 

2.3. Arrow Form Matrices Properties 

The computation of the determinant is so easy for the matrix 

tAF
A ,  noted tAFA :  

            (4) 

Then, for the matrix 
TAF

A ,  it comes out: 

r 1r 1
1

TAF rr ri ii ir ii

i 1 i 1

A F F F F F
−−

−

= =

= −∑ ∏                 (5) 

The principal minors of order i  of the matrix 
GtAF

A ,  

noted ( )i GtAFA∆  and defined by: 

( )i GtAF GtAF

1 2 i
A A  i 1, , n

1 2 i

 
∆ = ∀ = 

 

…
…

…
       (6) 

can be computed easily, with the use of the following 

notations. 

11 12

21 22

A A
A

A A

 
=  
 

                    (7) 

{ }11 iiA diag a ,  i 1, , r 1= ∀ = −…              (8) 

{ }12 ijA a ,  i 1,..., r 1,  j r,..., n= ∀ = − ∀ =           (9) 

{ }21 ij
A a ,  i r,..., n,  j 1,..., r 1= ∀ = ∀ = −       (10) 

and: 

{ }22 iiA a ,  i r,..., n= ∀ =                (11) 

Let (i ) (i )

12 21A ,  A  and (i)

22A ,  respectively, composed by the i  

first columns of 12A ,  the i  first rows of 21A  and the i  

first rows and the i  first columns of 22A .  

11 1

1

r

ii ir

rrrir

A A

A A A

A A A

 
 
 
 
 
 
 
 
 

=
⋱ ⋮

⋱ ⋮

… …

11
1

1 1

( )
nn

tAF nn ni ii in ii

i i

A f f f f f
−−

−

= =

= −∑ ∏
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Then, the first ( )1r −  principal minors are: 

( )i GtAF iiA a  i 1, , r 1∆ = ∀ = −…                  (12) 

and the followings defined by:  

( )
r 1

(i) (i) 1 (i)

i GtAF 22 21 11 12 jj

j 1

A A A A A (a )

i 1, , n r 1

−
−

=

∆ = −

∀ = − +

∏
…

            (13) 

Borne and Gentina criterion, based on matrix determinant 

computation and matrix principal minor computation, as far as 

the comparison system matrix is concerned, is then well 

adapted for systems described by characteristic matrices in 

arrow forms: 
tAF

A ,  
GtAF

A  and 
TAF

A ,  such that nonlinear 

elements are isolated in either one row or one column of the 

associated comparison system matrix. 

3. 3D Generalized Hénon Map 

Description 

In this Section, two identical hyperchaotic discrete-time 

Hénon maps calling master and slave systems are presented 

[24-27]. 

The master system is described by: 

2

m1 m2 m3

m2 m1

m3 m2

x (k 1) x (k) bx (k)

x (k 1) x (k)

x (k 1) x (k)

 + = − − + µ
 + =
 + =

         (14) 

and the slave system is given by: 

2

s1 s2 s3

s2 s1 1

s3 s2 2

x (k 1) x (k) bx (k)

x (k 1) x (k) u (k)

x (k 1) x (k) u (k)

 + = − − + µ
 + = +
 + = +

          (15) 

where [ ]T

m m1 m2 m3
x x x x=  is the state vector of the 

master system (14), 
T

x x x x
s s1 s2 s3

 =
 

 is the state 

vector of the slave system (15) and [ ]T

1 2
u u u=  is the 

control vector to be designed later for achieving 

synchronization property.  

The chaotic attractor of system (14) for b 0.1=  and 

1.76,µ =  with the following initial conditions 

[ ]T

m
x (0) 1 1 0.5= −  is depicted in the Fig. 2., below. 

 

Fig. 2. 3D Chaotic attractor of the generalized Hénon map. 

The obtained responses of systems (14) and (15), when the 

control is turned off, presented in Fig. 3., show that both states 

are not yet synchronized. In the numerical simulation results 

presented through Fig. 3., it is assumed that the initial states of 

the slave Hénon map are specified as 

[ ]Tx (0) 0.5 0.2 0.3 .
s

= −  
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Fig. 3. Evolutions of the master and slave Hénon maps state responses when controller is switched off. 

4. New Sufficient Conditions of 

Asymptotic Stability of Error 

Dynamics for Hyperchaotic 

Discrete - Time Systems 

Let us consider the following dynamical error system:  

e (k) x (k) x (k) i 1, ,n
i si mi

= − ∀ = …         (16) 

which leads to the state space description defined by (17): 

( )e(k 1) A k, x(k) e(k) Bu(k)+ = +           (17) 

When the considered system (17) is stabilized by the state 

feedback ( )u k , the errors (16) will converge to zero, i.e.:  

( )i
k
lim e (k) 0 i 1, , n
→+∞

= ∀ = …             (18) 

implying that the systems (14) and (15) achieve 

synchronization. 

Indeed, in order to assure this main goal, the linear state 

feedback control law u(k)  is conceived as follows: 

u(k) Ke(k)= −                    (19) 

with: 

{ }ijK k  i, j 1, ,n= ∀ = …                   (20) 

Consequently, it comes: 

( )fe(k 1) A k, x(k) e(k)+ =               (21) 

with: 

( ) ( )fA k, x(k) A k, x(k) BK= −               (22) 

So, by putting in prominent position the application of the 

classical Borne and Gentina stability criterion, associated to 

the specific matrix description, namely, the forced arrow form 

matrix [5-6,14-23], the following theorem is derived. 

Theorem. The process, described by (17) is stabilized by the 

state feedback control law defined by (19), if the characteristic 

matrix ( )fA k, x(k) ,  given by (22), is under the forced arrow 

form and such that: 

i. the nonlinear elements are isolated in either one row or 

one column of the matrix ( )fA k, x(k) ,  

ii. the diagonal elements, ( )
iifa k, x(k) ,  of the characteristic 

matrix ( )fA k, x(k)  are such that: 

( )
iif

1 a k, x(k) 0 i n, n 1, , 2− > ∀ = − …           (23) 

iii. there exist 0ε >  such that: 

( )( )
( ) ( )

( )( )

11

in ni

f

2 f f

1
i n

ii

1 a k, x(k)

a k, x(k) a k, x(k)

1 a k, x(k)
−

=

 −
 
   ≥ ε  −    × −

  

∑
      (24) 

Proof. The overvaluing system ( )( )fM A k, x(k) ,  associated 

to the vectorial norm ( )p z(k)  is defined, in this case, by the 

following system of differential equations: 

( )( )f
z(k 1) M A k, x(k) z(k)+ =              (25) 

The process, described by (17) is stabilized by the state 

feedback control law defined by (19), if the matrix 

( )( )( )fM A k, x(k)−I  is the opposite of an M − matrix [5], or 

if, by application of the practical stability criterion of Borne 

and Gentina [6], we have: 
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( )
( )( )( )

iif

f

1 a k, x(k) 0 i n, n 1, , 2

det M A k, x(k) 0

 − > ∀ = −


− >

…

I

          (26) 

The development of the first member of the last inequality 

announced by (26): 

( )( )( )
( )

( ) ( )

( )( )
( )( )

11

in ni

ii

ii

f

f

2 f f

1

i n
f

2

f

j n

det M A k, x(k)

1 a k, x(k)

a k, x(k) a k, x(k)

1 a k, x(k)

1 a k, x(k)

−
=

=

− =

  −
  
   
   −    × −     
  
× −   
  

∑

∏

I

            (27) 

achieves easily the proof of the above mentioned Theorem. 

Corollary. The process, described by (17) is stabilized by 

the state feedback control law defined by (19) if the 

characteristic matrix ( )fA k, x(k) ,  given by (22), is under the 

forced arrow form and such that: 

i. all the nonlinearities are located in either one row or one 

column of ( )fA k, x(k) ,  

ii. the diagonal elements ( )
iifa k, x(k) ,  of the matrix 

( )fA k, x(k) ,  fulfil the constraints (23), 

iii. there exist 0,ε >  such that: 

( ) ( )
in nif fa k, x(k) a k, x(k) ,  i n, n 1, ,2≥ ε ∀ = − …     (28) 

iv. the instantaneous characteristic polynomial 

( )
fAP k, x(k),λ  is strictly positive for 1.λ =  

Proof. The proof of this Corollary is inferred from the 

previous Theorem by taking into account the new added 

hypothesis (iii) of this corollary, which guarantee, through a 

simple transformation, the identity of the matrix ( )fA k, x(k)  

and its associated overvaluing matrix ( )( )fM A k, x(k) ;  this 

specific case, clearly, agrees to the satisfaction of the linear 

Aizerman conjecture [5]. 

5. Synchronization of Two Coupled 3D 

Generalized Hénon Maps 

In this section, we propose a systematic procedure to 

guarantee the synchronism property relatively to two identical 

three dimensional generalized Hénon maps. This approach 

determines a state feedback vector controller 

[ ]T

1 2
u(k) u (k) u (k)=  letting the slave hyperchaotic Hénon 

system achieves synchronism with the master one. 

5.1. Problem Statement 

The dynamical error vector is chosen as following: 

1 s1 m1

2 s2 m2

3 s3 m3

e (k) x (k) x (k)

e (k) x (k) x (k)

e (k) x (k) x (k)

= −
 = −
 = −

               (29) 

So, by referring to (14) and (15), the equations (29) lead to 

the following explicit description: 

( )1 m2 s2 2 3

2 1 1

3 2 2

1 0.1

1

1

e (k ) x x e (k) e (k)

e (k ) e (k) u (k)

e (k ) e (k) u (k)

+ = − + −
 + = +
 + = +

    (30) 

In fact, the previous equations (30) can be rewritten under 

the matrix form (31): 

( )1e(k ) A k, x(k) e(k) Bu(k)+ = +           (31) 

with: 

[ ]1 2 3

T
e(k) e (k) e (k) e (k)=              (32) 

( )
( )m2 s2

0 0 1

1              0                   0

0              1                   0

x (k) x (k) .

A k, x(k)

− + − 
 =  
  

   (33) 

and: 

0 0

B 1 0

0 1

 
 =  
  

                     (34) 

5.2. Hybrid Synchronization of the Coupled 

3D Generalized Hénon Maps Via State 

Feedback Control Law 

At this stage, the state feedback control law intended to 

stabilize the error dynamics, defined by (30), will be designed 

as proposed in (35): 

u(k) Ke(k)= −                       (35) 

or, equivalently: 

11 12 13

21 22 23

k k k
u(k) e(k)

k k k

 
= −  

 
                 (36) 

Then, it comes the controlled error dynamical system 

described, in the state space, by: 

( )f1e(k ) A k, x(k) e(k)+ =                     (37) 

where the instantaneous characteristic matrix ( )
f

A k, x(k)  is 

defined by (22), by respect to the illustrative and explicit 

expressions given in this Section. 

Specifically, we have:  
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( )
( ) ( )( )m2 s2

f 11 12 13

21 22 23

0 0 1

1

         1

x k x k .

A k, x(k) k        k              k

k k              k

 − + −
 

= − − − 
 − − −  

 (38) 

As long as these state feedback control laws, given by (36), 

stabilize the dynamical error system (31), 
1 2

e (k),  e (k)  and 

3
e (k)  will converge to zero as time tends to infinity, which 

implies that the synchronization of the two coupled Hénon 

maps (14) and (15) is reached. 

Thus, for achieving this purpose, the elements 

ijk (.),  i 1,  2 and j 1, ,3,∀ = ∀ = …  of the linear gain matrix 

K,  must fulfil at the same time the inequalities (23) and (24), 

as well as the hypothesis (i) of the above pre-cited Theorem, 

already, announced in Section IV. 

Therefore, the following linear gain matrix is considered as 

one optimal solution from many ones: 

1 0 2 0

2 1 0 5

.
K

.

 
=  
 

                       (39) 

Fig. 4. illustrates the effectiveness of the proposed method 

based on the use of aggregation techniques associated to the 

forced arrow form matrix for system description. 

 

Fig. 4. Time responses of spatiotemporal chaos synchronization of master and slave Hénon state variables. 

6. Application in Secure Information 

Transmission 

6.1. Basic Idea 

Since each chaotic system is able to reproduce the same 

signal, chaos begins to have practical applications. A secret 

signal can be embedded with the chaos of one system. The 

resulting signal appears to be only chaos and noise, and is 

useless. However, with the synchronizing system producing 

the same signal, the chaos can be extracted from the 

transmitted information, leaving only the secret signal 

transmitted. Thus, chaos can be used as a form of information 

encryption. 

At the transmitter terminal, the useful message is secretly 

embedded in the parameter of the transmitter chaotic system 

and the chaotic receiver system is designed to successfully 

recuperate the former message. So, under some structural 

assumptions, the recovered signal can exponentially 

approximate the source signal. 

6.2. Case of Discrete-Time Hyperchaotic 

Systems Synchronization for Secure 

Color Image Transmission 

In this Subsection, the problem of synchronization between 

two identical hyperchaotic Hénon systems is applied to a new 

chaos-based image cryptosystem, in order to illustrate the 

feasibility of the theoretical proposed approach. The input of 

the considered cryptosystem is the plain image which will be 

encrypted.  

Firstly, we form a vector with three layers in the RGB 

format containing the image colors. After that, the 

hyperchaotic signal of the master transmitter system is added 

to the image, to further enhance the complexity of the 

considered cryptosystem and thereby improving the security 

of the image transmission process. Subsequently, the image is 

successfully recovered through the subtraction between the 

encrypted image and the slave receiver hyperchaotic signal. 

At last, the three layers are joined in order to form the color 

image, as illustrated in Fig. 5. 

   

(a)                   (b)                 (c) 

Fig. 5. (a). Original image, (b) Encrypted image, (c) Decrypted image. 
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More to the point, it is obvious that the security is 

compromised even without precise knowledge of the 

hyperchaotic systems used. 

7. Conclusion 

In this work, the secure communication problem based on 

the synchronization of hyperchaotic systems is investigated. 

The asymptotic convergence of the errors between the states 

of the master system and the states of the slave system is 

proven using aggregation techniques associated to forced 

arrow form matrix properties. The scheme of secure 

transmission implies the use of the Hénon hyperchaotic 

system, to encrypt and decrypt the useful information. The 

emitted signal is modulated into the parameter information of 

the transmitter system, and the resulting system is still 

hyperchaotic. The corresponding receiver is designed so that it 

is able to retrieve, secretly, the former signal. From simulation 

results, it can be concluded that the developed theoretical 

approaches are feasible and efficient, since they are fruitfully 

exploited to confidentially transmit and get back one chosen 

colour image. 
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