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Abstract 
The purpose of this paper is to introduce and investigate several new classes of functions 

called, e-open, e-closed, quasi e-open, quasi e-closed, strongly e-open and strongly 

e-closed functions in topological spaces by using the concept of e-open sets. Several new 

characterizations and fundamental properties concerning of these new types of functions 

are obtained. Furthermore, these kinds of functions have strong application in the area of 

image processing and have very important applications in quantum particle physics, high 

energy physics and superstring theory. 

1. Introduction 

Several generalized forms of open and closed functions, strongly functions and quasi 

functions in topological spaces have been introduced and investigated over the course of 

years. Certainly, it is hard to say whether one form is more or less important than another. 

Functions and of course open and closed functions, strongly functions and quasi functions 

stand among the most important and most researched points in the whole of mathematical 

science. Various interesting problems arise when one considers openness and closeness. 

Its importance is significant in various areas of mathematics and related sciences. In 2008, 

Erdal Ekici [1] introduced a new class of generalized open sets called e-open sets and 

studied several fundamental and interesting properties of e-open sets and introduced a new 

class of continuous functions called e-continuous functions into the field of topology. In 

this paper, we will continue the study of related functions by involving e-open sets. The 

aim of this paper is to introduce and investigate several new types of open and closed 

functions, strongly functions and quasi functions in topological spaces via e-open sets. 

Some characterizations and several interesting properties of these functions are discussed. 

Additionally, these kinds of functions have strong application in the area of Image 

Processing and have very important applications in quantum particle physics, high energy 

physics and superstring theory. 

2. Preliminaries 

Throughout the present paper, (X, T) and (Y, T
*
) (or simply X and Y) mean topological 

spaces on which no separation axioms are assumed unless explicitly stated. For any subset 

A of X, The closure and interior of A are denoted by Cl(A) and Int(A), respectively. We 

recall the following definitions, which will be used often throughout this paper. 

A subset A of a space (X, T) is called δ-open [2] if for each x∈A there exists a regular 

open set V such that x∈V ⊂ A. The δ-interior of A is the union of all regular open sets  



 Computational and Applied Mathematics Journal 2015; 1(5): 386-392 387 

 

 

Contained in A and is denoted by Intδ(A). The subset A is 

called δ-open [2] if A = Intδ(A). A point x∈X is called a 

δ-cluster points of A [2] if A ∩ Int(Cl(V)) ≠ Ø for each open 

set V containing x. The set of all δ-cluster points of A is called 

the δ-closure of A and is denoted by Clδ(A). If A = Clδ(A)), 

then A is said to be δ-closed [2]. The complement of δ-closed 

set is said to be δ-open set. 

A subset A of a space X is called e-open [1] if A ⊂
Cl(Intδ(A))∪ Int(Clδ (A)). The complement of an e-open set is 

called e-closed. The intersection of all e-closed sets containing 

A is called the e-closure of A [1] and is denoted by e-Cl(A). 

The union of all e-open sets of X contained in A is called the 

e-interior [1] of A and is denoted by e-Int(A). The family of all 

e-open (resp. e-closed) subsets of X containing a point x∈X is 

denoted by EΣ(X, x) (resp. EC(X, x). The family of all e-open 

(resp. e-closed) sets in X are denoted by EΣ(X, T) (resp. EC(X, 

T). 

3. Characterizations of e-Open and  

e - Closed Functions 

In this section, we obtain some characterizations and several 

properties concerning e-open functions and e-closed functions 

via e-open and e-closed sets. 

Definition 3.1. A function f: (X, T) → (Y, T
*
) is said to be 

e-open if f (U)∈  EΣ(Y, T
*
) for every open set U in X. 

Theorem 3.1. A function f: (X, T) → (Y, T*) is e-open if and 

only if for each x∈X and each open set U in X with x∈U, there 

exists a set V∈EΣ(Y, T*) containing f (x) such that V ⊂  f (U). 

Proof: The proof is follows immediately from definition 

(3.1). 

Theorem 3.2. Let f: (X, T) → (Y, T*) be e-open. If V ⊂ Y and 

M is a closed subset of X containing f −1(V), then there exists a 

set F ∈  EC(Y, T*) containing V such that f −1(F) ⊂ M. 

Proof: Let F = Y – f (X – M). Then, F∈EC(Y, T*), since f 
−1(V) ⊂ M, we have,  f (X – M) ⊂ (Y – V) and so V ⊂ F. Also f 
−1(F) = X – f −1[ f (X – M)] ⊂  X – (X – M) = M. 

Theorem 3.3. A function f: (X, T) → (Y, T*) is e-open if and 

only if f [Int(A)] ⊂ e-Int[ f (A)], for every A ⊂ X. 

Proof: Let A ⊂ X and x∈Int(A). Then there exists an open 

set Ux in X such that x∈Ux ⊂ A. Now f (x)∈  f (Ux) ⊂  f (A), 

Since f is e-open, f (Ux)∈EΣ(Y, T*). Then, 

f (x)∈e-Int[ f (A)]. Thus f [Int(A)] ⊂ e-Int[ f (A)]. 

(Conversely), Let U be an open set in X. Then by assumption, 

f [Int(U)] ⊂ e-Int[ f (U)]. Since e-Int[ f (U)] ⊂ f (U), f (U) = 

e-Int[ f (U)]. Thus f (U)∈EΣ(Y, T
*
). So f is e-open. 

Remark 3.1. The equality in the theorem (3.3) need not be 

true as shown in the following example. 

Example 3.1. Let X = Y = {1, 2}, and T be the indiscrete 

topology on X and T
*
 be the discrete topology on Y. Then we 

have EΣ(X, T) = {Ø, X, {1}, {2}} and EΣ(Y, T
*
) = T

*
, Let f: (X, 

T) → (Y, T
*
) be the identity function and A = {1}. Then f 

[Int(A)] = Ø and e-Int[ f (A)] = {1}. 

Theorem 3.4. A function f: (X, T) → (Y, T*) is e-open if and 

only if Int[ f −1(B)] ⊂  f −1[e-Int(B)] for every B ⊂ Y. 

Proof: Let B be any subset of Y. Then f [Int( f −1(B))] ⊂  f [ f 

−1(B)] ⊂ B. 

But f [Int( f −1(B))]∈EΣ(Y, T*) since Int[ f −1(B)] is open in X 

and f is e-open. Hence, f [Int(f −1(B))] ⊂ e-Int(B). Therefore 

Int[ f −1(B)] ⊂ f −1[e-Int(B)]. 

(Conversely), Let A be any subset of X. Then f (A) ⊂ Y . 

Hence by assumption, we have, Int(A) ⊂ Int[ f −1( f (A)] ⊂  f 
−1[e-Int( f (A))]. Thus, f [Int(A)] ⊂ e-Int[ f (A)], for every A ⊂ X. 

Hence, by Theorem (3.3), f is e-open. 

Theorem 3.5. A function f: (X, T) → (Y, T*) is e-open if and 

only if f −1[e-Cl(B)] ⊂ Cl[ f −1(B)] for every B ⊂ Y. 

Proof: Suppose that f is e-open and B ⊂ Y and let x∈  f 
−1

[e-Cl(B)] . Then, f (x) ∈e-Cl(B). Let U be an open subset in 

X such that x ∈ U. since f is e-open, then f (U) ∈  EΣ(Y, 

T
*
) .Therefore B ∩ f (U) ≠ Ø. Then, U ∩ f 

−1
(B) ≠ Ø. 

Hence x ∈Cl[ f −1(B)]. Therefore we have f −1[e-Cl(B)] ⊂  

Cl[ f −1(B)]. 

(Conversely), Let B ⊂ Y, then (Y–B) ⊂ Y. By assumption, f 
−1[e-Cl(Y– B)] ⊂ Cl[ f −1(Y – B)]  this implies, X–Cl[f −1(Y – 

B)] ⊂ X – f −1[e-Cl(Y – B)]. Hence   X–Cl[X– f −1(B)] ⊂  f 
−1[ (Y – e-Cl(Y–B))] . Now X–Cl[X– f −1(B)] = Int[X– (X– f 
−1(B)] = Int[ f −1(B)].Then, we have Y – e-Cl(Y – B) = e-Int[Y – 

(Y – B)] = e-Int(B). Then Int[ f −1(B)] ⊂  f −1[e-Int(B)]. By 

Theorem (3.4) we have f is e-open. 

Now we introduce some characterizations concerning 

e-closed functions. 

Definition 3.2. A function f: (X, T) → (Y, T
*
) is said to be 

e-closed if f (M)∈  EC(Y, T
*
) for every closed set M in X. 

Theorem 3.6. A function f: (X, T) → (Y, T*) is e-closed if and 

only if e-Cl[ f (A)] ⊂  f [Cl(A)] )] for every A ⊂ X. 

Proof: Let f be e-closed function and let A be any subset of X. 

Then f [Cl(A)] ∈ EC(Y, T*). But f (A) ⊂  f [Cl(A)]. Then 

e-Cl[ f (A)] ⊂  f [Cl(A)]. 

(Conversely), Let A be a closed subset of X. Then by 

assumption, e-Cl[ f (A)] ⊂  f [Cl(A)] = f (A). This shows that f 

(A)∈EC(Y, T*). Hence f is e-closed. 

Corollary 3.1. Let f: (X, T) → (Y, T
*
) be e-closed and let A

⊂ X. Then, e-Int[e-Cl( f (A)] ⊂ f [Cl(A)]. 

Theorem 3.7. Let f: (X, T) → (Y, T*) be a surjective function. 

Then f is e-closed if and only if for each subset B of Y and each 

open set U in X containing  f −1(B),there exists a set V∈EΣ(Y, 

T*) containing B such that f −1(V) ⊂ U. 

Proof: Let V = Y – f (X – U), Then V∈EΣ(Y, T*). Since f 
−1(B) ⊂ U, then we have f (X – U) ⊂ Y– B so B ⊂ V . Also, f 
−1(V) = X – f −1[ f (X – U)] ⊂ X – (X – U) = U. 

(Conversely), Let M be a closed set in X and y∈Y – f (M). 

Then, f −1 (y) ⊂ X – f −1 ( f (M)) ⊂  X – M and X – M is open 

in X. Hence by assumption, there exists a set Vy∈EΣ(Y, y) such 

that f −1(Vy) ⊂ X–M. This implies that y∈ Vy ⊂ Y– f (M).  

Thus Y– f (M) =∪ {Vy: y∈Y– f (M)}. 

Hence Y– f (M)∈EΣ(Y, T
*
). Thus f (M)∈EC(Y, T

*
). 

Definition 3.3. A function f: (X, T) → (Y, T
*
) is said to be 

e-continuous [1], if f 
−1

(V) is e-open in X for every open set V of 

Y. 

Theorem 3.8. Let f: X → Y be a bijective. Then the 

Following are equivalent: 

(a) f is e-closed; (b) f is e- open; (c) f 
−1

 is e-continuous. 
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Proof: (a)⇒ (b): Let U be an open subset of X. Then X–U is 

closed in X. By (a), f (X – U)∈EC(Y, T
*
). But f (X–U) = f (X) – 

f (U) = Y – f (U). Thus f (U)∈EΣ(Y, T
*
).  

(b)⇒ (c): Let U be an open subset of X. Since f is e-open. 

Then, f (U) = (f 
−1

)
−1

(U) ∈EΣ(Y, T
*
).  

Hence f 
−1 

is e-continuous. 

(c)⇒ (a): Let M be an arbitrary closed set in X. Then X–M is 

open in X. Since f −1 is e-continuous, then (f −1) −1(X–M) ∈  

EΣ(Y, T*). But (f −1) −1(X–M) = f (X–M) = Y – f (M), thus f (M) 
∈EC(Y, T*). 

Definition 3.4. A space (X, T) is said to be: 

a) e-T1 [3] if for each pair of distinct points x and y of X, 

there exist e-open sets A and B containing x and y, 

respectively, such that x∉B and y∉A. 

b) e-T2 [3] if for each pair of distinct points x and y in X, there 

exist disjoint e-open sets A and B in X such that x∈A and 

y∈B. 

Theorem 3.9. If f: (X, T) → (Y, T
*
) is e-open bijection. Then 

the following hold: 

(a) If X is T1 then Y is e-T1. (b) If X is T2 then Y is e-T2. 

Proof: (a) - Let y1 and y2 be any distinct points in Y. Then 

there exist x1 and x2 in X such that f (x1) = y1 and f (x2) = y2. 

Since X is T1 then, there exist two open sets U and V in X with 

x1∈U, x2∉U and x2∈V, x1∉V. Now f (U) and f (V) are e-open 

in Y with y1∈ f (U), y2∉f (U) and y2∈ f (V), y1∉f (V). 

Proof: (b) - is similar to (a). Thus is omitted. 

Definition 3.5. A space (X, T) is said to be: 

a) e-compact [4] if every cover of X by e-open sets has a 

finite sub cover. 

b) e-Lindelof if every cover of X by e-open sets has a 

countable subcover. 

Theorem 3.10. If f: (X, T) → (Y, T
*
) is e-open bijective. Then 

the following properties are hold: 

(a) If Y is e-compact, then X is compact. (b) If Y is 

e-Lindelof, then X is Lindelof. 

Proof: (a) - Let U1 = {Uλ: λ∈∆} be an open cover of X. Then 

K1 = {f (Uλ): λ∈  ∆} is a cover of Y by e-open sets in Y. Since Y 

is e-compact, Then K1 has a finite subcover K2 = {f (Uλ1), f 

(Uλ2), ….., f (Uλn)} for Y. Then U2 = {Uλ1, Uλ2, …, Uλn} is a 

finite subcover of U for X. 

Proof: (b): is similar to (a). Thus is omitted. 

Definition 3.6. A space (X, T) is said to be e-connected [3] if 

X cannot be written as the union of two nonempty disjoint 

e-open sets. 

Theorem 3.11. If a function f: (X, T) → (Y, T
*
) is an e-open 

surjective and Y is e-connected. Then X is connected. 

Proof: Suppose that X is not connected. Then there exist two 

non-empty disjoint open sets U and V in X such that X = U∪V. 

Then f (U) and f (V) are non-empty disjoint e-open sets in Y 

with Y = f (U) ∪  f (V) which contradicts the fact that Y is 

e-connected. 

4. Characterizations of Quasi  

e - Open Functions 

In this section, we obtain some characterizations and 

several properties concerning quasi e-open functions via 

e-open sets. 

Definition 4.1. A function f: (X, T) → (Y, T
*
) is said to be 

quasi e-open if the image of every e-open set in X is open in Y. 

Remark 4.1. (a) It is clear that, the concepts quasi 

e-openness and e-continuity coincide if the function is a 

bijection. 

(b) It is obvious that, every quasi e-open function is open as 

well as e-open. However, the converses of the implications are 

not true in general as shown in the following example. 

Example 4.1. Let X = Y = {1, 2, 3}, define a topology T= 

{Ø, X, {1}, {2, 3}} Then the identity function f: (X, T) → (Y, 

T
*
) is e-open as well as open but not quasi e-open. 

Definition 4.2. A subset A is called an e-neighborhood of a 

point x in X if there exists an e-open set U such that x∈U ⊂ A. 

Theorem 4.1. For a functions f: (X, T) → (Y, T
*
) the 

following properties are equivalent: 

a) f is quasi e-open; 

b) For each subset A of X, f [e-Int(A)] ⊂ Int[ f (A)]; 

c) For each x∈X and each e-neighborhood U of x in X, 

there exists a neighborhood V of f (x) in Y such that V ⊂
f (U). 

Proof: (a)⇒ (b). Let f be quasi e-open and A ⊂ X. Now we 

have Int(A) ⊂ A and e-Int(A)∈EΣ(X, T). Hence we obtain 

that f [e-Int(A)] ⊂  f (A). Since f [e-Int (A)] is open, then f 

[e-Int(A)] ⊂ Int[ f (A)]. (b)⇒ (c). Let x∈ X and U be an 

e-neighborhood of x in X. Then there exists V∈EΣ(X, T) such 

that x∈V ⊂ U. Then by (b), we have, f (V) = f [e-Int(V)] ⊂  

Int[ f (V)] and hence f (V) = Int[f (V)]. Therefore, it is follow 

that f (V) is open in Y such that f (x)∈  f (V) ⊂ f (U). 

(c)⇒ (a). Let U∈EΣ(X, T). Then for each y∈ f (U), there 

exists a neighborhood Vy of y in Y such that Vy
⊂ f (U). Since 

Vy is a neighborhood of y, there exists an open set Wy in Y 

such that y∈Wy
⊂ Vy. Thus, f (U) = ∪ {Wy: y∈  f (U)} which 

is an open set in Y. This implies that f is quasi e-open function. 

Theorem 4.2. A function f: (X, T) → (Y, T
*
) is quasi e-open 

if and only if e-Int[ f 
−1

(B)] ⊂  f 
−1

[Int(B)] for every subset B 

of Y . 

Proof: Let B be any subset of Y. Then, e-Int[ f −1(B)] ∈  

EΣ(X, T) and f is quasi e-open, then f [e-Int( f −1(B))] ⊂ Int[ f (f 
−1(B))] ⊂ Int(B). Thus, e-Int[ f −1(B)] ⊂  f −1[Int(B)]. 

(Conversely), Let U∈EΣ(X, T). Then by assumption e-Int[ f 
−1( f (U))] ⊂  f −1[Int( f (U))] then, e-Int(U) ⊂  f −1[Int( f (U))], 

but e-Int(U) = U so U ⊂  f −1[Int( f (U))] and hence f (U) ⊂
Int( f (U) so f is quasi e-open. 

Theorem 4.3. A function f: (X, T) → (Y, T
*
) is quasi e-open 

if and only if for any subset B of Y and for any set M∈EC(X, 

T) containing f 
−1

(B), there exists a closed subset F of Y 

containing B such that f 
−1

(F) ⊂ M. 

Proof: Let f be quasi e-open and B ⊂ Y. Let M ∈  EC(X, T) 

with f 
−1

(B) ⊂ M. Now, put F = Y – f (X–M). It is clear that 

since f 
−1

(B) ⊂ M, B ⊂ F. Since f is quasi e-open, F is a closed 

subset of Y. Also, we have f 
−1

(F) ⊂ M. 

(Conversely), Let U∈EΣ(X, T) and put B = Y– f (U). Then 

X–U∈EC(X, T) with f −1(B) ⊂ X–U. By assumption, there 

exists a closed set F of Y such that B ⊂ F and f −1(F) ⊂ X – U. 

Hence, we obtain f (U) ⊂ Y–F. On the other hand, it follows 
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that B ⊂ F, Y–F ⊂ Y–B = f (U). Thus, we have f (U) = Y–F 

which is open and hence f is a quasi e-open function. 

Theorem 4.4. A function f: (X, T) → (Y, T*) is quasi e-open 

if and only if f −1[Cl(B)] ⊂ e-Cl[ f −1(B)] for every subset B of 

Y. 

Proof: Suppose that f is quasi e-open function. For any 

subset B of Y, f −1(B) ⊂ e-Cl[ f −1(B)]. Therefore by Theorem 

(4.3), there exists a closed set F in Y such that B ⊂ F and f −1(F)

⊂ e-Cl[ f −1(B)]. Therefore, we obtain, f −1[Cl(B)] ⊂  f −1(F) 

⊂ e-Cl[ f −1(B)]. (Conversely), Let B be any subset of Y and 

M∈EC(X, T) with f −1(B) ⊂ M. Put F = Cl(B), then we have B

⊂ F and F is closed and f −1(F) ⊂ e-Cl[ f −1(B)] ⊂ M. Then by 

Theorem (4.3), the function f is quasi e-open. 

Lemma 4.1. Let f: (X, T) → (Y, T
*
) and g :( Y, T

*
) → (Z, T

**
) 

be two functions and gof: (X, T) → (Z, T
**

) is quasi e-open. If 

g is continuous injective, then f is quasi e-open. 

Proof: Let U be a e-open set in X, then (gof )(U) is open in 

Z since gof is quasi e-open. Again g is an injective continuous 

function, f (U) = g
 −1

(gof (U)) is open in Y. This shows that f is 

quasi e-open. 

Theorem 4.5. If f: (X, T) → (Y, T
*
) is quasi e-open bijective. 

Then the following properties are hold: 

(a) If (X, T) is e-T1 then (Y, T
*
) is T1. (b) If (X, T) is e-T2 

then (Y, T
*
) is T2. 

Theorem 4.6. If f: (X, T) → (Y, T
*
) is quasi e-open bijective. 

Then the following hold: 

(a) If (Y, T
*
) is compact, then (X, T) is e-compact. (b) If (Y, 

T
*
) is Lindelof, then (X, T) is e-Lindelof. 

Theorem 4.7. If f: (X, T) → (Y, T
*
) is quasi e-open 

surjective and Y is Connected. Then X is e-connected. 

Proof: The proofs of theorems {(4.5), (4.6), (4.7)} similar 

to the proofs of theorems {(3.9), (3.10), (3.11)} respectively. 

Definition 4.3. A function f :( X, T) → (Y, T
*
) is called 

pre-e-open if the image of each e-open set of X is an e-open set 

in Y. 

Definition 4.4. A topological space (X, T) is said to be a 

Te-space [5] if every e-open subset of (X, T) is open in (X, T). 

Remark 4. 2. Let f :( X, T) → (Y, T
*
) be a quasi e-open 

function. If Y is a Te-space, then quasi e-openness coincide 

with pre-e-openness. 

Definition 4.5. A function f :( X, T) → (Y, T
*
) is said to be 

e-irresolute [3] if f 
−1

(V) is e-open in X for every e-open set V 

of Y. 

Theorem 4.8. Let f: (X, T) → (Y, T
*
) and g:( Y, T

*
) → (Z, 

T
**

) be two functions such that gof: (X, T) → (Z, T
**

) is quasi 

e-open. 

a) If f is e-irresolute surjective, then g is open. 

b) If g is e-continuous injective, then f is pre-e-open.  

Proof: (a) - Suppose that V ∈ EΣ(Y, T
*
). Since f is 

e-irresolute, then f 
−1

(V) is e-open in (X, T). Since gof is quasi 

e-open and f is surjective, (gof ( f 
−1

(V))) = g(V), which is open 

in (Z, T
**

). This implies that g is an open function.  

(b). Suppose that V∈EΣ(X, T). Since gof is quasi e-open, 

(gof)(V) is open in (Z, T
**

). Again g is a e-continuous injective 

function, g 
−1

(gof(V)) = f (V), which is e-open in (Y, T
*
). This 

shows that f is pre e-open.  

5. Characterizations of Quasi  

e - Closed Functions 

In this section, we obtain some characterizations and 

several properties concerning quasi e-closed functions via 

e-closed sets. 

Definition 5.1. A function f: (X, T) → (Y, T
*
) is said to be 

quasi e-closed if the image of every e-closed set in X is closed 

in Y. 

Remark 5.1. Clearly, every quasi e-closed function is 

closed as well as e-closed, but the converses of the 

implications are not true as shown in example (4.1). 

Theorem 5.1. If a function f: (X, T) → (Y, T
*
) is quasi 

e-closed. Then, f 
−1

[Int(B)] ⊂ e-Int[f 
−1

(B)] for every subset B 

of Y. 

Proof: This proof is similar to the proof of theorem (4.2). 

Theorem 5.2. A function f: (X, T) → (Y, T
*
) is quasi 

e-closed if and only if for any subset B of Y and for any set U

∈EΣ(X, T) containing f 
−1

(B), there exists an open subset V of 

Y containing B such that f 
−1

(V) ⊂ U.  

Proof: This proof is similar to the proof of theorem (4.3). 

Definition 5.2. A function f :( X, T) → (Y, T
*
) is called 

pre-e-closed if the image of each e-closed set of (X, T) is an 

e-closed set in (Y, T
*
). 

Definition 5.3. A space X is said to be a Ce-space if every 

e-closed subset in X is closed in X. 

Remark 5.2. Let f :( X, T) → (Y, T
*
) be a quasi e-closed 

function. If Y is Ce-space, then quasi e-closedness coincides 

with pre-e-closedness. 

Theorem 5.3. Let f :( X, T) → (Y, T
*
) and g:( Y, T

*
) → (Z, 

T
**

) be any two functions. Then: 

a) If f is quasi e-closed and g is quasi e-closed, then gof is 

quasi e-closed; 

b) If f is e-closed and g is quasi e-closed, then gof is closed; 

c) If f is quasi e-closed and g is e-closed, then gof is 

pre-e-closed; 

d) If f is pre-e-closed and g is quasi e-closed, then gof is 

quasi e-closed. 

Proof: The proof is obvious thus omitted. 

Theorem 5.4. Let (X, T) and (Y, T
*
) be topological spaces. 

Then the function f: (X, T) → (Y, T
*
) is a quasi e-closed if and 

only f (X) is closed in Y and f (V)\ f (X \V) is open in f (X) 

whenever V is e-open in X. 

Proof: Suppose f: (X, T) → (Y, T
*
) is a quasi e-closed 

function. Since (X, T) is e-closed, f (X) is closed in (Y, T
*
) and 

f (V)\ f (X\V) = f (X) \ f (X\V) is open in f (X) when V is e-open 

in (X, T). (Conversely), suppose f (X) is closed in (Y, T
*
) , f 

(V)\ f (X\V) is open in f (X) when V is e-open in X, and let M 

be closed in X. Then, f (M) = f (X) \ (f (X\M) \ f (M)) is closed 

in f (X) and hence, closed in (Y, T
*
). 

Corollary 5.1. Let (X, T) and (Y, T
*
) be topological spaces. 

Then a surjective function f: (X, T) → (Y, T
*
) is quasi e-closed 

if and only if f (V)\ f (X\V) is open in (Y, T
*
) whenever U is 

e-open in (X, T). 

Corollary 5.2. Let (X, T) and (Y, T
*
) be topological spaces 

and let f: (X, T) → (Y, T
*
) be an e-continuous quasi e-closed 

surjective function. Then the topology on Y is {f (V)\ f (X\V): 
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V is e-open in X}. 

Proof: Let H be open in Y. Then f 
−1

(H) is e-open in X, and f 

( f 
−1

(H))\ f (X\ f 
−1

(H)) = H. Hence, all open sets in Y are of the 

form f (V)\ f (X\V), V is e-open in X. On the other hand, all 

sets of the form f (V)\ f (X\V), V is e-open in X, are open in Y 

from corollary (5.1). 

Definition 5.4. A topological space (X, T) e-normal [3] if 

for any pair of disjoint e-closed subsets F1 and F2 of X, There 

exist disjoint open sets U and V such that F1 ⊂ U and F2 ⊂ V. 

Theorem 5.5. Let (X, T) and (Y, T
*
) be topological spaces 

with X is e-normal and let f: (X, T) → (Y, T
*
) be an 

e-continuous quasi e-closed surjective function. Then Y is 

normal. 

Proof: Let M1 and M2 be disjoint closed subsets of Y. Then f 
−1(M1), f 

−1(M2) are disjoint e-closed subsets of X. Since X is 

e-normal, there exist disjoint open sets V1 and V2 such that f 
−1(M1) ⊂ V1 and f −1(M2) ⊂ V2, Then M1 ⊂  f (V1) \ f (X\V1) 

and M2 ⊂  f (V2) \ f (X\V2). Further by Corollary (5.1), f (V1)\ 

f (X\V1) and f (V2)\ f (X\V2) are open sets in Y and clearly (f 

(V1)\ f (X\V1))∩( f (V2)\ f (X\V2)) = Ø. This shows that Y is 

normal. 

6. Characterizations of Strongly  

e - Open Functions 

In this section, we obtain some characterizations and 

several properties concerning strongly e-open functions via 

e-open sets. 

Definition 6.1. A function f: (X, T) → (Y, T
*
) is said to be 

strongly e-open if f (U)∈EΣ(Y, T
*
) for each U∈EΣ(X, T). 

Theorem 6.1. Let f: (X, T) → (Y, T
*
) and g:( Y, T

*
) → (Z, 

T
**

) be any two strongly e-open functions. Then gof: (X, T) → 

(Z, T
**

) is strongly e-open function. 

Proof: The proof is obvious thus omitted. 

Theorem 6.2. A function f: (X, T) → (Y, T*) is strongly 

e-open if and only if for each x∈X and for each U∈EΣ(X, T) 

with x∈U, there exists V∈EΣ(Y, T*) such that f (x)∈V and V
⊂ f (U). 

Proof: It is obvious thus omitted. 

Theorem 6.3. A function f: (X, T) → (Y, T*) is strongly 

e-open if and only if for each x ∈ X and for each 

e-neighborhood U of x in X, there exists an e-neighborhood V 

of f (x) in Y such that V ⊂ f (U). 

Proof: Let x∈X and let U be an e-neighborhood of x. Then 

there exists H∈EΣ(X, T) such that x∈H ⊂ U. Then, f (x)∈ f 

(H) ⊂  f (U), since f is strongly e-open, Then f (H)∈EΣ(Y, T*). 

Hence V = f (H) is an e-neighborhood of f (x) and V ⊂ f (U). 

(Conversely), Let U ∈ EΣ(X, T) and x∈ U, then U is an 

e-neighborhood of x. So by assumption, there exists an 

e-neighborhood Vf(x) of f (x) such that, 

F (x) ∈ Vf(x) ⊂  f (U). It follows that f (U) is an 

e-neighborhood of each of its points. Therefore, f (U)∈  EΣ(Y, 

T*), hence f is strongly e-open. 

Theorem 6.4. A function f: (X, T) → (Y, T*) is strongly 

e-open if and only if f [e-Int(A)] ⊂ e-Int[ f (A)] for every A ⊂
X. 

Proof: Let A ⊂ X and x∈e-Int(A). Then there exists Ux∈

EΣ(X, T) such that x∈Ux ⊂ A. so f (x)∈  f (Ux) ⊂  f (A) and 

by assumption, f (Ux)∈EΣ(Y, T*). Hence, 

f (x)∈e-Int[ f (A)]. Thus f [e-Int(A)] ⊂ e-Int[ f (A)]. 

(Conversely), Let U∈ EΣ(X, T). Then by assumption, f 

[e-Int(U)] ⊂ e-Int[ f (U)]. Since e-Int(U) = U and e-Int[ f (U)]
⊂ f (U). Hence, f (U) = e-Int[ f (U)]. Thus, f (U)∈EΣ(Y, T*). 

Theorem 6.5. A function f: (X, T) → (Y, T
*
) is strongly 

e-open if and only if e-Int[ f 
−1

(B)] ⊂ f 
−1

[e-Int(B)] for every 

subset B of Y. 

Proof: Let B ⊂ Y. Since e-Int[ f −1(B)]∈EΣ(X, T) and f is 

strongly e-open, then f [e-Int( f −1(B))]∈EΣ(Y, T*). Also we 

have f [e-Int( f −1(B))] ⊂ f [ f −1(B)] ⊂ B. Hence, f [e-Int( f 
−1(B))] ⊂ e-Int(B). Therefore, e-Int[ f −1(B)] ⊂ f −1[e-Int(B)]. 

(Conversely), Let A be any subset of X. Then f (A) ⊂ Y. 

Hence by assumption, we obtain, e-Int(A) ⊂ e-Int[ f −1( f (A)] 
⊂  f −1[e-Int( f (A))].This implies that, 

f [e-Int(A)] ⊂  f [ f −1(e-Int( f (A))] ⊂ e-Int[ f (A)].Thus, f 

[e-Int(A)] ⊂ e-Int[ f (A)], for all A ⊂ X. Hence, by Theorem 

(6.4), we obtain f is strongly e-open. 

Theorem 6.6. A function f: (X, T) → (Y, T*) is strongly 

e-open if and only if f −1[e-Cl(B)] ⊂ e-Cl[ f −1(B)] for every 

subset B of Y. 

Proof: Let B be any subset of Y and x∈  f −1[e-Cl(B)]. Then 

f (x) ∈ e-Cl(B). Let U ∈ EΣ(X, T) such that x ∈ U, by 

assumption, f (U)∈EΣ(Y, T*) and f (x)∈  f (U), Thus f (U) ∩ B 

≠ Ø. Hence U ∩ f −1(B) ≠ Ø. Therefore, x∈e-Cl[ f −1(B)]. So 

we obtain, f −1[e-Cl(B)] ⊂ e-Cl[ f −1(B)]. 

(Conversely), Let B ⊂ Y, then Y–B ⊂ Y, by assumption f 
−1[e-Cl(Y–B)] ⊂ e-Cl[ f −1(Y–B)].This implies that, X–e-Cl[ f 
−1(Y–B)] ⊂ X– f −1[e-Cl(Y–B)]. Hence, 

X–e-Cl[X– f −1(B)] ⊂  f −1[Y–e-Cl(Y–B)]. Then, e-Int[f 
−1(B)] ⊂  f −1[e-Int(B)]. Now by Theorem (6.5), it follows that 

f is strongly e-open. 

Theorem 6.7. Let f: (X, T) → (Y, T
*
) be a function and g:( Y, 

T
*
) → (Z, T

**
) be a strongly e-open injective. If gof: (X, T) → 

(Z, T
**

) is e-irresolute, then f is e-irresolute. 

Proof: Let U∈EΣ(Y, T
*
). Since g is strongly e-open. Then, 

g(U) ∈ EΣ(Z, T
**

). Also gof is e-irresolute, so we have 

(gof)
−1

[g(U)]∈EΣ(X, T). Since g is an injective, Therefore we 

have (gof)
−1

[g(U)] = ( f 
−1 

og
−1

)[g(U)] = f 
−1

[g 
−1

(g(U))] = f 
−1

(U).Then, f 
−1

(U)∈EΣ(X, T). So f is e-irresolute. 

Theorem 6.8. Let f: (X, T) → (Y, T
*
) be strongly e-open 

surjective and g:( Y, T
*
) → (Z, T

**
) be any function. If gof: (X, 

T) → (Z, T
**

) is e-irresolute, then g is e-irresolute. 

Proof: Let V∈EΣ(Z, T**). Since gof is e-irresolute. Then, 

(gof)−1(V)∈EΣ(X, T). Also f is strongly e-open, so we have f 

[(gof)−1(V)] ∈ EΣ(Y, T*). Since f is an surjective, Then, f 

[(gof)−1(V)] = [ f o(gof)−1](V) = [ f o( f −1 og −1)](V) = [( f o f −1) 

o g −1](V) = g −1(V). Hence is g is e-irresolute. 

Theorem 6.9. Let f: (X, T) → (Y, T
*
) and g:( Y, T

*
) → (Z, 

T
**

) be two functions such that gof: (X, T) → (Z, T
**

) is a 

strongly e-open function. 

a) If f is e-irresolute surjective. Then, g is strongly e-open. 

b) If g is e-irresolute injective. Then, f strongly e-open. 

Proof: (a) - Let U∈EΣ(Y, T
*
). Since f is e-irresolute, f 

−1
(U)

∈ EΣ(X, T). Now since gof is strongly e-open and f is 

surjective, then (gof) (f 
−1

(U)) = g(U) ∈ EΣ(Z, T
**

). This 

implies that g is strongly e-open. 



 Computational and Applied Mathematics Journal 2015; 1(5): 386-392 391 

 

(b). Let V∈EΣ(X, T). Since gof is strongly e-open, (gof)(V)
∈EΣ(Z, T

**
). Now since g is e-irresolute and injection, so g 

−1
[(gof)(V)] = f (V)∈EΣ(Y, T

*
). This shows that f is strongly 

e-open. 

Theorem 6.10. Let f: (X, T) → (Y, T
*
) be a strongly e-open 

bijective. Then the Following hold: 

(a) If (X, T) is e-T1 then (Y, T
*
) is e-T1. (b) If (X, T) is e-T2 

then (Y, T
*
) is e-T2. 

Theorem 6.11. Let f: (X, T) → (Y, T
*
) be a strongly e-open 

bijective. Then the Following hold: 

a) If (Y, T
*
) is e-compact, then (X, T) is e-compact. 

b) If (Y, T
*
) is e-Lindelof, then (X, T) is e-Lindelof. 

Theorem 6.12. f: (X, T) → (Y, T
*
) is a strongly e-open 

surjective and Y is e-connected then X is e-connected: 

Proof: The proofs of theorems {(6.10), (6.11), (6.12)} 

similar to the proofs of theorems {(3.9), (3.10), (3.11)} 

respectively. 

7. Characterizations of Strongly  

e - Closed Functions 

In this section, we obtain some characterizations and 

several properties concerning strongly e-closed functions via 

e-closed sets. 

Definition 7.1. A function f: (X, T) → (Y, T
*
) is said to be 

strongly e-closed if f (M)∈EC(Y, T
*
) for each M∈EC(X, T). 

Theorem 7.1. Let f: (X, T) → (Y, T
*
) and g:( Y, T

*
) → (Z, 

T
**

) be any two functions. Then: 

a) If f is strongly e-closed and g is strongly e-closed, then 

gof is strongly e-closed; 

b) If f is e-closed and g is strongly e-closed, then gof is 

e-closed; 

c) If f is quasi e-closed and g is e-closed, then gof is 

strongly e-closed; 

d) If f is strongly e-closed and g is quasi e-closed, then gof 

is quasi e-closed. 

Proof: The proof is obvious thus omitted. 

Theorem 7.2. A function f: X → Y is strongly e-closed if 

and only if e-Cl[ f (A)] ⊂  f [e-Cl(A)] for every subset A of X. 

Proof: Let f be strongly e-closed function and A ⊂ X. Then 

f [e-Cl(A)]∈EC(Y, T*). Since f (A) ⊂  f [e-Cl(A)], we obtain 

e-Cl[ f (A)] ⊂ f [e-Cl(A)]. 

(Conversely), Let M∈EC(X, T), by assumption, we obtain, 

f (M) ⊂ e-Cl[ f (M)] ⊂  f [e-Cl(M)] = f (M). Hence f (M) = 

e-Cl[ f (M)]. Thus, f (M)∈ EC(Y, T*). It follows that f is 

strongly e-closed. 

Theorem 7.3. Let f: (X, T) → (Y, T*) be a strongly e-closed 

function and B ⊂ Y. If U∈EΣ(X, T).with f −1(B) ⊂ U, then 

there exists V∈EΣ(Y, T*) with B ⊂ V such that, f −1 (B) ⊂  f −1 

(V) ⊂ U. 

Proof: Let V = Y– f (X–U). Then Y–V = f (X–U). Since f is 

strongly e-closed, V∈EΣ(Y, T*).Since f −1(B) ⊂ U, Then Y–V 

= f (X–U) ⊂  f [ f −1(Y–B)] ⊂ Y–B. Hence, B ⊂ V. Also X–U
⊂  f −1[ f (X–U)] = f −1(Y–V) = X– f −1(V). So f −1(V) ⊂ U. 

Theorem 7.4. Let f: (X, T) → (Y, T*) be a surjective 

strongly e-closed function and B, M ⊂ Y. If f −1(B) and f −1(M) 

have disjoint e-neighborhoods, then so have B and M. 

Proof: Let F1 and F2 be the disjoint e-neighborhood of f 
−1(B) and f −1(M) respectively. Then by theorem (7.3) There 

exist two sets U, V∈EΣ(Y, T*). with B ⊂ U and M ⊂ V such 

that f −1(B) ⊂  f −1(U) ⊂ e-Int(F1) and f −1(M) ⊂  f −1(V) ⊂
e-Int(F2). Since F1 and F2 are disjoint, so are e-Int(F1) and 

e-Int(F2), and hence so f −1(U) and f −1(V) are disjoint as well. 

Since f is a surjective function. Then it follows that U and V 

are disjoint too. 

Theorem 7.5. A surjective function f: (X, T) → (Y, T*) is 

strongly e-closed if and only if for each subset B of Y and each 

set U∈EΣ(X, T) containing f −1(B), there exists a set V∈EΣ(Y, 

T*) containing B, such that f −1(V) ⊂ U. 

Proof: This follows from Theorem (7.3). (Conversely), Let 

M∈EC(X, T) and y∈Y– f (M), Then f −1(y)∈X– f −1( f (M))
⊂ X–M and X–M∈EΣ(X, T). Hence by assumption, there 

exists a set Vy∈EΣ(Y, y). Such that f −1(Vy) ⊂ X–M. This 

implies that y∈Vy ⊂ Y– f (M). Thus, Y–f (M) = ∪ {Vy: y∈
Y– f (M)}. Hence, Y– f (M)∈EΣ(Y, T*).Therefore, f (M)∈
EC(Y, T*). 

Theorem 7.6. Let f: (X, T) → (Y, T
*
) be a bijective. Then 

the following properties are equivalent: 

(a) f is strongly e-closed; (b)  f is strongly e-open; (c) f 
−1

 is 

e-irresolute. 

Proof: (a)⇒ (b). Let U∈EΣ(X, T), Then X–U∈EC(X, T). 

Then By (a), f (X–U) ∈EC(Y, T*), but f (X–U) = f (X) – f (U) 

= Y– f (U). Thus f (U)∈EΣ(Y, T*). 

(b) ⇒ (c). Let A ⊂ X, since f is strongly e-open, so by 

Theorem (6.6), f −1[e-Cl( f (A))] ⊂ e-Cl[ f −1( f (A))], It implies 

that e-Cl[ f (A)] ⊂  f [e-Cl(A)]. Thus e-Cl[(f −1)−1(A)] ⊂ ( f 
−1)−1[e-Cl(A)], for all A ⊂ X. Then, it follows that f −1 is 

e-irresolute. (c)⇒ (a). Let M∈EC(X, T).Then X–M∈EΣ(X, 

T). Since f −1is e-irresolute, (f −1) −1 (X–M)∈EΣ(Y, T*). But (f 
−1)−1(X–M) = f (X–M) =Y–f (M). Thus f (M)∈EC(Y, T*). 

Theorem 7.7. Let f: (X, T) → (Y, T
*
) and g:( Y, T

*
) → (Z, 

T
**

) be two functions such that gof: (X, T) → (Z, T
**

) is a 

strongly e-closed function. Then: 

a) If f is e-irresolute and surjective. Then, g is strongly 

e-closed. 

b) If g is e-irresolute and injective. Then, f is strongly 

e-closed. 

Proof: Similar to the proof of theorem (6.9). 

8. Conclusion 

Generalized open and closed sets play a very a prominent 

role in general Topology and it applications. And many 

topologists worldwide are focusing their researches on these 

topics and this mounted to many important and useful results. 

Indeed a significant theme in General Topology, Real analysis 

and many other branches of mathematics concerns the 

variously modified forms of continuity, separation axioms etc 

by utilizing generalized open and closed sets. One of the 

well-known notions and that expected it will has a wide 

applying in physics and Topology and their applications is the 

notion of e-open sets. The importance of general topological 

spaces rapidly increases in both the pure and applied 

directions; it plays a significant role in data mining [6]. One 

can observe the influence of general topological spaces also in 

computer science and digital topology [7–9], computational 
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topology for geometric and molecular design [10], particle 

physics, high energy physics, quantum physics, and 

Superstring theory [11–16,17]. In this paper we introduced 

and investigated the notions of new classes of functions which 

may have very important applications in quantum particle 

physics, high energy physics and superstring theory. 

Furthermore, the fuzzy topological version of the concepts 

and results introduced in this paper are very important. Since 

El-Naschie has shown that the notion of fuzzy topology has 

very important applications in quantum particle physics 

especially in related to both string theory and ε ∞  theory.  
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