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Abstract 
This paper presents a new definition regarding inverse number sequence distance, proving 

that it satisfies five of the six conditions put forward by Cook and Seiford that sequence 

distance needs to meet. Sequence distance based on the absolute value has been separately 

used to solve minimum violation ranking scheduling problems that contained six variable 

sequences. Results have shown that the degree of overlap for the solution space of the 

two-distance scale was high; there were 176 optimal solutions through the use of the 

inverse number sequence distance. The proportion of the same solutions was 68.8%, and 

the sequence distance scales based on the absolute value were 228 and 42.0% respectively. 

The two-distance scale explains the sequence distance from different angles, but it can be 

seen from the data that the inverse number sequence distance explains the distance of 

sequence more fully than absolute distance, so the hit rate is relatively higher. Also we 

considered the sequence distance of n variables. The solution space is n!, the calculation is 

very large, so we have chosen the gravity optimization algorithm in order to solve it. 

Results show that using the proposed algorithm saves time and results in a good effect 

solution. 

1. Introduction 

In practice, there are many decision-making problems: choices regarding tourism 

destinations, municipal elections, and sporting events; for many of them it is necessary to 

weigh multiple criteria in decision-making. In other words, for the same question we will 

have different preference sequences under the condition of different criteria. For the 

purpose to find which has the highest degree of consistency with all sequences, it is 

necessary to determine the sequence from the these preferences [1-5]. 

For more than two centuries, ranking preference sequence problems have been a hot 

research topic [6-9]. The original theory, produced during the 18th century's first election, has 

evolved into today's social choice theory. A number of researchers have conducted extensive 

studies on the problem: Ali[1], Goddard [2], Moon [3], as well as others have done work 

researching the ranking problem, which is about the football match cycle back to the game 

[10-12]. Among them, in Cook and Lawrence [13] put forward six conditions that sequence 

distance should meet, containing three choice conditions and three optional conditions. Results 

show that the only sequence distance scale that meets the six conditions is: 

1

( , ) | |,   and  represent two different sequences
M

cs i i

i

d A B a b A B
−

= −∑ . 



24 Zhenyou Wang et al.:  Inverse Number Sequence Distance of Ordinal Preference Ranking  

 

 

The sequence distance is a way to measure an individual's 

ranking difference in the two sequences, and then we need to 

calculate the sum of all the individual ranking deviations, 

which is then used to measure the distance of two sequences. 

This paper presents a new definition and proofs regarding 

the inverse number sequence distance. We have been solved 

minimum violation ranking scheduling problems through a 

contrastive analysis of the solution space, which the inverse 

number sequence distance and the absolute value sequence 

distance method are applied. We have continued the analysis 

of the advantages and disadvantages, and finally used a 

gravity optimization algorithm to calculate the optimal 

solution. 

2. Data Representation 

Sequence distance can take many forms, such as matrix 

expression or vector expression. 

2.1. Pairwise Comparison Matrix Expression 

Form 

The distance of matrix expression between the two objects 

is a kind of common sequence data expression. Through the 

comparison between the two matrix, then we use 0, 1 to 

represent the relationship of the two respectively. As shown 

below: 

1,         represent that  is better than 

0,         represent that  is better than 
ij

i j
a

j i

= 


. 

If there are n variables, there are n n× pairs to compare, 

which will make up the comparison matrix ( )ijA a= . 

2.2. Vector Expression 

For vector expression 
1 2

( , ,..., )
n

A a a a= , 
i

a  represents 

the i-th variable location in the sequence. For example, let's 

assume that the variables of sequence A are: a, b, c, and d in 

turn; then 
1

(2,1,4,3)A =  represents that a is in second place, 

b is in first place, c is in fourth place, and is in third place. Yet 

2
(1,4, 2.5,2.5)A =  represents that a is in first place, b is in 

fourth place, and c and d are in second and third place 

together. 

3. Sequence Model of the Preference 

3.1. Inverse Number Definition 

In advanced algebra [14-16], arrangement and inverse 

number is defined as following: 

Arrangement: a sequence array that consists of 1, 2,..., n is 

called an n-level arrangement. 

Inverse number: if the position sequence of two numbers is 

in contrast to their size order in a sequence, it is an inverse 

order. The total number of inverse order in a sequence is called 

the inverse number of sequence. 

We have a new understanding of the above two definitions. 

In actuality, an inverse number is the sum of the inverse order 

that compares the position of each number in a random 

arrangement relative to the natural order n (1, 2,..., n). An 

inverse order can be eliminated by a data exchange. Suppose 

now we get the inverse number of the two random 

arrangements n1, n2 relative to the natural order n(notes for

( 1, ) and ( 2, )n n n nτ τ ). If ( 1, ) ( 2, )n n n nτ τ< , then n1 

requires less change than n2 to become a natural number 

sequence. So the inverse number of two sequences can be 

called as their distance. Consequently, it can be said that the 

distance between n1 and n is closer than the distance between 

n2 and n. 

Obviously, the arrangement of the data defined above does 

not contain the same data. We have promoted a method that 

calculates the inverse number of the number sequence: a 

random number sequence for which the length is n and a 

natural number sequence that is then applied to any two 

number sequence. We established a natural number sequence 

firstly according to the element position information of one 

array; then we have built an number sequence according to the 

relative information of the element location for the other array. 

The result that occurs is a situation like a random number 

sequence for which the length is n and a natural number 

sequence; we then used this method to calculate their inverse 

number. A concrete example is shown in Figure 1: (M 

represents the inverse number sequence distance of two 

arrangements). 

 

Figure 1. Relativeinverse number concept map. 

3.2. Based on the CS Vector Mode Preference 

Sequence Distance Meet the Conditions 

According to the different ordinal preference expression 

forms, Cook and Seiford have provided several measurement 

methods of the ordinal preference distance when working with 

group decision-making problems, and put forward some 

conditions that the sequencing vector distance measurement 

function must satisfy. These conditions are called the CS 

mode: 

Suppose the sorting vectors are as follows: 

1
( ,..., )

M
A a a= , 1

( ,..., )
M

B b b= , 1
( ,..., )

M
C c c=  
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Where 
1 2
, ...,

M
a a a , 

1 2, ..., Mb b b  
and 

1 2
, ...,

M
c c c

 
are both a 

full permutation for which that number is between 1 and M;

, ,
m m m

a b c  all represent the ranking position of the scheme 

m
S ; ( , )d A B

 
is a distance measure function of sorting vector

A  and sorting vector B . Cook and Seiford think ( , )d A B  

should meet the following conditions: 

Condition 1: ( , ) 0d A B ≥ . ( , ) 0d A B =
 

if and only if 

A B= . 

Condition 2: ( , ) ( , )d A B d B A= . 

Condition 3: ( , ) ( , ) ( , )d A B d B C d A C+ ≥ . 

Condition 4: ( , ) ( , )d A B d A B′ ′ = , when A′  and B ′  are 

the new formation of the sequencing vector after A  and B  

make the same ranking transfer. 

Condition 5: 
* *( , ) ( , )d A B d A B= , when

*

1( ,..., , 1)MA a a M= + , 
*

1( ,..., , 1)MB b b M= + . 

Condition 6: The minimum effective distance between the 

sequences is 1. 

Seiford and Cook proved that only sequence distance 

measure that meets the sixth conditions is: 

1

( , ) | |
M

cs i i

i

d A B a b
=

= −∑ . 

3.3. Proof Process of the Inverse Number 

Sequence Distance Satisfies the 

Conditions 

Condition 1: ( , ) 0d A B ≥ . ( , ) 0d A B =
 

if and only if 

A B= . 

Proof: Obviously, according to the definition of inverse 

number we can get: ( , ) 0d A B > , for all the A and B; 

( , ) 0d A B =
 

if and only if A B= . 

Sufficiency: When A = B, the elements in the sequence A 

and B have the same location; then 

( , ) 0 0 ... 0 0d A B = + + + = . 

Necessity: proof by contradiction. Suppose A≠B, where 

1
( ,..., )

M
A a a= , 

1
( ,..., )

M
B b b= , elements 

i
a

 
of sorting A 

are integers between 1 and M, and elements 
i

b  of sorting B 

are integers between 1 and M. 

When A≠B, there are at least two numbers in A whose 

positions change relative to B, so ( , ) 1d A B ≥ , and 

( , ) 0d A B =  contradictions. Therefore, when ( , ) 0d A B = , 

A=B. 

Condition 2: ( , ) ( , )d A B d B A= . 

Proof: Let's use a mathematical induction to prove that the 

relative inverse number of any two sorting in stances is equal. 

When 1n = , it is clearly established. 

When 2n = , if A, B are the same, then the inverse number 

is 0. 

If A, B are different, assume : (1, 2)A , : (2,1)B , then

{ } { } 1B A A B= = ; : (2,1)A , : (1, 2)B . 

Suppose when the series is 1n − , a conclusion is established. 

Namely, the inverse number of 
1 2 3 1

: ...
n

A i i i i −  
and 

1 2 3 1
: ...

n
B j j j j −  

for each other is 
1

k . 

When the series is n,we added element t; its position in A is 

x and in B is y, then: 

1 2 3 1 1 1 1 2 3 1 1 1
: ... ...i   : ... ...j  

x x n y y n
A i i i i ti B j j j j tj− + − − + − . 

If x y= , 
1

{ } { }B A A B k′ ′ ′ ′= = . Do not break general，

assume y x> , 

(1) B ′ relative to A′ , 
y

t  and 
1 1

...
x y

t t t+ −、 、、  constitutes 

an inverse order, then 
1

{ } ( 1)B A k y x′ ′ = + − − . 

(2) A′ relative to B ′ , 
x

t
 

and 
1 2

...
x x y

t t t+ +、 、、  constitutes 

an inverse order, then 
1

{ } ( 1)A B k y x′ ′ = + − − . 

Therefore, proposition 
1

{ } { } ( 1)B A A B k y x′ ′ ′ ′= = + − −
 

is 

founded. 

Condition 3: ( , ) ( , ) ( , )d A B d B C d A C+ ≥ . 

Proof: Assume
1

( ,..., )
M

A a a= , 
1

( ,..., )
M

B b b= ,

1
( ,..., )

M
C c c= . For the three sequences contain in different 

elements, we ruled the sorting of elements in A as a standard 

order. Then: 

The inverse orders of 
1

( ,..., )
M

B b b=
 

are

1 1 2 2
{( , )( , )...( , )}

i j i j in jn
b b b b b b . 

The inverse orders of 
1

( ,..., )
M

C c c=
 

are

1 1 2 2
{( , )( , )...( , )}

i j i j im jm
a a a a a a . 

So ( , )d A B n= ; ( , )d A C m= . 

(1) When
1 1 2 2

1 1 2 2

{( , )( , )...( , )}

{( , )( , )...( , )}

i j i j in jn

i j i j im jm

b b b b b b

a a a a a a φ=

∩

,

( , )d B C n m= + . 

(2) When
1 1 2 2

1 1 2 2

{( , )( , )...( , )}

{( , )( , )...( , )}

i j i j in jn

i j i j im jm

b b b b b b

a a a a a a

⊆
, ( , )d B C m n= − . 

(3) When
1 1 2 2

1 1 2 2

{( , )( , )...( , )}

{( , )( , )...( , )

i j i j im jm

i j i j in jn

a a a a a a

b b b b b b⊆
, ( , )d B C n m= − . 

(4) When
1 1 2 2

1 1 2 2

{( , )( , )...( , )}

{( , )( , )...( , )}

i j i j in jn

i j i j im jm

b b b b b b

a a a a a a φ≠

∩

,

1 1 2 2

1 1 2 2

1 1 2 2

1 1 2 2

( , ) | {( , )( , )...( , )} |

| {( , )( , )...( , )} |

| {( , )( , )...( , )}

{( , )( , )...( , )} | .

i j i j in jn

i j i j im jm

i j i j in jn

i j i j im jm

d B C b b b b b b

a a a a a a

b b b b b b

a a a a a a

= +

−

∩
 

So we have obtained: ( , ) | |d B C n m≤ − . 

Therefore, when n m≥ , ( , ) ( , ) ( , )d A B d B C d A C+ ≥ ; 

when n m≤ , 

( , ) ( , ) | | ( , )d A B d B C n n m n n m m d A C+ ≤ + − = − + = = . 

Namely ( , ) ( , ) ( , )d A B d B C d A C+ ≥  is founded. 

Condition 5: 
* *( , ) ( , )d A B d A B= , when

*

1( ,..., , 1)MA a a M= + , 
*

1( ,..., , 1)MB b b M= + . 
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Proof: 
* *( , ) ( , )d A B d A B= , when 

*

1( ,..., , 1)MA a a M= + ,

*

1( ,..., , 1)MB b b M= + . 

Assume: 
1

( ,..., )
M

A a a= , 
1

( ,..., )
M

B b b= ; we ruled the 

sorting of elements in A as a standard order. Then the inverse 

number of B is n, and its set is 1 1 2 2{( , )( , )...( , )}i j i j in jnb b b b b b . 

We added an element of M + 1 in the end of sequence A , 

then 
*

1
( ,..., , 1)

M
A a a M= + . We also ruled the sorting of 

elements in A as a standard order. In addition, we added an 

element of M + 1 to the end of sequence B , then
*

1
( ,..., , 1)

M
B b b M= + . Because the position of the previous 

elements had not changed, the inverse orders of 
*B  were also 

1 1 2 2{( , )( , )...( , )}i j i j in jnb b b b b b , but there was no inverse order 

for M + 1 and the rest of the elements. Therefore, 
* *

( , ) ( , )d A B n d A B= = . 

Condition 6: Minimum effective distance between the 

sequences is 1. 

Proof: Assume 
1

( ,..., )
M

A a a= ; clearly, there must be a 

sequence 
2 1

( , ,..., )
M

X a a a= . Then the inverse order of 

sequence X on the basis of sequence A is 
2 1

( , )a a ，so there 

must be a minimum effective distance d = 1 in any sequence. 

4. Application Example 

4.1. Data Form of Expression 

We consider a minimum violations ranking problem that 

contains six variable sequences. In order to express this more 

easily, this example's data uses the vector expression form. 

Now suppose there are six variables: a, b, c, d, e, f, and there 

are two sortings: 
1

(2,5,3,6,1, 4)A =
 

and 
2

(1,4,6,5,3,2)A = . 

In order to stay in line with the following expression, the 

sorting sequence is shown in the table below: 

Table 1. Exampleinitial sequence. 

2 5 3 6 1 4 

1 4 6 5 3 2 

4.2. Preference Distance to Find the Optimal 

Solution 

We have found that the solution of the inverse number 

sequence distance and Euclidean distance, respectively, by 

using the traversal method. As shown in the figure below, the 

X-axis represents the sequence, and the y-axis represents the 

sum of the distance between the sequence and the above two 

sequences. 

Through the two images above, it is evident that two of the 

solution spacesin the distance of the overlap degree are 

high.An inverse number sequence distance can be obtained 

from the optimal solution for 176, the absolute value distance 

ofthe optimal solution for 228. Among them, the common 

optimal solution number is 96. Yet, the inverse number 

sequence distance in common proportion to the optimal 

solution is 68.8%, and the absolute distance is 42.0%. The 

two distances explain the sequence distance from different 

angles, but it can be seen from the data that the inverse 

number sequence distance explains the distance of the 

sequence more fully than the absolute distance; the hit rate is 

relatively higher. 

 

Figure 2. Inverted number distance solution space diagram. 

 

Figure 3. Absolute value distance solution space diagram. 

4.3. Borda Method 

This method was put forward by Borda and includes a 

detailed analysis by Kendall; the main idea is to calculate the 

sum of each variable assigned to the sorting order. If there are 

three variables, a, b, c, and there are 60 people voting to sort 

these three variables, the final results in Table 2 shows: 

Table 2. The Borda algorithm example data. 

 Variable scores 

Votes a  b c 

23 1 2 3 

17 3 1 2 

2 2 1 3 

10 2 3 1 

8 3 2 1 
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Each variable total score should be: 

: 23 1 17 3 2 2 10 2 8 3 122a × + × + × + × + × =  

: 23 2 17 1 2 1 10 3 8 2 111b × + × + × + × + × =  

: 23 3 17 2 2 3 10 1 8 1 127c × + × + × + × + × =  

So the result is
* (2,1,3)A =  using the Borda method. The 

absolute value obtains 176 optimal solutions, but we can use 

the Borda method to get an optimal solution. The obtained 

results are as follows:
* (1,5,4,6, 2,3)A = . 

5. Gravitation Search Algorithm 

5.1. The Implementation Process of the 

Algorithm 

Firstly, we randomly initialized the particle's position and 

speed to calculate each particle's fitness function, and then 

calculate the inertial mass according to the fitness of each 

particle, calculating the best value of inertial mass and the 

worst value. Secondly, we calculated the gravity on each 

particle in each dimension, solving for gravitational 

acceleration. Finally, we updated the particle's position and 

speed in circulation to find the final result. Specific steps are 

as follows: 

(1) Identify the search space. 

(2) Random initialization. 

(3) Calculate the particle's fitness. 

(4) Update the gravity coefficient G(t), the best value 

best(t), the worst value worst(t), and the inertial mass of 

particles. 

(5) Calculate the sum of the force in all directions. 

(6) Calculate the acceleration and speed. 

(7) Update the positions of the particles. 

(8) Return to step (3), loop iteration until it meets either 

the requirements of cycles or precision. 

(9) End of cycle, output the result. 

5.2. Application of Gravitational Search 

Algorithm 

In the process of using a method to solve the inverse 

number distance, the optimal solution that we search is the 

sequence for which the sum of the distance is the shortest 

among all other sequences. When lesser elements are in the 

sequence, however, we can use a traversing method, by 

gradually ordering of all possible traverses to find the optimal 

solution. However, the complexity of the algorithm is O(n!), 

so we cannot use this method to find the optimal solution 

when n is too large. 

We have used a gravitational search algorithm (this 

algorithm can determine one of the optimal solution, but does 

not determine all optimal solutions like the traverse method). 

After a certain number of sequences, though, we can use the 

search algorithm to solve the inverse number distance. 

However, the gravitational search algorithm is used in 

continuous data, and the inverse number sequence distance 

that we have defined is discrete data, which is between 1 and n; 

consequently, the algorithm should be improved once more 

while we are in the application. The improved aspects are as 

follows: 

(1) When initializing the solution space, the random 

number is between 1 and n. 

(2) An update particle is given a serial number according to 

the size of its location in solving the process of iteration. 

(3) A new position matrix carries on the iteration as well. 

Through these improvements, eventually we will obtain the 

optimal solution. 

5.3. Numerical Example 

Let's assume that we have three initial sequence as 

following, and the sorting is from 1 to 10, respectively. 

Table 3. Example data of gravitation algorithm. 

�� �� �� �� �� �� �� �	 �
 ��� 

2 5 7 8 1 3 9 4 10 6 

1 3 9 2 6 4 5 8 7 10 
5 6 2 9 3 8 4 1 7 10 

 

Figure 4. Gravitation solving iterative process. 

One of the most optimal sequences is obtained by using the 

above methods as shown in Table 4, The optimal solution is 

obtained by using the iterative method as shown in Table 5. 

Table 4. Optimal solution of gravitation algorithm. 

�� �� �� �� �� �� �� �	 �
 ��� 

1 3 6 9 4 2 7 8 5 10 

Table 5. Optimal results of Iteration. 

�� �� �� �� �� �� �� �	 �
 ��� 

1 4 7 9 3 2 6 8 5 10 

The gravity algorithm only needs 8 iterations get the 

optimal solution; it is accurate that here there is only areversal 

of two pairs of numbers, compared with the optimal solution 

of the iterative method. Thus, the gravity optimization 
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algorithm not only demonstrates superior performance in 

computing time, but also provides precise results. 

6. Conclusion 

This paper established a sequence distance that was defined 

based on minimum violation rankings. Relative to the 

absolute value, when using the distance to solve the problem 

of the real preference, this definition of the distance is better 

than Cook and others. But there are still some problems that 

leave room for subsequent improvement: inverse number 

distances consider the position between the two variables to be 

opposite from each other without considering to what extent 

the inverse order compares the gap between the two, and 

cannot reflect completely information regarding voter 

preference (e.g., degree of preference), consequently 

providing no quantitative consideration. 
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