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Abstract 
In this paper we investigate the use of finite element method (FEM) as a numerical 

solution of the partial differential equations arising in finance. First the Black-Scholes 

equation with transaction cost measure and Portfolio risk measure is established. The 

FEM is then used to transform the differential equation into an algebraic system of 

equations and to discretize the continuous domain of the problem by means series of 

simple geometric forms called finite elements, for which the governing relations on the 

entire continuous domain are valid on each element. Under some assumptions, the 

approximate solution in the entire continuous domain of the problem is obtained by 

means of trial function also called the form functions. 

1. Introduction 

We considered numerical solution of the general Black-Scholes partial differential 

equation with volatile portfolio risk measure. Black-Scholes [1] obtained option 

pricingmodel with a constant volatility. It is well known that this model is not consistent 

with observed option prices. One possible remedy for this is to make the volatility a 

function of time and the strike price. The price of an option based on option pricing 

model can be obtained as the solution of a parabolic differential equation. 

It is recognized that the options market can help market completeness by providing 

informational efficiencies. The Black-Scholes model is a well-known model use to price 

options. The Black-Scholes formula essentially tells investors what value to put on a 

financial derivative, such as a call option on a stock. Option pricing problems in the 

investment project evaluation have been solved by the simulation-based methods [2-4] 

and by the FDM method in [5], delaying the study and the application of other numerical 

methods like the finite elements method (FEM), which is widely documented and used in 

others fields of scienceand engineering for decades. There is not a wide literature about 

the use of the FEM in real option pricing problems, in most cases the numerical solutions 

to the pde governing the option pricing models (based on the Black & Scholesmodel) are 

found using the FDM. At the present state of art, some works are related in some way to 

the FEM applied tothe options pricing problems like the work of [6], who realize a 

variational analysis of the Back -Scholes equation considering stochastic volatility. Ern 

et al, [7] used the adaptive FEM to the valuation of European optionswith local  
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volatility, focusing on adaptive control of errors. Zhang [8] 

studied the American options valuation through an adaptive 

FEM using a variational formulation. Topper [9], on the other 

hand, in his technical note, studied in a generalized way the 

real options pricing using finite element based on a residual 

formulation. 

In this work we investigate the numerical solution of Black 

Scholes equation with volatile portfolio risk measure by 

using the finite element method. 

2. Stochastic Volatility Model 

In order to determine the value of an economic asset, it is 

needed to take into account at least two aspects of random 

variability: the growth of the asset and its price. The price of 

the underlying asset is assumed to be a geometric Brownian 

motion ��� = ������ + 	�
��,                         (1) 

and the volatility	is allowed to depend on �� 	���	�. Where �� is the stockprice and	� is the time. If the volatility function 

satisfies suitable regularity conditions, the Black Scholes 

formula gives the option’s price at time < �: �� = �∗������������ − �����ℱ� ,                  (2) 

Where�∗�|ℱ�� stands for the conditional expectation with 

respect to the risk neutral probability. 

The Black-Scholes model [10-12] is a powerful tool for 

valuation of equity options. This model is used for finding 

prices of stocks. Thismodel considers that the rate of return 

of the subjacent asset follows a lognormal distribution and its 

behavior cannot be deterministically determined. To obtain 

the process followed by the option price, one can show that 

the Black-Scholes equation takes the form 

"#"� + $� "#"% + &'	' "(#"%( − $) = 0,                   (3) 

where � is the payoff function,. � = ����, the stock price,$ is 

the risk-free rate,� is the time since the option was issued,0 ≤� ≤ � and 	 is the asset volatility. Equation (3) is a backward 

moving equation, i.e. it is solved from future to the present 

time. 

To complete the model it is necessary to define appropriate 

time and boundary conditions associated with (3). 

Theseconditions depend on the kind of option (call or put; 

European or American) being evaluated and on the 

numericalmethod to be applied. A call/put option gives the 

owner the right to buy/sell the underlying real asset for a 

certain price ona certain date. The specified price is known as 

the exercise or strike price and will be denoted by K and the 

specified date isknown as the expiration date or maturity date 

and will be denoted by T. An European option can be 

exercised only at theexpiration date T itself, while an 

American option can be exercised at any time between the 

issue date and the expirationdate. On the other hand, the 

FEM requires defining essential and natural boundary 

conditions to solve the pde model unlikethe FDM which 

requires just essential boundary conditions. An essential 

boundary condition is defined in terms of thevariable’s value 

at the domain’s boundary and a natural boundary condition is 

defined in terms of the variable’s derivative value. 

Numerical instability may occur when solving (3) 

numerically due to the fact that it is a PDE with variables 

coefficients and due to the existence of the convective term 

[13]. This can be overcome by the following transformation 

of variables: 

Let � = ��,, � = � − �-( '. , ���/�0, 1� = &2 )��, ��, Now 

3)3� = 3)31 313� + 3)3� 3�3� = −	'2 5 3/31, 3)3� = 5 3/3� = 5� 3/30, 
and 3')3�' = 5 3'/3�' = 5�' 63'/30' − 3/307, 

Substituting these derivatives in (3) one gets 

−	'2 5 3/31 + 	'2 5 63'/30' − 3/307 + $5 3/30 − $5/ = 0 

Introducing the measure of the portfolio volatile risk 

measure, we obtain 

− -(' 5 "8"9 + -(' 5 :"(8",( − "8",; + $5 "8", − $5/ = �$�< + $#= 0,  (4) 

which is the Black Scholes equation with transaction costs 

measure and volatile portfolio Risk measure, where $ is 

therisk free rate, 	  is the volatility. 0 is the stock price 

where	'�0, �� depends on a solution > = /�0, �� as follows 

	'�0, �� = 	?'�1 − /�0 3'/30' �0, ���AB. 
$�< = D|Γ|	0√2Π . 1√Δ� 

is the transaction costs measure 

$#= = 12I	J0'Γ'Δ� 
is the Volatile portfolio risk measure 

Γ = "(8",(. 

Minimizing the total risk with respect to the time LagΔ�we 

have a portfolio with a minimize risk given as 

−	'2 5 3/31 + 	'2 5 63'/30' − 3/307 + $5 3/30 − $5/ = 32LD'I2M N	' O0 3'/30'OPB 
For simplicity of solution and without loss of generality, 
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we choose the minimized risk as 

QRS�∆��$�< + $#U�VB( = W0' "(8",(,         (5a) 

with 

W = �X'�B( Y<(Z'[ \A( 	?X. 

They change in the value of the portfolio after minimizing 

the total risk with respect to time lag is given as 

− -(' 5 "8"9 + -(' 5 :"(8",( − "8",; + $5 "8", − $5/ = W0' "(8",(, (5b) 

since transaction cost and risk involved in the business is a 

drain to the portfolio, we have a change in the portfolio now 

becomes 

−	'2 5 3/31 + 	'2 5 63'/30' − 3/307 + $5 3/30 − $5/ − W5 63'/30' − 3/307 = 0 

"8"9 = L1 − ]̂(( N "(8",( + L �̂(( − 1 + ]̂(( N "8", − �̂(( /. 

Let 

_ = W-('
, ` = $-('  

"8"9 = �1 − _� "(8",( + �` − 1 + _� "8", − `/.	 (6) 

Now let 

a = 12 �` − 1 + _�, / = 12 �` + 1 + _� = a + 1 

So that 

/' = a' + 14 �` + _� 
/�0, 1� = ��c,�8(9>�0, 1�. 3/31 = ��c,�8(9�−/'�>�0, 1� + 3>31 ��c,�8(9 

= ��c,�8(9 d−/'> + 3>31e, 3/30 = ��c,�8(9 d−/'> + 3>30e, 3'/30' = ��c,�8(9 6a'> − 2a 3>30 + 3'>30'7. 
Inserting these equation (6) and dividing by ��c,�8(9 

−/'> + 3>31 = �1 − _� 6a'> − 2a 3>30 + 3'>30'7 + �` − 1 + _� d−/'> + 3>30e − `> 

>9 = �1 − _� 3'>30' + �−2a + 2_ + ` − 1 + _� 3>30 + �a' − _a' − `a ± _a − `�> 

>9 = �1 − _� "(g",(                                 (7) 

Now we have the problem (7) with initial condition >�0, 0� = h�0� = R�0i���c�&�, − �c, , 0j, for call option, 

and >�0, 0� = h�0� = R�0i��, − ��c�&�, , 0j , for put 

option. 

Applying the Fourier transformation with respect to 0 in 

equation (7) we have 331 >?�k, 1� = �1 − _��Sk�'>?�k, 1�, 
where 

>?�k, 1� = l >�0, 1��'[m,no
�o �0. 

Thus the solution in the Fourier domain can be presented 

as 

>? = �1 − _�>?�k, 0���n(p . 
Now the initial function is >�0, 0� = h�0�.	  Hence 

applying the inverse Fourier transformation 

We write the exact solution as 

>�0, 1� = �1 − _�√4M1 l h�k�o
�o ���qrs�(Pp �k. 

3. Brief on Finite Element Method 

The finite element method (FEM) is a numerical technique 

for finding approximate solutions to boundary value 

problems for partial differential equations. It is also referred 

to as finite element analysis (FEA). It subdivides a large 

problem into smaller, simpler parts that are called finite 

elements. The simple equations that model these finite 

elements are then assembled into a larger system of equations 

that models the entire problem. FEM then uses variational 

methods from the calculus of variations to approximate a 

solution by minimizing an associated error function. A 

typical work out of the method involvesdividing the domain 

of the problem into a collection of subdomains, with each 

subdomain represented by a set of element equations to the 

original problem, followed by systematically recombining all 

sets of element equations into a global system of equations 

for the final calculation. The global system of equations has 
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known solution techniques, and can be calculated from the 

initial values of the original problem to obtain a numerical 

answer. 

In the first step above, the element equations are simple 

equations that locally approximate the original complex 

equations to be studied, where the original equations are 

often partial differential equations (PDE). To explain the 

approximation in this process, FEM is commonly introduced 

as a special case of Galerkin method. The process, in 

mathematical language, is to construct an integral of the inner 

product of the residual and the weight functions and set the 

integral to zero. In simple terms, it is a procedure that 

minimizes the error of approximation by fitting trial 

functions into the PDE. The residual is the error caused by 

the trial functions, and the weight functions are polynomial 

approximation functions that project the residual. The 

process eliminates all the spatial derivatives from the PDE, 

thus approximating the PDE locally with 

� a set of algebraic equations for steady state problems, 

� a set of ordinary differential equations for transient 

problems. 

These equation sets are the element equations. They are 

linear if the underlying PDE is linear, and vice versa. 

Algebraic equation sets that arise in the steady state problems 

are solved using numerical linear algebra methods, while 

ordinary differential equation sets that arise in the transient 

problems are solved by numerical integration using standard 

techniques such as Euler's method or the Runge-Kutta 

method. 

In step (2) above, a global system of equations is generated 

from the element equations through a transformation of 

coordinates from the subdomains' local nodes to the domain's 

global nodes. This spatial transformation includes 

appropriate orientation adjustments as applied in relation to 

the reference coordinate system. The process is often carried 

out by FEM software using coordinate data generated from 

the subdomains. 

FEM is best understood from its practical application, 

known as finite element analysis (FEA). FEA as applied in 

engineering is a computational tool for performing 

engineering analysis. It includes the use of mesh generation 

techniques for dividing a complex problem into small 

elements, as well as the use of software program coded with 

FEM algorithm. In applying FEA, the complex problem is 

usually a physical system with the underlying physics such as 

the Euler-Bernoulli beam equation, the heat equation, or the 

Navier-Stokes equations expressed in either PDE or integral 

equations, while the divided small elements of the complex 

problem represent different areas in the physical system. 

FEA is a good choice for analysing problems over 

complicated domains (like cars and oil pipelines), when the 

domain changes (as during a solid state reaction with a 

moving boundary), when the desired precision varies over 

the entire domain, or when the solution lacks smoothness. 

For instance, in a frontal crash simulation it is possible to 

increase prediction accuracy in "important" areas like the 

front of the car and reduce it in its rear (thus reducing cost of 

the simulation). Another example would be in numerical 

weather prediction, where it is more important to have 

accurate predictions over developing highly nonlinear 

phenomena (such as tropical cyclones in the atmosphere, or 

eddies in the ocean) rather than relatively calm areas. 

4. Discretization of Variables in the FEM 

The Finite Element method (FEM) is an approximate 

method that allows solving the PDE model governing the 

option pricing problems. The FEM discretizes the continuous 

domain of the problem by means series of simple geometric 

forms called finite elements, for which the governing 

relations on the entire continuous domain are valid on each 

element. Under this assumption, the approximate solution in 

the entire continuous domain of the problem can be obtained 

by means of trial function also called the form functions. The 

FEM transforms the differential equation into an algebraic 

system of equations which can then be solved easily by 

known numerical methods. 

Consider now, the case of valuing an European call 

option	)��, �� through the diffusion forward moving Black-

Scholes model defined previously as in (7). To solve this 

problem through the FEM it is necessary to discretize 

appropriately the time –space domain of the problem, 

Ω9,, = u�1, 0�|0 ≤ 1 ≤ 	'�2 , 0�o ≤ 0 ≤ 0�ov. 
For this purpose, the Kantorovitch’s discretization is used 

as in [13]. This kind of discretization element is a partial 

discretization by finite the time domain Ω9 is discretized by 

finite difference, see [14,15]. Using Kantorovitch’s 

discretization the approximate solution is obtained at each 

time	1 for the space domain Ω9,,: 1m = �x + SΔ1, S = 0,1, …�,                          (8) 0m = 0�o + �z − 1�Δ0, z = 1,2, … ,R + 1.	     (9) 

Using the above discretization we obtain a regular mesh of �� + 1��R + 1�  of discrete points �1m , 0{  for independent 

variables of the model. In this way, the domain’s intervals 

[0, 	'� 2]⁄  and ~0�o, 0o]  are divided in constant length 

subintervals ∆1 and ∆0 defined by ∆1 = 1� − 1x� = �'�2� , 
∆0 = 0��& − 0&R = 0o − 0�oR . 

The finite element can be defined by two adjacent discrete 

points 0{ 	���	0{�&  and or by three adjacent discrete 

points0{ , 0{�&	���	0{�' . The number of finite elements in Ω,	S�	R	���	R 2⁄  respectively in the first and the second 

case. For R + 1 > 3,R is an even number.kdenotes the local 

coordinate which can take integer values only. It is used to 

define all variables at each finite element. At each z finite 

element it is necessary to define the approximate solution	/ 

and the space variable	0 as a combination of its values at the 
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finite element’s nodes. For this purpose the form 

functions 	�2�k� , which is defined in terms of the local 

coordinate, are used. The Lagrangian form functions are 

commonly used. These are linear or quadratic type depending 

on the required approximation. The linear form functions are 

required for thefinite element with two nodes, and the 

quadratic function is needed for the elements with three 

nodes; see [13]. It can be seen that each form function �{�k�, 
is related to a finite element’s node j [14],which takes the 

value of unity at z  and zero at all other nodes. The 

approximate solution /  and the space variable 0, 
whenrestricted to a typical finite element can be written as a 

linear combination of node values using Lagrangian linear 

formfunctions as: 

/ = ∑ �2�k��2�1�{22�{ = &�n' �{ + &�n' �{�&,	         (10) 

0 = ∑ �2�k�02{22�{ = &�n' 0{ + &�n' 0{�&,               (11) 

where z5 denotes the number of nodes in the finite element. 

The solution / and the space variable 0 can be written as a 

quadratic combination of node values using Lagrangian 

quadratic form functions as 

/ = ∑ �2�k��2�1�{22�{ = −k &�n' �{ + �1 − k��1 + k��{�& + k &�n' �{�', (12) 

0 = ∑ �2�k�02{22�{ = −k &�n' 0{ + �1 − k��1 + k�0{�& + k &�n' 0{�' (13) 

when using the same form functions to define the 

approximate solution /  and the space variable 0  an 

isoparametric formulation is obtained from which the values �{ need to be found to know the approximate solution of the 

option pricing problem. 

5. Integral Formulation of the Partial 

Differential Equation 

Once the domain has been discretized it is necessary to 

find the value of time dependent parameters �{�1 ), called 

thegeneralized variables, which allow one to write the 

approximate solution at each finite element using equations 

(10) or (12). 

To get these generalized variables, it is necessary to define 

the weak or integral formulation of the differential equation 

ofthe option pricing problem which is obtained by the 

Galerkin weighted residue method. 

The Galerkin weighted residue method obtains the 

generalized variables �{�1), by minimizing the residue, say I.  Theresidue, I,  is the result of the exact solution being 

replaced by the approximate solution in ��/� 	− 	�	 = 	0 , 

where L is thedifferential operator and �  a function of 

independent variables. Hence, = 	��/� 	− 	� , where /  is an 

approximate solution. 

The residue I is minimized to zero by weighting it with 

the so-called weight functions wk. In the Galerkin method, 

the form functions are used as the weight functions e.g., �2 	= 	�2�k�. This results in the equation 

� �2I�Ω� = � �2���/� − ���Ω =� � �2�k�� L�1 − _� "(8",( − "8"9N�Ω = 0	              (14) 

to be solved,where 5 represents all nodes in Ω, . Using �� = Y�{�k�, �{�&�k�, …�2�k�\,the approximate solution / = �. �, 0 = �. �, �� = �0{ . 0{�&, … , 02  and �� = ��{ , �{�&, … , �2 ,	the expression (14) can be written as 

� �1 − _��� "(��.��",( �0 − � ��,�,�,�,� "(��.��"9 �0 = 0.	                                             (15) 

Changing to local variables for each element and integrating by part the first integral of (15) one has 

�1 − _��� "�", ���&
& − �1 − _�� "��", "�", ���k − � ��� "�"9 ��k&�& = 0.&�&                                          (16) 

where � = ","n.  It can be shown using (11) and (13) 

respectively, that �	��>���	 Δ0 2	. for the two node finite 

element Δ0 for the three node finite element. The term �� "�", ���&
&

 represents the natural boundary conditions 

evaluated at the extreme nodes of the element and defined by 

the column arrays 

�� = :− "8�", , "8��A", ;�                     (17) 

�� = :− "8�", , 0, "8��A", ;�                     (18) 

for two and three node finite elements respectively. 

Equation (16) demands that the form function used be a Dx 

class function. This means that (16) requires a continuous 

form function in the domain; this restriction is accomplished 

by the Lagrangian form function used in this work. 

Rearranging and introducing the array of form function’s 

derivatives 

� = 3�30 = 3�3k 3k30 = 3�3k = 3�3k ��& = L3�{3k , 3�{�&3k , … , 3�23k N ��&, 
so that (16) can be rewritten for each finite element as 

follows: 

Y� �����k&�& \ �� + �1 − _� Y� �����k&�& \ � = �� ,	    (19) 

which is an algebraic system. Equation (19) can be re-written 

as 
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D��� + �1 − _���� = �� ,	         (20) 

where ��  denotes the temporal derivative of the generalized 

variable,
"�"9 and 

D� = Y� �����k&�& \ and �� = Y� �����k&�& \. 
The system of equations presented by (20) is valid just for 

a single finite element. Therefore, it is necessary to find the 

general system of equations that defines the approximate 

solution in the entire domain Ω  at a certain time 1 . The 

system of equations for the entire finite system is represented 

by D�� + �1 − _��� = �,	                     (21) 

where 5 = ∑ ��, D = ∑ D����� = ∑ ����� , the sum is 

taken over all finite elements. 

Discretization of time variable 

To solve the algebraic system (21) it is necessary to 

approximate the temporal derivative of the generalized 

variable 3� 31⁄ at 1m . For this purpose, a backward finite 

difference approximation is used, ie.�� 	��	1m  is approximated 

by 

�� m = �����rA∆9 ,	                              (22) 

Where ∆1=1m − 1m�&. Substituting (22) and (21) we get 

d 1∆1 D + �e �m = d 1∆1 De �m�& + �, S = 1,2, … , � 

Where n is the number of nodes in the time domain 	Ω� . 
The above system of equations is of the form W� = �, which 

can be solved to obtain �m at 1m in terms of its previous value �m�&	��	1m�&. 
6. The A Posteriori Estimate 

If we consider a partition of the interval ~0, �]  into 

subintervals ~���&, ��], 1 ≤ R ≤ �, such that 0 = �x < �& … < �� = �. 
Set ∆�� ≔ �� − ���&, ∆� ≔ R�0Q∆��|1 ≤ R ≤ �V and 

�∆�� ≔ max'¡�¡� ∆�¢∆�¢rA .                (23) 

For continuous of �  on ~0, �], we introduce the notation �� = �����. 
The semi discrete problem arising from the implicit Euler 

Scheme is as follows: Find �>��x¡�¡� ∈ )	 such that 

�>� − >��&. /�x,� + ∆����¢�>�, /� = 0. / ∈ ), 1 ≤ R ≤ � (24a) >x = >x.                                   (24b) 

The existence and uniqueness of solution >� ∈ ) of (24a), 

(24b) can be shown for sufficiently small timestep ∆��. 
Theorem 1: Under the following assumption: A) The 

function 	  is continuously differentiable, and there exist 

constants 0 < 	�m� ≤ 	�¤,  and D- > 0,  such that for all �0, �� ∈ Ω × ~0, �] there holds 	�m� ≤ 	�0, �� ≤ 	�¤, ,                         (25) 

¦0 3	30 �0, ��¦ ≤ D-, 
B) The function r is continuous and nonnegative on ~0, �] 

and the time step-restriction 

∆�� < &'c. 

The semi discrete problem (24a) and (24b) admits a unique 

solution (see prove [13]). 

Given a null sequence ℋ of positive real numbers, for the 

discretization of the semi discrete problem (24a,) and (24b) 

in space, we use continuous, piecewise linear finite elements 

with respect to a family of simplicial triangulations 

�̈© , 1 ≤ R ≤ �, ª�	Ω	�ª$� ∈ �̈© , 
we denote by 0�m����. 0��¤,��� the endpoints of T and refer 

to ℎ� ≔ 0�¤,��� − 0����m�  as the length of T and to ℎ� ≔ R�0Qℎ�|� ∈ �̈©V as maximal size of the interval in �̈©. Moreover. for ¬ ⊆ Ω we refer to ��©�¬� as the set of 

nodes of �̈©		S�	¬	and associate with each � ∈ 	 �̈©the patch ��  according to 

�� ≔ ®Q�¯ ∈ �̈©|��©��¯�⋂��© 	��� ≠ ∅	V 
We assume that the family of triangulations is locally 

quasi-uniform in the sense that there exists a constant � > 0 

such that for two adjacent elements �, �′ ∈ �̈©there holds ℎ� ≤ ´ℎ�µ , ℎ ∈ ℋ 

For each ℎ ∈ ℋ, we define the finite element spaces by )�© ≔ Q/©� ∈ Dx�Ω�|/©�|� ∈ �&���, � ∈ �̈©V, )�©x ≔ )�© ∩ )x 

Where �&��� stands for the linear space of polynomials of 

degree 1	ª�	�. 
Assuming that >x ∈ )&©. The fully discrete problem reads 

as follows: Find �>©��&¡�¡�, >©� ∈ )�©x , 1 ≤ R ≤ �,  such 

that 

�>©� − >©��&, /© x,� + ∆����¢�>©�, /©� = 0. /© ∈ )�©x , (26a) 

>©x = >x,	                               (26b) 

If theorem one holds true. Then, the fully discrete problem 

admits a unique solution. 

For the fully discretized Black-Scholes equations (26a) 

and (26b), the global discretization error > − >©,·�  can be 

assessed by a time error estimator and a price error estimator. 

The time error estimator is local in time and global in price. 

It is given by 

¸� ≔ ¹�����c�¢rA -¢�º√' |>©� − >©��&|# , 1 ≤ R ≤ �, (27) 
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where 	�m� > 0	���	a ≥ 0  are constants from the 

assumption(23) and Garding’sine quality. On the other hand, 

the price error estimator is local both in time and price. It is 

given by 

¸�� ≔ ©�,¢¼q��� ½I��>©��&. >©� ½x,� . � ∈ ��©. 1 ≤ � ≤ �, (28) 

Where I��>©��&. >©�� stands for residual with respect to the 

strong form (6) of the Adjusted Black Scholes equation 

I��>©��&. >©��:= >©� − >©��&��� − 	'0'2 3'>©�30' − $0 3>©�30 + $>©� + W0' 3'>©�30'  

Moreover, let ¸� and ¸�,¾ be the time error and price error estimators given by (27) and (28), respectively. Then there exist 

a positive constant ¿ ≤ &' such that for a�� ≤ ¿ there holds 

:À> − >©,·�Á; ���� ≲ Ã D	�m�' D�>x��� + �	�m�' ÄÅ ¸�' + ���	�m�' Æ�����Ç�1 − 2a��m���&
m�&

�
��& Å ¸�,�'

�∈�¢È
É& '. Ê. 

where D;= 4D& + 2D' + DX.D�>x� is given by 

ÌR�0�2,1 + ����‖>x‖' + 12	�m�' ��&|>x|#'ÎA(. 
and Æ����� ≔ �1 + ����'‖>x‖' + max�2,1 + ����, 
7. Conclusion 

Solution to the adjusted Black-Scholes equation by the 

finite element method was discussed where the exact solution 

was first obtained by applying the inverse Fourier transform. 

Then finite element method, because it allows for a more 

rigorous analysis of problems with discontinuous data and 

posteriori error estimates is applied. With the FEM the 

differential equation was transform into an algebraic system 

of equations which can then be solved easily by known 

numerical methods. There after the price error estimator in 

time and price was determined. 
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