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Abstract 
The Variation of Parameters Method (VPM) use to solve initial and boundary value 

problems of vary objective nature. The logical results are calculated in terms of 

convergent series with easily computable components. The Variation of Parameters 

Method (VPM) is use without any, transformation or restrictive assumptions, 

perturbation and discretization is free from round off errors and calculation of the so 

called Adomian’s polynomials. The recommended algorithm is tested on higher 

dimensional initial and boundary value problems, Helmholtz equations and Boussinesq 

and nonlinear boundary value problems of various orders. The Numerical results tell the 

complete consistency of the proposed in ternVPM. 

1. Introduction 

A number of methods including exp –function, sink-Galerkin, perturbation, homotopy 

perturbation, variational iteration, finite difference, polynomial spline and Adomian’s 

decomposition are use to solve initial and boundary value problems [1-49] and 

references there in.. These initial and boundary value problems vary physical nature 

problems and an integral part in the study of engineering, shallow water wave,applied 

sciences, theory of stellar structure, physics, fluid mechanics and astrophysics. Motivated 

and inspired by the ongoing research in this way, we apply Variation of Parameters 

Method (VPM) [11, 13, 32, 36, 37] for solving a large class of initial and boundary value 

problems. The designed VPM is tested on higher dimensional initial and boundary value 

problems, Helmholtz equations, Boussinesq and nonlinear boundary value problems of 

various orders. The suggested method is free from round off errors, calculation of the so-

called Adomian’s polynomials, perturbation, linearization, discretization and uses only 

the initial conditions which are easier to implement and reduces the computational work 

while still maintaining a higher level of accuracy. It is worth mentioning that Ma et al. 

[11-13] used Variation of Parameters Method (VPM) for solving involved non-

homogeneous partial differential equations and obtained solution formulas helpful in 

constructing the existing solutions coupled with a number of other new solutions 

including rational solutions, solitons, positions, negatons, breathers, complextions and 

interaction solutions of the KdV equations. It has been observed that Ma’s VPM [11-13] 

is much better as compare to the above mentioned algorithms. Firstly, it does not require  
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the small parameter assumption which is a major drawback 

in the traditional perturbation methods. 

Moreover, Ma’s VPM is more reliable than Homotopy 

Analysis Method (HAM) which is a generalized Taylor series 

method, gives an infinite series solution and is coupled with 

all the deficiencies and limitations of this technique to have 

practical examples. Moreover, such schemes (HAM) are not 

compatible to cope with the secular terms arising in the 

higher-order approximate solutions, whereas Variation of 

Parameters Method (VPM) gives an asymptotic solution with 

few terms. The Ma’s VPM does not require the calculation of 

so-called Adomian’s polynomials and hence is a better option 

as compare to decomposition method. Moreover, Va riation 

of Parameters Method (VPM) is brief, concise and more 

generalized than the above mentioned technique and does not 

even require any unrealistic assumptions which ruin the basic 

physical structure of the nonlinear problems. Numerical 

results coupled with the graphical representations explicitly 

reveal the complete reliability of these algorithms. It needs to 

be highlighted that Ma et al. [11-26] also presented number 

of other revolutionary techniques for solving diversified 

nonlinear problems of physical nature. 

2. Mathematical Formulation of 

Helmholtz Equation 

The partial differential equation 

�		∂�μ∂x²	 � cu � 0



���
 

Where � is a constant. The Helmholtz equation is used in 

the study of stationary oscillating 

Processes. If � � 0 the Helmholtz equation becomes the 

Laplace equation. If a function � appears on the right-hand 

side of the Helmholtz equation, this equation is known as the 

inhomogeneous Helmholtz equation. 

The usual boundary value problems (Dirichlet, Neumann 

and others) are posed for the Helmholtz equation, which is of 

elliptic type, in a bounded domain. A value of � for which a 

solution of the homogeneous Helmholtz equation not 

identically equal to zero and satisfying the corresponding 

homogeneous boundary condition exists, is called an eigen 

value of the Laplace operator (of the corresponding boundary 

value problem). In particular, for the Dirichlet problem all 

eigen values are positive, and for the Neumann problem they 

are all non-negative. It is known that a solution of the 

boundary value problem for the Helmholtz equation is not 

unique for a value of � which coincides with an eigen value. 

If, on the other hand, the value of  is not an eigen value, the 

uniqueness theorem is valid. Boundary value problems for 

the Helmholtz equation are solved by the ordinary methods 

of the theory of elliptic equations (reduction to an integral 

equation, variational methods, methods of finite differences). 

In the case of an unbounded domain with compact 

boundary one can state exterior boundary value problems for 

the Helmholtz equation; if � � 0 , these have a unique 

solution which tends to zero at infinity. If � � 0, solutions 

tending to zero at infinity are usually not unique. In such 

cases additional restrictions are imposed to obtain a unique 

solution. 

The following mean-value formula is valid for a solution 

of the Helmholtz equation which is regular in a domain �: 

1
���Ω	���� � �� ˳"Г $%2' 2

()�� �*√�"�)(�			,()�� �*√�" 
where Ω is the sphere of radius * with centre at a point  ˳, 
which must lie entirely within � , and ,-	� "  is the Bessel 

function of order .. 

The equation was studied by H. Helmholtz in 1860, who 

obtained the first theorems on the solution of boundary value 

problems for this equation. 

3. Solution Procedure  

Consider the following Helmholtz equation 

	/�μ�ɸ, 2"
/ɸ²	 � /�μ�ɸ, 2"

/2	²	 3 μ�ɸ, ѱ" � 0 

Initial Condition 

μ�0, 2" � 2, μɸ	�0, 2" � 	2 � cosh	�2" 
The exact solution of the problem is μ�ɸ, 2" � yeɸ �ɸcosh�y) 

� , 2" � :��ɸ,;" � :��ɸ,;" �� �ɸ 3 �"�ɸ
<

μ(�ɸ, 2"
3 /�μ�ɸ, 2"

/2	²	 "	�� 

Using the initial conditions, we have 

:��ɸ, 2" � 2, :��ɸ, 2" � 	2 � cosh	�2" 
where 

μ<�ɸ, 2" � 2 � ɸ2 � ɸ�=�>2 

?�@	% � 0 

μ� � 	2 � ɸ2 � ɸ�=�>2�2"
� � �ɸ 3 �"�2 � ɸ2ɸ

<
�ɸ�=�>�2"— /�

/2� B2 � ɸ2
� ɸ�=�>�2"C�� 

� 2 � ɸ2 � ɸ�=�>2�2" � � �ɸ 3 �"�2 � ɸ2 �ɸ
<

ɸ�=�>�2"
3 ɸ�=�>2�2""�� 
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� 2 � ɸ2 � ɸ�=�>2�2" � � �ɸ 3 �"�2 � �2"��ɸ
<

 

� 2 �  2 �  �=�>2�2" � � � 2 � � 2 3 �2 3 ��2"��D
<

 

μ� 	� 2 �  2 �  �=�>2�2" �  �2 �  3
2 2 3  �

2 2 3  F
3 2 

μ� 	� 2 �  2 �  �=�>2�2" �  2
2 �  3

6 2 

μ� � 2 �  2 �  �=�>2�2"
� � � 3 �"�2 �  2 �D

<
 �=�>�2" �  2

2
�  3

6 2 3 /�
/2� B2 �  2 � 	 �=�>�2"C

�  ²
2 y �  3

6 y""	ds 

� 2 �  2 �  �=�>2�2" � � � 3 �"�2 �  2 �D
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 �=�>�2"
�  2

2 �  3
6 2 3  �=�>2�2""�� 

� 2 �  2 �  �=�>2�2" � � � 3 �"�2 � �2 �D
<

� �2
2

� �3
6 2"�� 

� 2 �  2 �  �=�>2�2"
�	� I 2 � � 2 � �²

2 xy � �3
6 xy 3 �2D

<
3 �²2 3 �3

2 y 3 �4
6 yK ��	

� 2 �  2 �  �=�>2�2" �  ²2 �  3
2 2

�  4
6 y 3  2

2 2 3  3
3 y 3  4

8 	
� 2 �  2 �  �=�>2�2" �  2

2 2 �  3
6 y

�  4
24 y 

μF 	� 2 �  2 �  �=�>2�2" �  2
2 2 �  3

6 y �  4
24 y �

 5
120 y 

Therefore 

μ� , 2" � 2 �  2 �  �=�>2�2" �	 22 2 �  3
6 y �  4

24 y
�  5
120 y……. 

�  �=�>2�2" � 2�1 �  2
2! 2 �

 3
3! y �

 4
4! y �

 5
5! y… . " 

�  �=�>2�2" � 2�D 

μ� , 2" �  �=�>2�2" � 2�D 

Which is the exact solution. 

Table 1. Comparision between Exact and Approximate Solutions. 

i X(i) U(X(i)) V(X(i)) abs(U(X(i))-V(X(i))) 

0 0.00 0.0000000000 0.0000000000 0.0000000000e+00 

1 0.10 0.0198100000 0.0198100000 0.0000000000e+00 

2 0.20 0.0771200000 0.0771200000 0.0000000000e+00 

3 0.30 0.1662300000 0.1662300000 0.0000000000e+00 

4 0.40 0.2790400000 0.2790400000 0.0000000000e+00 

5 0.50 0.4062500000 0.4062500000 0.0000000000e+00 

6 0.60 0.5385600000 0.5385600000 0.0000000000e+00 

7 0.70 0.6678700000 0.6678700000 0.0000000000e+00 

8 0.80 0.7884800000 0.7884800000 0.0000000000e+00 

9 0.90 0.8982900000 0.8982900000 0.0000000000e+00 

10 1.00 1.0000000000 1.0000000000 0.0000000000e+00 

 

Figure 1. Graphical Representations: Comparision between Exact and 

Approximate Solutions. 

4. Conclusion 

The Variation of Parameters Method (VPM) use to solve 

initial and boundary value problems of vary objective nature. 

The planned method is use without using perturbation, 

discretization or restrictive assumptions, linearization and is free 

from round off errors and calculation of the so called Adomian’s 

polynomials. It is concluded that the VPM is very influential and 

capable in finding the logical solutions for a large class of 

boundary value problems and it is another method for solving 

nonlinear initial and boundary value problems. 
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