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Abstract 
Comparison between the performance of the second and first degree stationary iterative 

techniques is performed on two representations to two point boundary value problems of 

the second and fourth orders. The numerical treatment of the Fredholm integral equation 

representation for the second and fourth order boundary value problems (BVP) has 

illustrated the effective use of their integral representation. The finite difference method 

with the same accuracy is employed to construct linear systems from the differential or 

the equivalent Fredholm form. Second degree linear stationary iterative methods are 

extensively used. The second degree Gauss-siedle (S. G. S) method is presented, by 

measuring the asymptotic rates of convergence of the sequence; we are able to determine 

when the Gauss-Seidle second-degree iterative method is superior to its corresponding 

first-degree one. Two numerical examples are considered, one of them is of the second 

degree BVP and the other is fourth order BVP. All calculations are done with the help of 

computer algebra system (MATHEMATICA 10.2). 

1. Introduction 

Many real-life, engineering phenomena, population dynamics, diffusion, 

neurophysiology and feedback control theory can be formulated mathematically as 

differential or integral equations. Sometimes, the mathematical models appear in biology, 

chemistry, physics and engineering have to consider the memory behaviors, [1, 2, 3]. 

Differential equations models consider only the local interactions while integral 

equations models involve local and global interactions. Some physical situations can be 

described by differential and integral equations at the same time and this introduce the 

question about the relation between differential and integral equations. Mathematically it 

is well known that from any differential equation one can obtains a corresponding integral 

equation, but the inverse is not true in general [1]. Closed form analytical solutions are 

available for limited classes of differential and integral equations. The alternative 

approach to obtain or even approximate solutions is the use of numerical techniques. In 

recent years, numerous works have been focusing on the development of more advanced 

and efficient methods [4]. 

Solution of linear algebraic systems [5] has its great importance even in the solution of 

nonlinear problems; it is the final stage in the numerical treatment in many techniques. 

We discussed the linear models which can be formulated in both integral and differential 

equations which reduce large linear algebraic systems, and the problem is reduced to that  
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of the efficient use of iterative techniques for solving these 

systems. Because, differential equations give rise to large 

sparse linear systems, these sparse systems in many cases tend 

to be badly conditioned. By contrast, integral equations give 

rise to dense large well-conditioned coefficient matrices [6]. 

Integral equation has advantages; it includes the boundary 

conditions which the problem must satisfy in addition to the 

convenient theory of existence and uniqueness available [3]. 

The algebraic system corresponding to two well-known two 

point BVP and its integral representations are considered: the 

first one is the second degree BVP. ������ + ����� = 	���; �� < � < ��, ���� = �, ���� = �.  (1) 

And its equivalent second kind integral equation 

���� = � + ���������� �� − �� + ������ � ���, �������� −�� ������ � ���, ��	�������                  (2) 

Where  

���, �� = ��� − ���� − �� ; �� ≤ ��,�� − ���� − �� ; �� ≤ ��. 
The second is the fourth order two-point BVP [3]: ��!���� = �����, �0 ≤ � ≤ 1�, ��0� = ����0� = $, ��1� = ����1� = %                 (3) 

And its equivalent second kind Fredholm integral equation 

���� = $ &1 + '() * + &+,�-./ * � + �,�.�/ �0 + � � � 1���, 2���2, ���23�������4�4                (4) 

Where  

���, �� = ���1 − �� ; �� ≤ ��,��1 − �� ; �� ≤ ��. 
Our treatment depends mainly on transforming the given 

Boundary value problem into an equivalent Fredholm integral 

equation [7]. The finite difference method is employed in the 

replacement of the given differential or integral system [4, 8, 9] 

by a corresponding algebraic system, the trapezoidal 

numerical integration technique is used in approximating the 

integrals. Comparison of the performance of the first and the 

second degree Gauss-Siedle iterative methods, [10, 11, 12, 13 

& 14] are introduced. 

1.1. The Central Finite Difference 

Approximations 

The basic idea of the finite difference approximation is the 

replacement of derivatives or integrals by difference 

approximations. The region [a, b] of the differential or integral 

equations is super imposed with a uniform mesh with mesh 

size  ℎ > 0, and the grid points are defined by [4, 8, 15, 16] 

�7 = � + 8ℎ; 8 = 0,1, ⋯ , :; ℎ = � − �:  

Let �7denote the approximate solution of the equation at 

any point �7 , i.e. ���7� =  �7  then the second order 

derivative can be approximated by the central difference 

�;�� = <=>?�)<=@<=A?B(                 (5) 

Also, the central difference for fourth order derivative 

�;�!� = <=>(�!<=>?@/<=�!<=A?@<=A(BC          (6) 

1.2. The Trapezoidal Rule 

It is well known that the value of a definite integral can be 

approximated by a combination of functional values of the 

integrand with different methods depending on the required 

accuracy and the grid points used. The trapezoidal rule is one 

method which uses only the end points of the interval of 

integration and gives second order accuracy and it takes the 

form [9]: 

D 	������
� = ℎ2 1	��� + 	���3 − �� − ��012 	���F� 

The composite form of the trapezoidal rule takes the form 

� 	������� = B) G	��4� + 2 ∑ 	��7�I��7J� + 	��I�K − ����� B(�) 	���F�                       (7) 

Where − �����B(�) 	���F� is the error term, and F ∈ ��, ��. 

2. Basic Iterative Methods 

There are numerous analytical and numerical methods for 

the solution of a linear system, including Gauss elimination 

method, Crout’s method and Cholesky’s method, which 

employ LU-decomposition method. 

The general form of a linear algebraic system M� = �4                   (8) 
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Where�M�, is a real nonsingular coefficients matrix and �4 

is a given column vector. First order stationary iterative 

methods take the form ��I@�� = N��I� + �             (9) 

Where, N  is the iteration matrix, � = M����4  and M�  is 

called the splitting matrix. Usually, we write M = O − P − Q, 

where O, the diagonal part of M, −P and −Q are the strictly 

lower and the strictly upper triangular parts of M, [5, 14, 17, 

18]. 

2.1. Jacobi Method 

The simplest iterative method for solving the linear system 

(8) is Jacobi method, Jacobi method is classified as first 

degree method and takes the form (9) if M� = O  and 

N = O���P + Q�as �RI@�S = N�RIS + O���4 = O���P + Q��RIS + O���4  (10) 

2.2. Gauss-Seidle Method 

From the computational point of view Gauss-Seidle method 

is known as a modification of Jacobi method. Historically, 

Gauss introduced his method when he was working in least 

squares problem, in 1823, while Jacobi work appeared in 1853. 

Gauss-Seidle idea depends on the use of the most recent 

calculated values. The first degree Gauss-Seidle method for 

system (8) given from Eq. (9) with M� = O − P  and its 

iteration matrix  N = �O − P���Q. It can be written in the 

form 

�RI@�S = N�RIS + �O − P����4 = �O − P���Q�RIS + �O − P����4                  (11) 

2.3. Successive Overrelaxation (SOR) Method 

The Successive Overrelaxation approach, the SOR method, 

generalizes the Gauss-Seidle by introducing a relaxation 

parameter T. The first degree SOR iterative method can be 

obtained from (9) with M� = �O − TP��� and its iteration 

matrix N = �O − TP���U�1 − T�O + TQV; T ∈ �0,2� , or 

can be written in the explicit form as 

�RI@�S  = N�RIS + �O − TP����4 = �O − TP���U�1 − T�O +  TQV�RIS +  �O − TP����4        (12) 

Definition: the spectral radius of a matrix M, denoted by W�M� is given byW�M� = Max {|�;|;  �; is an eigenvalue of M} 

2.4. The Asymptotic Rate of Convergence YZ 

The general theorem of iterative method states that Eq. (9) 

converges if and only if W�N� < 1, 
The standard measurement for how fast an iterative method 

convergence is referred to as the asymptotic rate of 

convergence. The asymptotic rate of convergence is adopted 

as a standard measure of the speed of the iterative method. The 

asymptotic rate of convergence of an iterative method  [Z�N� 

can be calculated from the formula  [Z�B� = − log�4 W�N�            (13) 

3. Second Degree Iterative Methods 

Our aim in this work is to compare between the first degree 

iterative methods (two-part splitting given in the previous 

section and the second degree stationary iterative methods 

(three-part splitting) in the solution of the linear system arising 

from the BVP and its equivalent Fredholm integral equations. 

Definition: let M = M� + M)�  be a two-part splitting for M, M = M� + M) + M0  be a three-part splitting for M  and let 

vector �4  be fixed. Then for any  �4 = �4� , the two-part 

sequence {�4� , ��� , �)� , ⋯ , � �̀ , ⋯} is defined iteratively by M��`@�� + M)� � �̀ = �4             (14) 

The three-part sequence {�4, ��, �), ⋯ , �` , ⋯ , 3 is defined 

iteratively by M��`@) + M)�`@� + M0�` = �4         (15) 

3.1. Relation Between Two-Part and 

Three-Part Splitting Sequences 

Now we want to see the relation between the two-part and 

three-part splitting. The three-part splitting sequence (15) can 

be written in the form 

a�`@)�`@�b = c−M���M) −M���M0d 0 e a�`@��` b + cM����40 e or f`@� = N)f` + g4                   (16) 

Where �` → �  if and only if f` = a�`@��` b → f = a��b , 

moreover f` − f = N)`�f4 − f� 

for two-part splitting (14), we have similarly �` − � = N`��4 − �� 

Where N)  is the iteration matrix for three-part splitting 

given as 

N) = c−M���M) −M���M0d 0 e           (17) 

Where d is the identity matrix, N is the iteration matrix for 

two-part splitting given as N = −M���M)�               (18) 

The asymptotic rate of convergence for two-part ([�) and 

three-part splitting ([) given as: 
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[� = − log�4�N� ;  [ = − log�4� N)� 

3.2. Construction of ij and the Relation 

Between k�l� and k�lm� 
The coefficient matrix can be written as M = M� + �M) +M0� = M��d − N�  [10, 11], then for any complex  2 ≠ −1 , 

where 2 will defined in the next theorem depending on $�N� 

(the eigenvalues of the iteration matrix N we can define M0 

as a function of 2 as follow 

M0�2� = � oo@� �2M� + N� = oo@� M − 2M�      (19) 

Then with the three-part iteration matrix N) = N)�2� the 

three-part sequences (15) can be written in the form �`@) = −M���M)�`@� − M���M0�` + M����4 

But −M���M) = �1 − 2� − p?>?po@�  and −M���M0 = 2 −oo@� M���M then the three-part sequence for linear system (8) as 

a function of 2 takes the form 

�`@)�2� = �N − d� q �o@� �`@��2� + oo@� �`�2�r + �1 − 2��`@��2� + 2�`�2�+M����4         (20) 

Where, N − d = −M���M . The two-part sequence for the 

linear system (8) is �`@�� = N� �̀ + M����4    (21) 

Although the rate of convergence in the three-part sequence 

is better than the rate of convergence in two-part sequence, we 

observed that in case of three-part sequence (20) the equation 

doesn't have new parameters comparing with equation (21) in 

case of two-part sequence, both equations has the parameters N and M���. 

This work is concerned with the Gauss-Seidle iterative 

method. The iteration matrix N and the splitting matrix M� is 

described in subsection (2.2) Eq. (11). 

Why we used Gauss-Seidle technique? Because for 

arbitrary ��4� (initial iteration), we known that Gauss-Seidle 

is the improvement of Jacobi and according to SOR technique, 

the numerical results proved that the only best value of T was 

unity, i.e., while the Gauss-Seidle iterative technique lends 

itself to acceleration by second degree iterative methods, but 

SOR method does not [12, 19]. 

The following theorem calculates the optimal value of 2 

which makes the three-part splitting (second degree iterative 

methods) converges faster than the two-part splitting or (first 

iterative methods) or which makes [ > [�. 
Theorem 3.1 

Given M = M��d − N�, where for real  �, � ∈ $�−N�, we 

have $�−N� ⊂ R�, �S. thus W�−N� = max1|�|, |�|3. 
We suppose −1 < � ≤ � ≤ 3, let the midpoint be denoted 

x = 12 �� + �� 

Then the following table is valid for the optimal 2 = 24 

generating min WUN)�2�V = WUN)�24�V 

Table 1. Used to compute the optimal value for (S) depending on the spectrum of (B). 

−{ < | ≤ } ≤ j, ~ = {m �| + }� ≠ �, 
x > 0 → W�N� = �  

If x) ≤ −� If x) ≥ −� 

Then 24 = x Then 24 = −1 + �1 + � WUN)�24�V = ����@�  WUN)�24�V = −1 + �1 + �  

x > 0 → W�N� = −�  

x ≥ −1 + √1 + �  If x ≤ −1 + √1 + � 

Then 24 = x Then 24 = −1 + √1 + � WUN)�24�V = ����@�  WUN)�24�V = 1 − √1 + �  

In all four cases in table 

WUN)�24�V < W�N� 

4. Initiations 

In the two-part splitting (21) each vector depends on the 

previous vector only so we choose one initial vector call it ��4�. But in the three-part splitting (20) each vector depends 

on the two previous vectors so we need two initial 

vectors ��4�& ����. ��4� in most cases is usually taken as zero 

but ���� can be chosen in the following forms: 

i Choosing ���� = ��4� = 0 according to [11] in this case 

we make an improvement. 

ii Choosing ��4� = 0  and ���� = M����4  which is the 

first iteration of Jacobi, in this case an improvement 

more than one iteration was gotten comparing with the 

choice (i). 

iii Choosing ��4� = 0 and according to [14] 

���� = �)���@�� R2N − �� + ��dS��4� + ))���@�� M����4 ⟹ ���� = ))���@�� M����4               (22) 

In this case we get an improvement better than the choice (i) and (ii) as we will see in the numerical examples later. 
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5. Numerical Examples 

Example (1) 

Consider the second order B. V. P, [20] − ������ + �)���� = 2 �) ��:�� �� , 0 ≤ � ≤ 1;  ��0� =��1� = 0                (23) 

Whose exact solution is ���� = sin�� ��           (24) 

The Fredholm integral equation is 

���� = 2 2�: �� − �) � ��1 − ��'4 ������ − �) � ��1 − ���' ������                (25)

It is an easy task to see that this integral equation (25) 

satisfies the boundary conditions in (23). Moreover, the closed 

form solution (24) satisfies both the differential and the 

integral equation. 

Using finite difference scheme with ℎ = 0.1 and with �; =� ℎ, � = 1�1�9, ���;� = �; , one can derive a linear system of 

algebraic equations, corresponding to the differential equation, 

with coefficient matrix 

�
���
���

2.098696 −1 0 0 0 0 0 0 0−1 2.098696 −1 0 0 0 0 0 00 −1 2.098696 −1 0 0 0 0 00 0 −1 2.098696 −1 0 0 0 00 0 0 −1 2.098696 −1 0 0 00 0 0 0 −1 2.098696 −1 0 00 0 0 0 0 −1 2.098696 −1 00 0 0 0 0 0 −1 2.098696 −10 0 0 0 0 0 0 −1 2.098696�
���
���

        (26) 

Using the trapezoidal rule with ℎ = 0.1 we obtain a functional relation which is satisfied at each point of the grid points �; ,  �; = � ℎ, � = 1�1�9, ���;� = �;  one can derive a linear system with coefficient matrix in the form (27). 

Table 1. The performance of S.G.S method using the rate of convergence for Ex. (1). 

�  

Diff. Form Integ. Form 

R' k�l� = �. �m  

R R�� = −�. �{,k�lm� = �. ���S Con. Ratio 

R ⁄ R' 

R' k�l� = �. {j�  

R R�� = �. ����, k�lm� = �. ���S  

Con. Ratio 

R ⁄ R' 0.1  0.085426 0.156776 1.82 0.8639 1.34588 1.55 

Table 2. Comparison between convergence rate of integral and differential systems using F.G.S and S.G.S methods for Ex. (1). 

Step 

Size 

F.G.S S.G.S 

R'diff. R'integ. Con. Ratio= R'integ. ⁄ R'diff. Rdiff. Rinteg. Con. Ratio=Rinteg. ⁄ Rdiff. 0.1  0.0854264 0.8639 10.11 0.1568 1.34588 8.58 

Solve the two systems (26) & (27) using first degree Gauss-Seidle (F.G.S) and second degree Gauss-Siedle (S.G.S) iterative 

methods, the results are shown in table 2 and table 3. 

�
���
���

1.088826 0.0789568 0.0690872 0.0592176 0.049348 0.0394784 0.0296088 0.0197392 0.00986960.078956 1.157914 0.138174 0.118435 0.098696 0.0789568 0.0592176 0.0394784 0.01973920.069087 0.138174 1.207262 0.177653 0.148044 0.118435 0.0888264 0.059217 0.02960880.059217 0.118435 0.177653 1.23687 0.197392 0.157914 0.118435 0.0789568 0.03947840.049348 0.098696 0.148044 0.197392 1.24674 0.197392 0.148044 0.098696 0.0493480.039478 0.0789568 0.118435 0.157914 0.197392 1.23687 0.177653 0.118435 0.05921760.029608 0.0592176 0.0888264 0.118435 0.148044 0.177653 1.207262 0.138174 0.06908720.019739 0.0394784 0.059217 0.0789568 0.098696 0.118435 0.138174 1.157914 0.07895680.009869 0.0197392 0.0296088 0.0394784 0.049348 0.0592176 0.0690872 0.0789568 1.0888264�
���
���

  (27) 

Example (2) 

The normal modes of free flexural vibration of a thin, uniform rod of unit length are governed approximately by the differential 

equation, [7] ��!���� − ����� = 0; ��0� = ����0� = 1, ��1� = ����1� = ℯ, 0 ≤ � ≤ 1,              (28) 

whose exact solution when � = 1 is ���� = �';   0 ≤ � ≤ 1,                               (29) 

Where, ���� represents the transverse displacement of the centroid of the cross-section of the rod, at position �, from its 

equilibrium position, and � is proportional to $) where $, the frequency of vibration, is not known in advance. 

Equation (28) is equivalent to system of second order differential equations, as follow, let  ��� ��� = − ���, then 
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��� ��� = − ���;  ����� = −����, 0 < � < 1,  �0� = −1;   �1� = −ℯ, ��0� = 1, ��1� = ℯ.         (30) 

Also the Fredholm integral form to (28) is 

���� = 	��� + � �'4 &'() − +'¡/ + 'C0 * ������ + � �1 − ���' &'/ − '¡) + 'C0 * ������,                (31) 

	��� = 1 + �+¢�-�/ � + '() + �¢���/ �0                                  (32) 

Table 3. Illustrate the best choice for the initial x(1) in Ex(1). 

£  ¤¥¦§  

Solution of Differ. form 

F.G.S. 

S.G.S. £��� = �  £�{� = �  

S.G.S. £��� = �  £�{� = i{�{¤�  

S.G.S. £��� = �  £�{� = i{�{¤� ∗ mm��}@|�  

(73) iterations (63)iterations (62)iterations (58)iterations 

0.1 0.309017 0.31029 0.31029 0.31029 0.31029 
0.2 0.587785 0.5902 0.5902 0.5902 0.5902 

0.3 0.809017 0.81235 0.81235 0.81235 0.81235 

0.4 0.951057 0.95497 0.95497 0.95497 0.95497 
0.5 1 1.0041 1.0041 1.0041 1.0041 

0.6 0.951057 0.95497 0.95497 0.95497 0.95497 

0.7 0.809017 0.81235 0.81235 0.81235 0.81235 
0.8 0.587785 0.5902 0.5902 0.5902 0.5902 

0.9 0.309017 0.31029 0.31029 0.31029 0.31029 

 

It is easy to see that integral equation (31) satisfies the 

boundary conditions in (28). Moreover the closed form 

solution (29) satisfies both the differential equation and the 

Fredholm integral equation. 

Using finite difference method one can derive a linear 

system of algebraic equations, corresponding to the 

differential equation. By using different values for the step 

size, we have the following: 

i let ℎ = 0.2, the finite difference scheme for (28) �;�) − 4�;�� + 5.9984�; − 4�;@� + �;@) = 0.          (33) 

With, � = 1�1�4, ��0� = ����0� = 1, and ��1� =����1� = �, we obtain a linear system with coefficient matrix 

M = ª2.9984 −3 1 0−4 5.9984 −4 11 −4 5.9984 −40 1 −3 2.9984«        (34) 

Taking ℎ = 0.2 and the trapezoidal rule in (31) we obtain a 

functional relation which is satisfied at each point of the grid 

points �; , with �; = � ℎ, � = 1�1�4, ���;� = �; , and the linear 

system with coefficient matrix 

M = ª 0.99733 −0.003584 −0.0023893 −0.001195−0.001408 0.996 −0.003456 −0.001728−0.001728 −0.003456 0.996 −0.001408−0.001195 −0.0023893 −0.003584 0.99733 «(35) 

The results of solution of the two systems whose coefficient 

matrices (34) & (35) using F.G.S and S.G.S iterative methods 

given in table 5. 

ii when ℎ = 0.1, the finite difference scheme for (6) gives �;�) − 4�;�� + 5.9999�; − 4�;@� + �;@) = 0.     (36) 

Taking � = 1�1�9  one can derive a linear system of 

algebraic equations with coefficients matrix in the form (37). 

Using  ℎ = 0.1 and the trapezoidal rule in (31) lead to a 

linear system of algebraic equations with coefficients matrix, 

in the form (38). 

 

Figure 1. Shows the priority of S.G.S than F.G.S in integral form of Ex. (2). 

�
���
���

2.9999 −3 1 0 0 0 0 0 0−4 5.9999 −4 0 0 0 0 0 01 −4 5.9999 −4 0 0 0 0 00 1 −4 5.9999 −4 1 0 0 00 0 1 −4 5.9999 −4 1 0 00 0 0 1 −4 5.9999 −4 1 00 0 0 0 1 −4 5.9999 −4 10 0 0 0 0 1 −4 5.9999 −40 0 0 0 0 0 1 −3 2.9999�
���
���

           (37) 

R' Integ

R Integ

0.10 0.12 0.14 0.16 0.18 0.20
h

3.1

3.2

3.3

3.4

3.5

3.6

convergence rate
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�
���
���

−0.99925 0.001296 0.001134 0.000972 0.00081 0.000648 0.000486 0.000324 0.0001620.000139 −0.99867 0.002091 0.001792 0.001493 0.001195 0.000896 0.000597 0.0002990.000252 0.000504 −0.99825 0.002352 0.00196 0.001568 0.001176 0.000784 0.0003920.000352 0.000704 0.001056 −0.998 0.00216 0.001728 0.001296 0.000864 0.0004320.000417 0.000833 0.00125 0.001667 −0.99792 0.001667 0.00125 0.000833 0.0004170.000432 0.000864 0.001296 0.001728 0.00216 −0.998 0.001056 0.000704 0.0003520.000392 0.000784 0.001176 0.001568 0.00196 0.002352 −0.99825 0.000504 0.0002520.000298 0.000597 0.000896 0.001195 0.001493 0.001792 0.002091 −0.99867 0.0001390.000162 0.000324 0.000486 0.000648 0.00081 0.000972 0.001134 0.001296 −0.99925�
���
���

   (38) 

The results of solving the two systems whose coefficient matrices are (37) & (38) using F.G.S and S.G.S methods are given in 

table 7. 

Table 4. The number of iterations using F.G.S and S.G.S in both differential and integral systems for Ex.(2), h=0.2. 

£  ¤¥¦§  

Differential form Integral form 

F.G.S S.G.S 
F.G.S 

(3) iterations 

S.G.S �� = −�. �����j�  £�{� = �  £�{� = mm��}@|� i{�{¤�  

(3)iterations (2) iterations 

0.2 1.2214 

Divergent Divergent 

1.22428 1.22428 

0.4 1.49182 1.48891 1.48891 

0.6 1.82212 1.81867 1.81867 
0.8 2.22554 2.22963 2.22963 

Solving the system of second order differential equations (30) 

(i)  when ℎ = 0.2 and using finite difference method in equation (30) we obtain −�;�� + 2�; − �;@� − 0.04 ; = 0, ��0� = 1, ��1� = �− ;�� + 2 � −  ;@� − 0.04�; = 0,  �0� = −1,  �1� = −�.   (39) 

The results of solution of the system (39) using F.G.S and S.G.S iterative methods are given in table 6. 

Table 5. The solution of Ex. (2) as system of second order differential equations using F.G.S and S.G.S methods, h=0.2. 

£  ¤¥¦§  
F.G.S 

(39) iterations 

S.G.S �� = 

£�{� = �  £�{� = i{�{¤�  
£�{� = mm��}@|�  ∗ i{�{¤�  

(26) (25) (24) iteration 

0.2 1.22140 1.22177 1.22177 

0.4 1.49182 1.49241 1.49241 

0.6 1.82212 1.82275 1.82275 

0.8 2.22554 2.22599 2.22599 

Table 6. The convergence ratio using F.G.S and S.G.S method for, fourth order, second degree system differential form and integral form for Ex. (2). 

Step Size 
4th order D. E. 2nd order D. E. system Integ. Form 

R' R R' R R/ R' R' R R/ R' 

0.2 Divergent Divergent 0.163 0.281 1.7 3.46 3.6 1.04 

0.1 Divergent Divergent 0.039 0.074 1.8 3.06 3.24 1.056 

Table 7. Shows the convergence ratio between integral form and the system of second degree differential equations for Ex. (2) using F.G.S method and S.G.S 

method. 

Step Size 
F. G. S S.G.S 

Rsys. Rinteg. Con. Ratio= Rinteg. ⁄ Rsys. Rsys. Rinteg. Con. Ratio= Rinteg. ⁄ Rsys. 

0.2 0.163 3.46 21.2 0.281 3.6 12.8 

0.1 0.039 3.06 78.2 0.074 3.24 42.2 

(ii)  when ℎ = 0.1 and the finite difference method equation (30) becomes −�;�� + 2�; − �;@� − 0.01 ; = 0, ��0� = 1, ��1� = �, − ;�� + 2 ¬ −  ;@� − 0.01�; = 0,  �0� = −1,  �1� = −�.  (40) 

Putting � = 1�1�9 we obtain a linear system of algebraic equations, with dimension (18). 
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6. Conclusion 

There is no doubt that for solving large systems the use of 

iterative techniques is the most appropriate choice. Comparison 

of application of both the second degree iterative methods and 

the first degree iterative to the linear systems arising from the 

two-point BVP and its Fredholm integral form has illustrated 

the following points. 

a Although the three-part splitting sequence does not 

contains any new parameters than the two-part sequence, 

the rate of convergence of S.G.S is greater than the rate of 

convergence F.G.S method especially when we take a 

suitable choice for the initial vector ����. 
b The spectral radius of the iteration matrix for second 

degree methods W�N)�  in each system is smaller than W�N�, the spectral radius of F.G.S methods, which makes 

the rate of convergence in S.G.S method (R) greater than 

the rate of convergence in F.G.S (R')(note : R/ R'≅ 1.8) 

see tables 2 and table 3, and hence the number of iteration 

in S.G.S is less than the number of iterations in F.G.S. 

especially in linear system arising from BVP form. 

c The correct choice of the initial vector  ����decreases the 

number of iterations see tables 4, 5&6. 

d The study is more interesting and more effective in 

two-point BVP of fourth order since, we found that 

solving the problem (28) as differential equation the 

solution is divergent, so we transform it into system of two 

second order differential equations. Although the 

dimension of the system reduced from the system of 

second order differential equation (30) is double the 

dimension of the system arising from the Fredholm 

integral equation (31) we found that the number of 

iterations for (31) is smaller than the number of iterations 

for (30) see tables 5, 6&7. 

e We take different step size in example (2) we found that 

the rate of convergence R is greater than the rate of 

convergence R' and R increase rapidly than R' with 

changing the step size, see table 2 and figures 1& 2. 

 

Figure 2. Shows the priority of S.G.S than F.G.S in second degree system form 

of Ex. (2). 

f Generally, the results show there is no doubt that solving 

the problem as integral equation is better than solving it as 

differential equation in each F.G.S and S.G.S method; 

especially in S.G.S see tables 3&8. 

g Finally, the S.G.S iterative techniques improve the 

convergence of the linear systems. 
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