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Abstract: To solve a problem of high real--time performance and large computational complexity in two--dimensional 

convection--diffusion boundary control problem with constraints, an optimal real--time control method based on reduced order 

model with constraints is proposed. Using proper orthogonal decomposition (POD) of snapshot, we first obtain a reduced finite 

difference scheme. Then, a quadratic programming method with constraints sing-step rolling optimization algorithm (CSROA) is 

adopted and verified with improved saturated linear quadratic regulator (ISLQR) controller. Finally, to verify the validity and 

accuracy of the proposed method, numerical simulations are presented. 
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1. Introductions 

Convection-diffusion optimal control problem is widely 

used in environmental science, chemical reaction and other 

fields [1-8]. In real control problems, the state variable, the 

input variable (control variable) and the output variable is 

almost all constrained. So whether the optimal control method 

can be widely used in practical problems or not depends on 

our ability to deal with constraints [9-11]. Therefore, it is 

significant to find stable and high efficient numerical methods. 

Finite difference method is a common method to solve the 

convection-diffusion optimal control problem with constraints. 

Generally, the computational cost of these problems are very 

high. How to simplify the calculations, reduce the computing 

time and ensure the solution has sufficient accuracy are 

particularly important works. 

The POD method based on matrix singular value 

decomposition (SVD) is widely used because of its ability to 

provide low-order models with high accuracy and small 

degrees of freedom. It is a good numerical method which can 

effectively approximate a large number of data, [12-17]. Its 

essence is to find an orthogonal basis which can represent the 

given data in the sense of least square. 

For the convection-diffusion reaction process, the optimal 

control of the linear quadratic regulator (LQR) based on the 

low-order model without constraints is designed by Li et al. 

[18]. The dimension of the discrete space is reduced, and the 

real-time application of the optimal feedback control is 

simulated. To our knowledge, there is no result for a 

two-dimensional unsteady convection-diffusion boundary 

control problem with control/state constraints. 

In this paper, the following initial boundary value problems 

are considered for two-dimensional unsteady 

convection-diffusion boundary control problems: 
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where ( ) ( ), , ,U x c t u x t=  represents the input variable, 

( , , ) 0
U

b y t
x

∂ =
∂

 represents the output variable, D  represents 

the coefficient of fluid diffusion, 1ν  and 2ν  are the flow 

velocity of the fluid in the reactor, respectively. The objective 

function J  is the following: 

2 2 2

( ) 0 0
[y(t)-y ] dt+ [u(t)-ui ,]m n

u
f

t
fJ dt

∞ ∞
= ∫ ∫ò       (2) 

where 0>ò  is the weight of the control action, fy  and fu  

represent steady-state value of output and input of the control 

process, respectively. 

The POD basis is obtained through the SVD of snapshots, 

which transforms the discrete higher order state space into low 

order model with good precision. Then the quadratic 

programming method with CSROA is adopted and verified 

with ISLQR controller. The numerical results show that the 

computation speed can be greatly improved under the same 

accuracy of the optimization results. 

2. Reduced Algorithm 

2.1. Finite Difference method For Initial 

Boundary Value Problems 

In order to discuss the difference scheme, the time interval 

[0, ]T  is divided into N  equal partitions, the length of each 

partition is : /T Nτ = , time nt nτ= , and the terminal time is 

expressed as ( )t N , 0,1, 2, ,n N= L . Grid points are 

represented as ( , , )i j nx y t , where i xx a ih= + , j yy c jh= + , 

,x yh h  are space steps and , 1, 2, , 1i j m= +L . 
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Then, the discrete form of                     (1) can be expressed as 

1
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Then formula                          (3) can be sorted into the following discrete higher-order state space model 
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where 
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2.2. POD Method 

The snapshots calculated by the above finite difference method can be expressed as a matrix ( 1)( 1)m m d− + ×∈U  : 

1 2
: ( , , , ),

dn n n=U u u uL                                          (5) 

where 

1,2 2,2 1,2 1,3 2,3 1,3 1, 2, 1,( , , , , , , , , , , ,, , )l l l l l l l l l

l

n n n n n n n n n
n m m m m m mU U U U U U U U U+ + +=u L L L L

•
 

and 1, 2, , .l d= L  
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Then the optimization problem of U  is to obtain the 

corresponding ( 1)( 1)
1 2{ , , , }

m m d
dφ φ φ − + ×= ∈Φ L  , such that 

2,2( )J Φ Φ− Φ= U U‖ ‖•
            (6) 

is minimized, where d N<<  and Φ  is defined as the set of 

all normal orthogonal basis in d
 . 

The SVD of matrix ( 1)( 1)m m d− + ×∈U   is as follows: 

0
,
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Where ( 1)( 1) ( 1)( 1)m m m m− + × − +∈W  , d d×∈V  . W  and 

V  are orthogonal matrices, 1 2diag{ , , , }j jλ λ λ=S L  

j j×∈   is diagonal matrix corresponding to U , and 

1 2 0jλ λ λ≥ ≥ ≥ ≥L . 

From the relation between the spectral radius and the 
2,2⋅‖‖  

norm, one can get that if a number , ( )M r r r j d< ≤ ≤  is the 

rank of the matrix U , then the following equation holds 

1 2,2 2,2
rank( )
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λ + ≤
= − = −U B U U‖ ‖ ‖ ‖       (7) 

Where 
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M

M i i i
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λ φ ϕ
=
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•

, 1, 2, ,i M= L . iφ  and iϕ  are 

the i -th column vectors of matrix W  and V , respectively. 

Through equations             (6) and       (7), one can 

obtain that the minimum distance between U  and B  (rank 

( B )= M ) is equivalent. That is, MU  is the optimal 

expression of U  by B , which is defined in       (7), and 

MU  is the optimal representation of U  in the optimal basis. 

Then, one can get that 1 2( , , , )M dφ φ φΦ = =W L ( )M d<<  

is the optimal basis of the optimization problem 

            (6). 

Set the d  column vectors of U  be 
j

l
nu α=  and lδ  

denotes column unit vector with one component of 1 and the 

rest of 0, 1, 2, ,l d= L . By the compatibility of vector norm 

and the matrix norm, then 

2 2 2,2 2 1( ) ( ) ,l l
M M l M l Mα α δ δ λ +− = − ≤ − =P U U U U‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖                       (8) 

Where 

1

( ) ( , )

M
l l

M j j

j

α φ α φ
=

=∑P , and ( , )l
jφ α  is the 

standard inner product of vectors jφ  and lα . Inequality 

                      (8) shows that ( )
l

M αP  is the optimal 

approximation of lα , and the error is 1Mλ + . 

Next, we use the optimal basis to construct a simplified 
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difference scheme. Projecting the model (4) into the 

reduced order space generated by the POD basis function, 

then 
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Submitting                (9) into (4), we obtain 
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Further, by Φ Φ = I
• , then 
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where r = Φ ΦA A
• , r = ΦB B

• , and r = Φc c . 

By iterative computation, one can obtain ( )kα  

( 1, 2, ,k N= L ) by solving M  equations in (10), where 

( 1)( 1)M m m<< − + . The approximate solution 

( ) ( )k kα= Φx  of model (1) can be obtained by using the 

optimal basis Φ . 

If the full order model (4) is used, ( 1)( 1)m m− +  equations 

need to be solved in every iteration. However, to get the 

approximate solution on the problem, we need to solve only 

few equations by using the method of reduced order model 

(10). Thus, the reduced order model greatly reduces the degree 

of freedom, saves the computer memory, and shortens the 

computing time. 

3. Solution of optimal Control 

3.1. Optimal Control of Full-Order Model 

Described in terms of the discretization model of (4), the 

objective function J  in (2) can be written in the following 

form 

% %
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where =Q c c
• , 2

R = ò , % f= −x x x , fu u u= −% . 

The optimal can be expressed as ( ) ( )u k k= −Lx% , 

1 ( 1)( 1)m m× − +∈L   is a constant feedback gain matrix, 

expressed as 

1
( ) ,R

−= +L B KB B KA
晻  

where the parameter K  is determined by the algebraic 

Riccati equation 

1
( ) 0.R

−− + + − + =K Q A KA A KB B KB B KB
晻 晻  

The optimal value of %
0( , )J ux %  is given by the following 

equation 

% % %
0 0 0( , ) ,J u =x x Px%

•
 

where =P K  is the solution of discrete algebraic Riccati 

equation. 

3.2. Optimal Control of Reduced-Order Model 

3.2.1. Optimal Control Without Constraints 

From the unconstrained optimal feedback control problem 

of the above full-order model (11), the equations of the 

reduced-order model are as follows: 

( 1) ( ) ( ),

( ) ( ).

r r
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k k u k

y k k

α α
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And the objective function is 

0

min ( ).
u

J u Ruα α
∞

= +∑ Q
%

% % % %晻
 

where r r=Q c c
•  and fα α α= −% . 

Feedback Controller based on LQR is 

1
( ) ( ), ( ) ,r r r ru k k Rα −= − = +L L B KB B KA%%

晻  

and K  is determined by the following algebraic Riccati 

equation 

1
( ) 0.r r r r r r r rR

−− + + − + =K Q A KA A KB B KB B KB
晻 晻  

3.2.2. Optimal Control with Constraints 

The states are assumed to be unconstrained while the 

control input is constrained by 

min max min maxfor 0 with 0 .ku u u k u u≤ ≤ ≥ < <%    (13) 

Constrained infinite-horizon LQR problem 

0

0

( , ) min ( ),k k k k
u

J u u Ruα α α
∞

= +∑ Q
%

% % %% % %晻
       (14) 

subject to reduced order model (12) and min maxku u u≤ ≤%  for 

* k Z∀ ∈ . 

Due to the incorporation of an infinite-horizon and under 

the assumptions of unconstrained stability and detectability 

as well as = ≥Q Q 0
•  and 0R > , this method can 

guarantee nominal stability as long as the optimal cost is 

finite, i.e. 
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As shown in (14), the constrained infinite-horizon LQR 

results in an insoluble infinite-dimensional optimization 

problem. However, by using the optimality principle, (14) can 

be recast into the following constrained finite-horizon linear 

quadratic regulation problem 
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                      (15) 

subject to (12) with ( ) 0ftα =%  and 

min max  for 0 1.ku u u k N≤ ≤ ≤ ≤ −%  

Note that =P K  is the solution to the discrete algebraic 

Riccati equation. In order to ensure the stability of the 

finite-horizon system, the equality constraint of the 

terminal state of ( ) 0ftα =%  is added to the finite-horizon 

receding the optimization problem, and ft  is sufficiently 

large. 

In the above optimization problem, when the control time 

domain N  of the quadratic control problem is large, the 

computational cost of solving the corresponding quadratic 

programming problem is large. The calculation is complex, 

and the computational complexity is exponentially related to 

N . 

In this paper, CSROA can solve the model quickly and 

reduce the huge computational cost. At the same time, the 

online state feedback optimization control of constrained 

quadratic optimization problem can be obtained at all times. 

Based on the linear properties of the system, then 

1

1

0

( ) (0) , 1,2, , .

k
k j
r r k j

j

k u k Nα α
−

− −
=

= + =∑A A B% % % L     (16) 

Combined with equation (15) and equation (16), one can 

obtain the following optimization problems in the standard 

form of quadratic programming 

  1 1
(0) (0) min ,

2 2
N N N

u
J α α  = + + 

 
Y U HU F U

%

% %
•晻

   (17) 

subject to 


min max ,Nu u≤ ≤U  

where =H H
• , H , F , Y  can be obtained from Q , R  

in (15). 

For optimal decision variable  0 0 1( ) ( , , )N Nu uα −=U % % %L
• , 

we adopt CSROA of quadratic programming with 1N = , and 

the same optimal control solution performed depends on the 

updated variable (0)α%  at each sampling time. 

It has shown that the saturated LQR control sequence is 

equivalent to a receding horizon control sequence of the 

solution to (16) with no terminal state inclusion condition and 

with 1N =  as well as (14) holds and Hessian matrix 
2

, 0( , ) 0
i ju u NJ uα∇ ≥% % , see reference [17]. 

Then the algorithm with input constraints based on ISLQR 

controller is as follows 

Step 1. Input an initial state value (0)α% , compute the 

optimal control input from LQR control ( ) ( )u k kα= −L %% ; 

Step 2. Verify the extreme value of the following formula 

(18), 

min min

min max

max max

, if ( ) ,

( ), if ( ) ,

, if ( ) .

u u k u

u u k u u k u

u u k u

<
= ≤ ≤
 >

%

% % %

%

      (18) 

Then use quadratic controller ( ) ( )u k kα= −L %%  for optimal 

control. 

Step 3. Return to Step 2 to continue iterative validation until 

the end state equality constraint ( )ftα = 0%  is finally met, 

such that 0u =% . 

4. Numerical Simulations 

All the parameters in the numerical simulation are shown in 

Table 1, and all computing is based on PC computers with 

Intel (R) Core (TM) i7-4790 CPU with frequency of 3.60 GHz 

and random access memory of 8GB. The concentration output 

of the reactor is controlled from steady state 0.05 to steady 

state 0.55. And all simulation results are obtained by 

MATLAB. 

Table 1. Parameter selection in numerical simulation. 

1 2
ν = ν  D  m  Dx = Dy  Dt  

1 0.01 50 0.06 0.008 

In the case of unconstrained control, for the open-loop 

simulation ( ( , ) 0.2)u x t ≡ , the spatial and temporal 

distribution of concentration is shown in Figure 1 by using the 

parameters in Table 1. The concentration increases 

monotonously in spatial and temporal, and it takes some time 
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Figure 1. Spatial and temporal distribution of concentration ( ( , , ))U x y t

.
 

In closed-loop simulation, when the uncertain weights are 

respectively taken as 0.06, 0.3, 0.6, the corresponding 

optimal input and output is shown in Figures 2 and 3. For the 

same control value R , the control effect of full-order model 

(11) with 2499r = and reduced-order model (12) with 

25r =  is the same. The larger the value of R , the smaller 

the input u  and the smaller the output overshoot y . 

Compared with open-loop control, the optimal feedback 

control of closed-loop is faster, more accurate and more 

stable when fu u= . The CPU time taken for full-order 

model (11) and reduced-order model (12) is shown in Table 2, 

and it can be observed that when the control effect is the 

same, the reduced-order model saves computational time 

greatly. 

 
Figure 2. Optimal input for unconstrained transition process. 

 
Figure 3. Optimal output for unconstrained transition process. 

Table 2. Computing time under the same control effect. 

R  Full-order model (s) Reduced-order model (s) 

0.06 3012.8 2.5274 

0.3 2991.8 2.2548 

0.6 3305.6 1.6955 

Open loop 0.6253 0.03561 

Took constraints into account, when the input constraint 

0 0.4u≤ ≤ , the state constraint ( ) 0ftα =%  and R  is 

respectively taken as 0.013, 0.6, the input and output of the 

optimal feedback control for reduced-order model (12) is 

shown in figures 4 and 5. 

From the control effect of LQR controller without 

constraints (12), CSROA (17) and ISLQR controller (18), it 

can be seen that the optimal feedback control effect of the 

three methods is the same when 0.6R = . When 0.013R = , 

the error between the value of control move produced by the 

ISLQR and the value obtained by the unconstrained LQR 

control law is defined as ( )ku u u k= −% % . This error result is 

the same as that of Marjanovic et al. [17], which further proves 

the effectiveness of the proposed method. 

 
Figure 4. Optimal input for constrained transition process. 
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Figure 5. Optimal output for constrained transition process. 

In the case of constraints, the input and output of the 

optimal feedback control of ISLQR are shown in figures 6 and 

7, respectively. It can be seen that the optimal input and 

corresponding output of the reduced-order model and the 

full-order model are the same under the constraint conditions. 

For the same value R , the control effect is same too. 

 
Figure 6. Constrained full-order and reduced-order optimal input. 

 
Figure 7. Constrained full-order and reduced-order optimal output. 

It can be seen from Table 3 that the optimal control CPU 

time of the reduced order model with constraint conditions is 

much less than that of the full-order model, which fully proves 

the high efficiency of the reduced-order model. 

Table 3. Computing time under the constraint conditions. 

R  Full-order model (s) Reduced-order model (s) 

0.06 4757.5 3.0754 

0.013 4540.4 3.3927 

5. Conclusion 

In this paper, a real-time controller is designed for 

reduced-order model         (12) by reducing the order of the 

full-order model           (11) with the POD method, 

CSROA and ISLQR controller, which simplifies the solution 

of the two-dimensional unsteady convection-diffusion 

boundary control problem with constraints. 

The method of reducing order model designed in our paper 

can improve the efficiency of calculation and optimization. 

The full-order model [2499-order, in           (11)] needs to 

solve 2,499 equations at each time step, and the reduced-order 

model [25-order, in         (12)] only needs to solve 25 

equations, and the control effect is same. To a large extent, the 

computation memory and CPU computing time are saved. 

On the other hand, a real-time online predictive optimal 

feedback controller based on a low-order model is designed, 

which provides a simple control method for solving the 

low-order model optimal control problem. 
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