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Abstract: The wave phenomena on the contact of two isotropic elastic half-spaces with canonical surface protrusions is 

investigated. The junction of two half-spaces is modeled as a three-layer waveguide consisting of two homogeneous half-

spaces and embedded, periodically inhomogeneous inner layer. The conditions of wave propagation of allowed frequencies are 

obtained in periodically inhomogeneous layered structure. The problem of wave formation in transversely periodic cells of the 

composite waveguide is solved. As a particular case, the propagation of high-frequency (shortwave) wave signal along the 

composite waveguide is numerically investigated. The variety of generated waves through the thickness of composite 

waveguide are given depending on the relative linear dimensions of the layers and physico-mechanical characteristics of 

materials of the composite waveguide. The bands of allowed (or forbidden) frequencies are defined for these forms. 
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1. Introduction 

The wave phenomena in bounded and inhomogeneous 

elastic structures are diverse. In particular, the dispersion 

and/or dissipation effects on the propagation of normal wave 

signal in finite, homogeneous elastic medium are strongly 

depended on the boundary conditions. It is shown in the 

primary sources about the study of wave propagation, that 

even in the case of perfectly smooth body surface, as a result 

of existing dispersion are possible: 

a. localization of wave energy of plane deformation in the 

near-surface zone of mechanically free surface of elastic 

isotropic half-space Rayleigh J. W. [1] (Rayleigh wave, 

1885), 

b. localization of wave energy of elastic anti-plane strain 

in the near-surface area of joining zone of elastic half-

space and a soft elastic layer Love А. E. H. [2] (Love 

wave, 1911), 

c. propagation of formed combinations of standing and 

running waves of complex elastic normal waves in 

plates with thickness comparable to the wavelength 

Lamb H. [3] (Lamb wave, 1917), 

d. localization of wave energy of elastic strain in the near-

surface zone of contact of two isotropic elastic half-

spaces, if the density and elastic modulus of adjacent 

environments vary slightly Stoneley R. [4] (Stoneley 

wave, 1924) 

It is also known that the geometric inhomogeneity of 

surfaces of elastic bodies or near-surface inhomogeneity of 

layer material leads to energy dissipation and changes the 

existing dispersion in composite waveguides on the 

propagation of wave signal [5-9], etc. 

In the case of elastic shear wave propagation in an 

inhomogeneous half-space with localized inhomogeneity of 

the material in the near-surface zone, the inhomogeneous 

piezoelectric half-space A. S. Avetisyan [5] is formally 

shown in the form of two-layer waveguide. Love electro-

elastic problem is solved in the case of thin inhomogeneous 

piezoelectric layer, when the length of the normal wave and 

the thickness of the layer of material inhomogeneity are 

commensurable. The dispersion equation and the conditions 

of possible localization of wave energy at the surface of 

inhomogeneity virtual section of the material obtained Valier-

Brasier T., Potel C., and Bruneau M., [6]. 



115 Ara S. Avetisyan et al.:  The Propagation of High-Frequency Shear Elastic Waves on Interface of Isotropic  

Elastic Half-Spaces with Canonical Surface Protrusions 

In [7, 8] Avetisyan A. S. proposes to investigate the joints 

influence of rough surfaces of constituent layers on the wave 

propagation in composite waveguides by the method of 

virtual section and input of MELS hypotheses (hypotheses-

Magneto Elastic Layered Systems). The waveguide is 

modeled as multilayer by inputting virtual cross-sections. 

Mathematical boundary value problem of contact of rough 

surfaces is formulated taking into account the thinness of 

virtual layers, introducing hypotheses MELS (hypotheses of 

Magneto Elastic Layered Systems). 

For different levels of nanometer roughness on the crystal 

slices of silicon (001) and (111) C. M. Flannery and H. von 

Kiedrowski [9] investigated the influence of surface 

roughness on the dispersion of surface acoustic wave 

packages of the frequency range 30-200 MHz. It is shown 

that the effect of frequency dispersion is significant on the 

induced surface roughness. Although the results obtained by 

this approach qualitatively matches with the results of the 

experiment, this theory is not sufficient to predict the real 

dispersion of surface acoustic waves. 

In the recent years intensively studied phenomena of wave 

propagation in structures with variable, periodic physical-

mechanical characteristics, which are characterized by the 

presence of locking zones of Floquet elastic and 

electromagnetic waves, where is not available propagating 

wave. The overview of these works and the analysis of the 

role of impedance on the existence of forbidden frequency 

are presented in the papers of A. S. Avetisyan, K. B. 

Ghazaryan [10, 11], where it is also shown that if the 

impedance of the periodically inhomogeneous 1D structure is 

constant, then in that structure do not exist forbidden 

frequencies. 

The overview of prospects, the current state and future 

direction of development of researches of wave processes in 

periodic structures is given in M. I. Hussein, M. J. Leamy, M. 

Ruzzene [12]. 

First time the presence of zones of locking frequencies in 

unidirectional elastic periodic structure has been noted in the 

work of Lord Rayleigh [13]. 

The papers of E. H. Lee [14] and E. H. Lee and W. H. 

Yang [15] devoted to the application of Floquet-Lyapunov 

theory to problems of propagation of elastic waves in 

periodic structures. In the papers of S. Adams, R. Craster, S. 

Guenneau [16, 17] the authors study the range of Floquet-

Bloch wave in elastic periodic waveguides. 

The spectral theory of transverse oscillations of periodic 

elastic beams is described in V. G. Papanicolaou [18, 19] 

from a mathematical point of view. 

However, little is known about the problem of normal 

wave propagation in transversely inhomogeneous waveguide 

with periodically repeated composite layers. In these tasks, 

the process of wave formation through the thickness of 

layered waveguide constrains the process of wave 

transmission of appropriate lengths, or vice versa, the 

periodically transverse inhomogeneity delays corresponding 

frequency formation. 

Such a challenge comes when studying the propagation of 

normal shear elastic waves on the interface of elastic half-

spaces with periodic surface canonical protrusions. 

Equation Section (Next) 

2. Modeling of Surface 

Interconnection of Elastic 

Isotropic Half-Spaces with 

Canonical Rectangular Protrusions 

Let us assume homogeneous isotropic half-spaces with 

canonical (rectangular, periodic in cut) surface protrusions 

(pins) 

                              (1) 

                                (2) 

are ideally embedded by each other surface protrusions (Figure 1). In (1) and (2) is the numbering of protrusions. 

It is shown from the formation of half-spaces with protrusions (1) and (2), that for the convenience of the mathematical 

boundary value problem, the coordinate plane  (coordinate plane ) is conventionally allocated on one of lateral 

surfaces of the protrusion contact of the half-spaces  and , and the coordinate axis  is parallel to the 

forming of these projections 

                                            (3) 

                                        (4) 

{ } 0
1

0

        (1 ) ( ) ( )
; ;  ;    

           ( ) (1 )
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1 0; ( ) (1 ) ;  ;  n x y n a b x n a nb y h zΩ = + ≤ ≤ + + ≤ < ∞

{ } { }*
2 0; (1 ) ( ) ( );  ;  n x y n b n a b x n a b y h zΩ = − + + + ≤ ≤ + ≤ < ∞
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Figure 1. Connection diagram of two elastic half-spaces with canonical surface pins, as a three-layer waveguide with a periodically inhomogeneous inner 

layer. 

The canonicity of projections (the forms of pins and their linear dimensions) allows us to provide the full mechanical contact 

along the all line of contact of half-spaces. 

By the input of virtual cross-sections  and , in fact a three-layer waveguide is formed from two homogeneous 

half-spaces 

 и                                  (5) 

and virtually separated longitudinally inhomogeneous (piecewise-homogeneous) layer of periodically distributed cells of 

protrusions (pins) pairs 

                                                                  (6) 

The given modeling allows us to consider the wave process of normal wave propagation in periodically inhomogeneous 

layer  located at  and , which is in perfect mechanical contact with homogeneous half-spaces 

 and .Equation Section (Next) 

The mathematical boundary problem on the propagation of normal wave signal (SH) of elastic shear is formulated from the 

equations of the corresponding homogeneous half-spaces (5) and their respective protrusions (3) and (5) 

 in  and                           (7) 

 in  and                          (8) 

In (7) and (8)  is the frequency of wave process,  is the velocity of shear bulk wave,  is the shear 

modulus, and  is the density of the respective adjacent materials . 

For normal elastic shear wave signal 

                                                       (9) 

one group of boundary conditions of full mechanical contact is satisfied on the virtual cross-sections  and  

along the widths of surface protrusions, respectively. 

Along the width of each protrusion , the continuity surface conditions of mechanical fields will be satisfied on 

intervals  for  and  respectively 

0y h= 0y h= −

{ } { }10 0; ;   ;  x y x y h zΩ = < ∞ ≤ − < ∞ { } { }20 0; ;  ;  x y x y h zΩ = < ∞ ≥ < ∞

{ } { } { }* * *
1 2; ; ;≜n n nx y x y x yΩ Ω ∪ Ω

{ }* ;n x yΩ 0y h= 0y h= −

{ }10 ;x yΩ { }20 ;x yΩ

2 2 2 2 2 2
1 1 1 1w ( ; ) w ( ; ) w ( ; )tx y x x y y c x yω∂ ∂ + ∂ ∂ = − ⋅ { }10 ;x yΩ { }*

1 ;n x yΩ

2 2 2 2 2 2
2 2 2 2w ( ; ) w ( ; ) w ( ; )tx y x x y y c x yω∂ ∂ + ∂ ∂ = − ⋅ { }20 ;x yΩ { }*

2 ;n x yΩ

ω ≜nt n nc G ρ nG

nρ 1;2n =

{ }00;  0;  w( ; ; ) w ( ; ) exp( )U x y t x y i tω= = ⋅ −

0y h= 0y h= −

{ }*
1 ;n x yΩ

( ) (1 )n a b x n a nb+ ≤ ≤ + + 0y h= 0y h= −
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;                                              (10) 

;                                                 (11) 

Along the width of each protrusion , the continuity surface conditions of mechanical fields will be satisfied on 

intervals  for  and  respectively 

;                                            (12) 

*
2 0 2 0w ( ; ; ) w ( ; ; )x h t x h t= ; 

( )22*
0 0( ; ; ) ( ; ; )yz yzx h t x h tσ σ=   (13) 

In surface equations (10)÷(13) shear mechanical stresses 

are presented by material relations 

( )
( ; ; ) w ( ; ; ) ;

n
yz n nx y t G x y t yσ = ⋅ ∂ ∂                (14) 

* *
( ; ; ) w ( ; ; )

n
yz n nx y t G x y t yσ = ⋅∂ ∂                (15) 

where the index 1;2n =  corresponds to the materials in 

homogeneous half-spaces and their surface protrusions. 

In addition to the given boundary conditions on virtual 

selected sections 0y h= −  and 0y h=  (10)÷(13), surface 

conditions of full mechanical contact are satisfied on the all 

lateral surfaces of protrusions * ( )abx n a b= +  and 

** ( 1) ( )abx n b n a b= − + + , where ℕn +∈ . 

The conditions of full mechanical contact will be as 

follows in recurrently repeated these sections of the 

composite layer (6) 

* *

1 2

* *
w ( ; ; ) w ( ; ; )ab aby t y tx x= ; 1* 2** *

( ; ; ) ( ; ; )zx zxab aby t y tx xσ σ=   (16) 

* *

2 1

** **
w ( ; ; ) w ( ; ; )ab aby t y tx x= ; 2* 1*** **

( ; ; ) ( ; ; )zx zxab aby t y tx xσ σ=   (17) 

taking into account the periodic characteristics of the wave 

field in the composite layer (6) 

;                                          (18) 

;                               (19) 

The shear mechanical stresses in the boundary conditions (16) and (17), as well as in conditions of periodicity (19) are 

represented by the following material relations 

                                                                (20) 

Here, the indexes  correspond to the materials of surface protrusions of half-spaces. Equation Section (Next)  

The solutions of equations (7) and (8) in homogeneous half-spaces  and , as well as in the respective 

projections  and , construct by the method of separation of variables respectively 

                                           (21) 

The system of equations of relatively unknown functions 

{ }* *
0 0 0 0( );  ( );  ( );  ( )n n n nX x Y y X x Y y , that describes the 

directional propagation of the wave signal along the axis ox  

in homogeneous half-spaces { }10 ;x yΩ  and { }20 ;x yΩ , as 

well as in their surface rectangular protrusions { }*
1 ;n x yΩ  

and { }*
2 ;n x yΩ , will be presented in the following form 

2
0 , 0

2 2
0 , 0

( ) ( ) 0

( ) ( ) 0

n xx n n

n yy n nt n

X x k X x

Y y k Y yα

 + ⋅ =


− ⋅ =

                  (22) 

The following assignations are taken in the system of 

equations (22) for the corresponding homogeneous half-

spaces: 2 2 21≜nt n ntk cα ω−  are the wave formation 

coefficients (in the case of slow waves – coefficients of 

attenuation into the corresponding half-spaces), and nk  are 

the wave numbers of normal waves in corresponding 

environment. 

Damping through the depth of homogeneous half-spaces 

{ }10 ;x yΩ  and { }20 ;x yΩ  normal waves are presented in the 

form, respectively for y → ±∞  

1 011 1 1w ( ; ; ) ( ) exp( )exp( )tx y t X x k i tA y ωα= ⋅ ⋅ −⋅        (23) 

2 022 2 2w ( ; ; ) ( ) exp( )exp( )tx y t X x k i tA y ωα= ⋅ ⋅ −⋅ −       (24) 

The attenuation of waves into the half-spaces in the 

*
1 0 1 0w ( ; ; ) w ( ; ; )x h t x h t− = − ( )11*

0 0( ; ; ) ( ; ; )yz yzx h t x h tσ σ− = −

*
1 0 2 0w ( ; ; ) w ( ; ; )x h t x h t= ( )21*

0 0( ; ; ) ( ; ; )yz yzx h t x h tσ σ=

{ }*
2 ;x yΩ

(1 ) ( ) ( )n b n a b x n a b− + + + ≤ ≤ + 0y h= 0y h= −

*
2 0 1 0w ( ; ; ) w ( ; ; )x h t x h t− = − ( )12*

0 0( ; ; ) ( ; ; )yz yzx h t x h tσ σ− = −

* *

1 1
( ; ; ) ( ( ); ; )w x y t w x a b y t= + + * *

2 2w ( ; ; ) w ( ( ); ; )y t x a b y tx = + +

1* 1*
( ; ; ) (( ( ); ; ); ; )zx zxy t x a b y t y txσ σ= + + 2* 2*

( ; ; ) (( ( ); ; ); ; )zx zxy t x a b y t y txσ σ + +=

* *( ; ; ) w ( ; ; )n
zx n nx y t G x y t xσ = ⋅∂ ∂

1;2n =

{ }10 ;x yΩ { }20 ;x yΩ

{ }*
1 ;n x yΩ { }*

2 ;n x yΩ

* * *
0 0 0 0w ( ; ; ) ( ) ( );           w ( ; ; ) ( ) ( )n n n n n nx y t X x Y y x y t X x Y y= ⋅ = ⋅
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solutions (23) and (24) naturally is provided by the slowness 

of the waves n ntk cω <  in each half-space. 

It is obvious, that from the demand of dumped wave 

propagation in both homogeneous half-spaces, for the phase 

velocity of formed wave forms through the thickness of the 

composite waveguide have ( ) { }
1;2

min ≜nt n n
n

V k c Gφ ρ
=

< , 

where ( ) ≜V k kφ ω . 

In the surface rectangular protrusions { }*
1 ;n x yΩ  and 

{ }*
2 ;n x yΩ , where it is also possible propagation of fast shear 

waves, for which ( ) { }
1;2

max ≜nt n n
n

V k c Gφ ρ
=

≥ , the system 

of equations for the unknown functions *
0 ( )nX x  and *

0 ( )nY y  

can also be represented in the form 

* 2 *
0 , 0

* 2 *2 *
0 , 0

( ) ( ) 0

( ) ( ) 0

n xx n n

n yy n nt n

X x k X x

Y y k Y yβ

 + =


+ ⋅ =

                       (25) 

Here 2 2 2 1≜nt n nt ntk c iβ ω α− =  is the new assignation for 

the coefficient of wave formation. 

As follows from the first equations of systems (22) and 

(25), the solutions providing synchronicity of propagation 

waves in homogeneous half-spaces and their rectangular 

protrusions, match and are written by harmonic functions in 

periodic, laterally inhomogeneous layer 

*
0 0( ) ( ) sin( ) cos( )= = +n n n n n nX x X x C k x D k x  for 1;2=n   (26) 

As analytic continuation of solutions (23) and (24), the 

non-damped solutions for convenience will be presented by 

hyperbolic functions in each surface protrusion of the 

corresponding half-space in cut 0 0;  y h h∈ −   , 

* * *
1 01 1 1 1 1 1 1w ( ; ; ) ( ) ( ) ( ) exp( )t tx y t X x A sh k y B ch k y i tα α ω = ⋅ ⋅ + ⋅ ⋅ −                                     (27) 

* * *
2 02 2 2 2 2 2 2w ( ; ; ) ( ) ( ) ( ) exp( )t tx y t X x A sh k y B ch k y i tα α ω = ⋅ ⋅ + ⋅ ⋅ −                                    (28) 

Taking into account the periodicity of the structure of internal virtual layer, let us use the theory of Fouquet-Lyapunov and 

the boundary value problem solve for the repeated cell with the number zero { } { } { }* * *
0 10 20; ; ;≜x y x y x yΩ Ω ∪ Ω . 

Satisfying the conditions of full mechanical contact (16) on the lateral surface of the protrusions 0x = , 

* *
1 2w (0; ; ) w (0; ; )y t y t= ; 

* *
1 1, 2 2,w (0; ; ) w (0; ; )x xG y t G y t⋅ = ⋅                                          (29) 

as well as the conditions (17) on lateral surfaces of protrusions x b= −  and x a= , taking into account the periodicity of 

solutions (18) and (19) by x coordinate 

* 1 *
1 2w ( ; ; ) w ( ; ; )a y t b y tλ −= − ; 

* *

1 1, 2 2,
w ( ; ; ) w ( ; ; )

x x
G a y t G b y tλ ⋅ = ⋅ −                                        (30) 

receive the condition of propagation of elastic shear wave signal in periodically laterally inhomogeneous inner layer in the 

following form 

( )
2 2 2 2
2 2 1 1

1 2 1 2
2 2 1 1

cos ( ) cos( ) cos( ) sin( ) sin( )
2

F

G k G k
Lk k a k b k a k b

G k G k
ω +

= ⋅ − ⋅                                   (31) 

In the boundary conditions (30) and dispersion relation 

(31) exp( )Lkλ =  is a multiplier, and L a b= +  is the period 

of 1( )k ω  and 2 ( )k ω  wave numbers in the surface 

protrusions { }*
10 ;x yΩ  and { }*

20 ;x yΩ , in homogeneous half-

spaces { }10 ;x yΩ  and { }20 ;x yΩ , respectively, 

( ) 2 ( )Fk ω π λ ω=  is the wave number of formed wave 

(Fouquet wave number) corresponding to allowed wave 

length ( )Fλ ω  (allowed frequency ω ). 

Considering that ( )cos ( ) 1FLk ω ≤ , from the dispersion 

relations (17) or (18) have the transmission condition of 

wave signal in periodic, laterally inhomogeneous layer 

( ) ( )
( )

2 2

2 2 1 1 2 2 1 1 1 2
1 2 2

2 2 1 1 1 22 2 1 1

cos( )
1 cos( ) 1 1

4 cos( )

G k G k G k G k k a k b
k a k b

G k G k k a k bG k G k

 + − −
 − ≤ + − ⋅ ≤

+ + 

                                 (32) 

Synchronization of shear wave propagation in general assumes the same allowed wave number, determined from (31) 

( ) ( )2 2

2 2 1 1 1 2 2 2 1 1 1 2
2 2 1 1

1 1
( ) arccos cos( ) cos( )

4
k G k G k k a k b G k G k k a k b

L G k G k
ω

  = ⋅ + + − − −    
                  (33) 
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Considering the received relations as a area of definition for the allowed lengths of the wave signal in the periodic structure, 

from (33) we get 

( ) ( )
( )

2 2

2 2 1 1 2 2 1 11
1 2 1 22

2 2 1 1 2 2 1 1

( ) 2 arccos cos( ) cos( )
4

G k G k G k G k
L k a k b k a k b

G k G k G k G k
λ ω π −

  + −  = ⋅ + − − 
 +   

                         (34) 

It should be noted, that the allowed wave lengths for the 

known inhomogeneity always are of order of the composite 

layer widths { }( ) min ;  a bλ ω ∼ . The wave numbers 1( )k ω  

and 2 ( )k ω  in homogeneous half-spaces { }10 ;x yΩ  and 

{ }20 ;x yΩ , and respectively, in the surface protrusions 

{ }*
10 ;x yΩ  and { }*

20 ;x yΩ  are determined from the boundary 

value problem of wave formation through the thickness of 

the composite waveguide. 

Satisfying the boundary conditions of continuity of 

mechanical fields (10)÷(11) along the width of protrusion 

{ }*
10 ;x yΩ  (on cut 0 x a≤ ≤ ), as well as the continuity 

conditions of mechanical fields (12)÷(13) along the width of 

the protrusion { }*
20 ;x yΩ  (on cut 0b x− ≤ ≤ ), we obtain the 

dispersion relations taking into account the relations (14) and 

(15) as well as the solutions (23), (24), (27) and (28) on the 

virtually selected sections 0y h=  and 0y h= −  

( ) ( )2 2
1 1 0 1 1 1 1 2 2 1 1 2 2 01 01(2 )t t t t t ttg k h G G G G G Gβ β α α α α β= ⋅ + −                                                  (35) 

( ) ( )2 2
2 2 0 2 2 1 1 2 2 1 1 2 2 0 2(2 )t t t t t t ttg k h G G G G G Gβ β α α α α β= ⋅ + −                                                 (36) 

The system of dispersion relations (35) and (36) itself 

represents the dispersion equation of wave formation through 

the thickness of composite waveguide. Their joint solution 

provides synchronized values of wave numbers 1( )k ω  and 

2 ( )k ω  in components of waveguide. 

The formation of the wave-forms in homogeneous half-

spaces and corresponding protrusions naturally corresponds 

to the value of phase velocity ( ) ( )≜V k kφ ω ω  in the phase 

region of determination. Without interrupting the generality 

of discussion, we assume that the speed of bulk shear wave in 

the first homogeneous half-space greater than the speed in 

the second half-space 1 1 1 2 2 2t tc G c Gρ ρ= > = . Then 

on the phase coordinate axis ( )( )V kφ ω  will have three 

intervals of the forming waves. 

In the case of slow wave propagation 

{ }1 2( ) min ;t tV k c cφ ω <  in both environments, when 

2 2 2 1≜nt n nt ntk c iβ ω α− = , the system of dispersion 

relations (35) and (36) takes a rather simple form 

0 1 1

0 2 2

(2 ( ) ( )) 1

(2 ( ) ( )) 1

t

t

th h k

th h k

α ω ω
α ω ω

⋅ =
 =

                      (37) 

Since the hyperbolic tangents are quickly descending in 

equations (37) and allowed wave lengths for periodic 

inhomogeneity are always of order of the composite layer 

widths { }( ) min ;  a bλ ω ∼  in the relation (35), then from (37) 

is received the approximation of the solution with great 

precision for arguments 02 4nt nk hα π=  

( ) ( )2

0( ) 1 2n nt ntk c c hω ω π ω= ⋅ + ; 1;2n =        (38) 

Here the found wave number in both half-spaces provide 

lower phase velocity than bulk shear wave in each medium. 

Corresponding to the slow wave, phase velocity in each 

composite layer can be written as 

( ) ( )2 2

1 1 0 2 2 0( ) 1 2 ;          ( ) 1 2a t t b t tV k c c h V k c c hφ φω π ω ω π ω= + = +                                (39) 

The obtained value of phase velocity ( )aV kφ ω  in the first 

layer satisfies the condition of slow waves 1 2( ) tV k cφ ω <  in 

the frequency range 

( ) ( )2 2
0 1 2 1 20 2 t t t th c c c cω π< ≤ ⋅ −                (40) 

Therefore, the connection of isotropic, elastic half-spaces 

with canonical surface protrusions, for some ratios of the 

linear dimensions of protrusions leads to the localization of 

wave energy of elastic shear signal with certain frequency 
ω , near the virtual surfaces of homogeneous half-spaces. 

The wave field distribution can be cast as 

1 1 0

* *
0 1 1 1 1 0 0

2 2

exp[ ( ) ( ) ];                                              

( ) [ ( ) ( ) ] [ ( ) ( ) ];          

exp[ ( ) ( ) ];                                    

a t

a a t a t

a t

A k y

Y y A sh k y B ch k y h y h

A k y

y hω α ω

ω α ω ω α ω
ω α ω

⋅

= ⋅ + ⋅ − ≤ ≤
⋅ −

− ∞ < ≤ −

0           yh




 ≤ < ∞

                               (41) 
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1 1 0

* *
0 2 2 2 2 0 0

2 2

exp[ ( ) ( ) ];                                              

( ) [ ( ) ( ) ] [ ( ) ( ) ];          

exp[ ( ) ( ) ];                                    

b t

b b t b t

b t

A k y

Y y A sh k y B ch k y h y h

A k y

y hω α ω

ω α ω ω α ω
ω α ω

⋅

= ⋅ + ⋅ − ≤ ≤
⋅ −

− ∞ < ≤ −

0           yh




 ≤ < ∞

                                (42) 

To find allowed frequencies (or lengths) for the obtained 

localized forms, the wave numbers 1( ) ( )ak kω ω=  and 

2 ( ) ( )bk kω ω=  determined from (38) substitute in the 

relations (33) or (34). 

In the case of propagation of fast shear waves in both 

environments { }1 2( ) max ;t tV k c cφ ω ≥  we have 

2 2 21nt nt n nti k cα β ω= − = − , and the dispersion relations 

(35) and (36) will already be written in the form 

0 1 1

0 2 2

(2 ( ) ( ))

(2 ( ) ( ))

t

t

tg h k i

tg h k i

β ω ω
β ω ω

=
 =

                      (43) 

It is obvious, that the obtained dispersion equation of fast 

waves (43), considering nt ntiα β= −  gets converted to (37) 

and in the composite layers has real roots 

( ) ( ) ( ) ( )2 2

1 1 1 0 2 2 2 0( ) 1 2 ;              ( ) 1 2t t t tk c c h k c c hω ω π ω ω ω π ω= ⋅ + = ⋅ +                              (44) 

which correspond to phase velocities in composite layers 

( ) ( )2 2

1 1 1 0 2 2 2 0( ) 1 2 ;              ( ) 1 2t t t tV k c c h V k c c hφ φω π ω ω π ω= + = +                               (45) 

It is obvious, that in this case the obtained phase velocities ( )nV kφ ω  does not belong to the interval of fast shear waves. 

Therefore, the localization of the wave energy of the fast shear waves due to the presence of pin junction of the homogeneous 

half-space surface does not occur. 

In the case of Love type wave propagation  { } { }1 2 1 2min ; ( ) max ;t t t tc c V k c cφ ω≤ <  we get the following dispersion equation 

system 

0 1 1

0 2 2

(2 ( ) ( )) 1

(2 ( ) ( )) 1

t

t

th h k

tg h k

α ω ω
β ω ω

=
 = −

                                                                         (46) 

Hence, obtain the solutions for both layers of the periodic cell 

( ) ( ) ( ) 22

1 1 1 0 2 2 2 0( ) 1 2 ;        ( ) 1 (4 3) 8t t t tk c c h k c m c hω ω π ω ω ω π ω= ⋅ + = ⋅ − +                      (47) 

It is obvious, that at a certain frequency of wave signal, the wave number 2 ( )k ω  is valid for limited number of harmonics 

( )0 20 ( ) 2 3 4tm h cω ω π≤ ≤ − , where ℕm +∈ . 

To the wave number (47) corresponds the phase velocities of adjacent waves in the corresponding layers 

( ) 22

1 1 0 2 2 0( ) 1 2 ;           ( ) 1 (4 3) 8a t t b t tV k c c h V k c m c hφ φω π ω ω π ω= + = − +                      (48) 

It is shown from relations (47) and (48), that the obtained values of phase velocities correspond to the shear waves of Love 

type { } { }1 2 1 2min ; ( ) max ;t t t tc c V k c cφ ω≤ < , out of the frequency range of the wave signal (40) 

( ) ( )2 2
0 1 2 1 22 t t t th c c c cω π≥ ⋅ −                                                                     (49) 

Considering the definition area (49), we also receive the number of generated harmonics depending on the characteristics of 

adjacent materials 

( )2 2 2 2
1 1 2 1 20 16 3 4t t t t tm c c c c c≤ < − − −  

Taking into account the obtained values of wave numbers (47) and phase velocities (48) the amplitude functions through the 

thickness of the composite waveguide { }*
0 0( );  ( )Y y Y y  will be presented in the following descriptions: 
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- in periodic virtual vertical layers corresponding to the widths of the surface protrusions ( ) (1 )n a b x n a nb+ ≤ ≤ + +  

1 1 1 0

* *
0 1 1 1 1 1 1 0 0

( )
2 1 2 12

exp[ ( ) ( ) ];                                                          

( ) [ ( ) ( ) ] [ ( ) ( ) ];                     

sin[ ( ) ( ) ] cos[

t

a t t

m
m mt

A k y

Y y A sh k y B ch k y h y h

A k y B k

y hω α ω

ω α ω ω α ω

ω β ω

⋅

= ⋅ + ⋅ − ≤ ≤

⋅ + ⋅

− ∞ < ≤ −

{ }
0

( )
02

0

( ) ( ) ] ;      

m

m
t

m

y yhω β ω
=







 ≤ < ∞

∑

                           (50) 

- in periodic virtual vertical layers corresponding to the widths of the surface protrusions (1 ) (1 )( )n a nb x n a b+ ≤ ≤ + ++  

{ }
0

1 1 1 0

( ) ( )* *
0 2 2 2 2 0 02 2

0

( )
2 2 22

exp[ ( ) ( ) ];                                                            

( ) sin[ ( ) ( ) ] cos[ ( ) ( ) ] ;  

sin[ ( ) ( ) ] cos[

t

m

m m
b m m m mt t

m

m
m m mt

A k y

Y y A k y B k y h y h

A k y B

y hω α ω

ω β ω ω β ω

ω β ω

=

⋅

= ⋅ + ⋅ − ≤ ≤

⋅ + ⋅

− ∞ < ≤ −

∑

{ }
0

( )
2 02

0

( ) ( ) ] ;     

m

m
m t

m

k y yhω β ω
=









 ≤ < ∞

∑

                       (51) 

Putting the obtained values of wave numbers (47) in the 

dispersion equation (31) (or (33)), we obtain dispersion 

dependency of the propagation of adjacent shear waves in the 

composite waveguide ( )k ω . 

Putting the values of wave numbers (47) in inequality (32) 

(or (33)) will receive the zones of allowed (or forbidden) 

frequencies for the formed harmonics of adjacent shear 

waves in the composite waveguide. Equation Section (Next) 

3. Numerical and Analytical 

Comparative Analysis 

Let us consider some obvious cases, in which the obtained 

results are the limit for the above considered tasks: 

the materials of boundary half-spaces are the same. Then, 

obviously, all the boundaries disappear between the half-

spaces, and the equality of the shear modulus 1 2G G G= =  

and density of materials 1 2ρ ρ ρ= =  leads to the automatic 

execution of the dispersion equation (31) and the propagation 

condition of shear waves (32) for all wave numbers 

1 2( ) ( ) ( )k k kω ω ω= =  of limited shear wave of constant 

amplitude, with speed 0 ( )V k Gω ρ= . 

For the second medium taking the characteristics 2 0G =  

and 2 0ρ = , from the above relations it follows that there are 

not elastic waves outside of half-space { }1 ;x yΩ . 

Virtually modeling the half-space with surface protrusions 

as a longitudinally inhomogeneous waveguide from 

periodically repeated layers 

 

{ } { }0; ( ) (1 ) ;  ;  a x y n a b x n a nb y h zΩ = + ≤ ≤ + + −∞ < ≤ < ∞  и 

{ } { }0; (1 ) ( ) ( );  ;  b x y n b n a b x n a b y h zΩ = − + + + ≤ ≤ + − ∞ < ≤ − < ∞  

and taking into account the periodicity, satisfying the boundary conditions on mechanically free lateral borders of surface 

protrusions 

*
,w (0; ; ) 0a x y t = ; 

* *
, ,w ( ; ; ) w ( ; ; ) 0a x a xa y t b y tλ ⋅ = − = ; 

1 * *
, ,w (0; ; ) w ( ; ; ) 0a x a xy t a b y tλ − ⋅ = + = , 

dumped into the depth of homogeneous half-space, the normal waves in the corresponding periodic vertical layers can be 

represented in the following forms 

1 0

1 0

1 1

1 1

w ( ; ; ) cos( ) exp( )

w ( ; ; ) cos( ) exp( )

exp[ ( )]

exp[ ( )]

a a

b b

aa a

b b b

x y t k k x i t

x y t k k x i t

A y h

A y h

ω
ω

α
α

= ⋅ ⋅ −
= ⋅ ⋅ −

⋅ +
⋅ +                                             (52) 

The wave numbers of propagating wave in corresponding surface protrusions and cavities of periodically repeating vertical 

layers will be 
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2a ak m aπ= ; 2b bk m bπ=  where ; ℕa bm m +∈                                                      (53) 

The propagation condition (31) of shear elastic wave along the surface with periodically canonical protrusions in this case 

will be written in a simplified form 

cos[ ( ) ( )] cos( ) cos( )a bk a b k a k bω ⋅ + = ⋅                                                              (54) 

Representing non-dumped solutions in the surface protrusions of the half-space (on the interval 0 0;  y h h∈ −  ) by hyperbolic 

functions 

* * *
1 1 1 1 1w ( ; ; ) ( ) ( ) cos( ) exp( )a a a a a a ax y t A sh k y B ch k y k x i tα α ω = ⋅ + ⋅ ⋅ ⋅ −                                      (55) 

from the condition of mechanically free surface on 0y h= − , for dumped normal waves in the layer { };b x yΩ , from the 

condition of the mechanically free surface on 0y h=  and from the continuity conditions of mechanical fields in the layer 

{ };a x yΩ , we obtain the dispersion equations of wave formation in the layers, respectively 

0 1(2 ) 1;           0a at b bth h k kα α= =                                                                     (56) 

Which obviously allow the propagation of normal waves of the type (52) dumped into the depth of homogeneous half-space, 

in the case of short wavelengths 

2 2 2 2
0 02 4 ;           2a a t b b ta m h h c b m cλ π π ω λ π ω= = + = <                                           (57) 

This is possible for the following ratios of linear dimensions of surface protrusions 

( ) ( )2 1 2
0 ( ; ; ) 2 (4 1)t a bh a b c bm amω π ω −< ⋅ ⋅ −                                                        (58) 

Corresponding to adjacent waves (Love type waves), the wave number determined from the formation dispersion relation 

(56), given (53) 

( ) ( ) ( ) { }2 2

0( ) 1 2 ;           ( ) ( ) max ;a t t b a b ak c c h k k m a m bω ω ω π ω ω= ⋅ + ⋅ =                            (59) 

The phase velocity in the layers will take the following values 

( ) ( ) ( )2 2

0( ) 1 2 ;           ( ) ( )a t t b b a aV c c h V a m bm Vφ φ φω ω π ω ω= + ⋅ = ⋅                                 (60) 

For existing in the periodic vertical layers, the respective 

numbers of forms of the Love type waves we obtain 

( ) ( ) ( )2 2

01 2b a tm m b a c hω π< ⋅ + ⋅           (61) 

We get Floquet wave number by putting the values of 

wave numbers ( )ak ω  and ( )bk ω  from (59) in the dispersion 

equation (54) 

1
( ) ( ) arccos[cos( ) cos( )]F a bk a b k a k bω −= + ⋅ ⋅        (62) 

The allowed (and/or forbidden) frequencies zones of 

existing adjacent Love type waves are received taking into 

account the conditions of attenuation of shear waves 

( ) tV cφ ω =  in the half space. 

Numerical calculations are carried out for cases when a 

conductor and a piezoelectric are bounded, without 

considering their electromagnetic properties (Table 1). A pair 

of materials (PZT-4 with Ag (silver) and/or ZnO with AU 

(gold)) is chosen so that the speed of bulk waves in them be 

different. If in the pair of PZT-4 with Ag the speed of bulk 

waves 1

3
1.848 10tc = ×  (m/sec) and 2

3
1.67 10tc = ×  (m/s) 

differ little, then in the pair of ZnO with Au 1

3
2.735 10tc = ×  

(m/sec) and 2

3
1.182 10tc = ×  (m/s) they differ significantly. 

Table 1. Shear modulus, densities and speeds of shear waves in some conductors and piezoelectric crystals. 

 Gold Au Copper Cu Silver Ag PZT-4 Zinc Oxide ZnO 

Shear modulus 
iG  (n/m2) 102.7 10×  

104.833 10×  
103.03 10×  

102.56 10×  
104.25 10×  

Material density 
iρ  (kg/m3) 319.32 10×  

38.93 10×  
310.49 10×  

37.5 10×  
35.68 10×  

Wave speed (SH) 
tc  (m/sec) 31.182 10×  

32.326 10×  
31.67 10×  

31.848 10×  
32.735 10×  
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For the calculations of geometry of surface protrusions of 

both half-spaces it is characterized by the relative linear 

dimensions { }02 ;  ∼h a b , 1
02 10∼a h −  or 2b a= . The 

study of propagation of short (or super short) micrometer 

shear waves { }2 ;  ∼ ∼k a b mkmλ π=  implies numerical 

analysis for frequency of about 109 ÷ 1011 Hertz. 

The formation of zones of forbidden and/or the allowed 

frequencies is shown on Figure 2. for slow high-frequency 

shear waves with phase speed less than the minimum bulk 

wave of adjacent materials { }1 2( ) min ;t tV k c cφ ω ≤ , in a 

composite waveguide of ZnO and Au. It is shown 

analytically, that slow waves are formed at relatively low 

frequencies (40), in this case up to 100.85 10  Hertz≈ × . The 

zones of allowed frequencies of these localized waves are 

already determined from the system (33) taking into account 

(38), in the definition range (40). 

 

Figure 2. Forbidden and/or allowed frequency zones for shear localized slow waves (Stoneley type waves) in composite waveguide of Zinc Oxide and Gold (or 

ZnO + Au). 

It follows from the calculations, that the formation of 

localized slow waves with the wave numbers (38) in the 

composite waveguide, in contrast to the case of propagation 

of shear bulk wave in periodically longitudinally 

inhomogeneous waveguide of homogeneous layers with 

wave numbers ( )n ntk cω ω=  [10, 11, 20], have an almost 

continuous range of frequencies with one thin frequency slit. 

The nature of phase speed changes of localized slow waves 

in the virtual composite layers is shown in Figure 2. Up to a 

certain frequency, the phase speeds in both composite layers 

are less than the minimum speed of bulk shear waves in the 

adjacent environments. 

It is shown from Figure 2, that for a pin contact of half-

spaces, localization of Stoneley type wave occurs in the 

frequency band (40), which in this case is up to 
100.85 10  Hertz≈ × . It is also important, that the total 

bandwidth of allowed frequencies in the case of slow 

localized waves is limited and its length is determined by the 

relation of physical characteristics of the adjacent materials. 

High-frequency shear Love type waves for which 

{ } { }1 2 1 2min ; ( ) max ;t t t tc c V k c cφ ω≤ <  already will 

propagate in the composite waveguide of the same materials 

outside of frequency bands (40). 
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Figure 3. The nature of phase speed changes of shear localized slow waves (Stoneley type waves) in composite waveguide of Zinc Oxide and Gold (or ZnO + 
Au). 

In this case, the forbidden (or allowed) frequency zones of localized Love type waves are also determined from the 

dispersion equation (31), already taking into account the wave numbers (48) in the definition area (49) (Figure 3). 

 

Figure 4. Forbidden and/or allowed frequency zones for shear localized slow waves (Love type waves) in composite waveguide of Zinc Oxide and Gold (or 

ZnO + Au). 

It follows from Figure 4, that the allowed frequency zones 

of formed harmonic adjacent Love type waves do not differ 

much among themselves on the frequency bandwidth (49) 

and differ sharply from the allowed frequency zones in the 

problem of homogeneous layers. The zones of harmonic 

waves of Love type are already practically identical 

approximately at frequencies 10 113.0 10 3.0 10ω ≈ × ÷ ×  

Hertz. On the same frequency bandwidth, the forbidden 

frequency zones of the formed harmonics first expand, then 

shrink, but do not disappear. 

The nature of changes of phase speeds of formed 

harmonics of high-frequency adjacent shear waves in the 

virtually selected vertical layers is shown in Figure 4. It 

follows from the given dependences of the normalized phase 

speeds on Figure 3, Figure 4, that the frequency value 

( ) ( )2 2 1 2
0 1 2 1 22 ( )cr t t t th c c c cω π= ⋅ −  is critical, at which the 

localization of shear waves of Stoneley type turns in an 

adjacent localization. Also, localization of Love type waves 

appears. 
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Figure 5. The nature of phase speed changes of shear localized slow waves (Love type waves) in composite waveguide of Zinc Oxide and Gold (or ZnO + Au). 

The allowed (or forbidden) wave zones are determined by simplified Floquet equation (62) in the problem of propagation of 

shear wave signal in space with mechanically free surface with the canonical protrusions,. 

 

Figure 6. The dispersion curves of localized shear millimeter waves 310∼ mλ −  at the mechanically free surface of half-space of piezoelectric crystal PZT - 4 

and Gold (PZT - 4 or Au), for millimeter height 
3

0
10  h m−=  and millimeter widths of protrusions and cavities of surface protrusions 310  a m−=  and 

45 10  b m−= × . 
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Figure 7. The dispersion curves of localized shear micrometer waves 610∼ mλ −  at the mechanically free surface of half-space of piezoelectric crystal PZT - 4 

and Gold (PZT - 4 or Au), for micrometer height 
6

0
10  h m−=  and micrometer widths of protrusions and cavities of surface protrusions 610  a m−=  and 

75 10  b m−= × . 

Graphical images of dispersion curves, for different 

relative sizes of surface protrusions and different materials of 

half-space are shown on Figure 6, Figure 7. It follows from 

the calculations, that we have considerable dispersion 

changes for the propagation of relatively long (millimeter) 

waves (Figure 6) at quite low frequencies. The high 

frequencies of wave signal lead to frequency setting mode, as 

in the case of propagations of millimeter, as well as relatively 

short (micrometer) waves (Figure 7). 

It also follows from Figure 7 that in the case of high-

frequency signals, the dispersion lines ( )k ω  quite strong 

vary, but do not cross the frequency coordinate line. 

 

Figure 8. The dispersion curves of localized shear nanometer waves 910∼ mλ −  at the mechanically free surface of half-space of piezoelectric crystal (PZT-4) 

or Gold (Au), for micrometer height 
6

0
10  h m−=  and micrometer widths of protrusions and cavities of surface protrusions 810  a m−=  and 75 10  b m−= × . 
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Figure 9. The nature of phase speed changes of shear localized slow waves in half-space of piezoelectric crystal (PZT-4) or gold (Au) with mechanically free 
surface. 

It follows from more visual graphs of high-frequency 

propagation (Figure 8), that forbidden frequency zones do 

not form in this task, in which wave numbers ( )k ω  do not 

exist. In this case, the dispersion lines have clearly 

outlined envelopes at top and bottom. It is also obvious, 

that the different stiffness of the materials of half-spaces 

lead to frequency shear of the dispersion curves between 

each other. 

It is interesting, that in all these cases the nature of changes 

of phase speeds are the same in the virtually selected layers 

(Figure 9), while the phase speed in the cavity layer 

( a x a b≤ ≤ + ) is less than the phase speed in the protrusion 

layer ( 0 x a≤ ≤ ). 

4. Conclusions 

The connection of two half-spaces with surface canonical 

protrusions is modeled as a composite waveguide consisting 

of periodically, laterally inhomogeneous embedded inner 

layer in two homogeneous half-spaces. The allowed and 

forbidden frequency zones of wave process are determined. 

The conditions of wave propagation in periodically 

inhomogeneous layered waveguide are obtained for various 

physically possible cases of wave formation in lateral 

composite cells of composite waveguide. Depending on the 

relative linear dimensions of the surface protrusions, as well 

as on physico-mechanical characteristics of the waveguide 

materials, possible modes of localization of shear waves are 

analytically and numerically investigated along the uneven 

surface of the composite waveguide. The dispersion of waves, 

nature of change of the phase speeds and amplitude 

distribution through the thickness of the waveguide in the 

virtually selected layers are investigated. 

As limiting cases, the propagation of shear wave signal in 

elastic half-space with mechanically free surface and periodic 

surface rectangular protrusions is studied. It is shown, that in 

this case forbidden frequency zones for the propagation of 

localized shear waves are not formed. Localization similar to 

localization of Love type waves occurs. 
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