

American Journal of Computer Science and Information Engineering

2015; 2(4): 33-44

Published online September 30, 2015 (http://www.aascit.org/journal/ajcsie)

Keywords
Recommendation Algorithm,

Recommendation Server,

Middleware Framework

Received: March 29, 2015

Revised: September 6, 2015

Accepted: September 7, 2015

Introduction to a Framework of
E-commercial Recommendation
Algorithms

Loc Nguyen

Board of Directors, Sunflower Soft Company, Ho Chi Minh City, Vietnam

Email address
ng_phloc@yahoo.com

Citation
Loc Nguyen. Introduction to a Framework of E-commercial Recommendation Algorithms.

American Journal of Computer Science and Information Engineering.

Vol. 2, No. 4, 2015, pp. 33-44.

Abstract
Recommendation algorithm is very important for e-commercial websites when it can

recommend online customers favorite products, which results out an increase in sale

revenue. I propose the framework of e-commercial recommendation algorithms. This is a

middleware framework or “operating system” for e-commercial recommendation

software, which support scientists and software developers build up their own

recommendation algorithms based on this framework with low cost, high achievement and

fast speed.

1. Introduction

The product is the “Framework of e-commercial recommendation solutions”, named

Hudup. This is a middleware framework or “operating system” for e-commercial

recommendation software, which support scientists and software developers build up their

own recommendation solutions based on this framework. The term “recommendation

solutions” mentions the computer algorithms which aim to recommend online customers

an introduction list of items such as books, products, services, news papers, fashion

clothes, etc. on commercial websites with expectation that customers will like these

recommended items. The goal of recommendation algorithms is to gain high sale revenue.

You need to develop a recommendation solution for online-sale website. You, a scientist,

invent a new algorithm after researching many years. Your solution is excellent and very

useful and so you are very exciting but:

1. You cope with complicated computations when analyzing big data and there are a

variety of heterogeneous models in recommendation studies.

2. It is impossible for you to evaluate your algorithm according to standard metrics.

3. There is no simulation environment or simulator for you to test the feasibility of your

algorithm.

The innovative product “Framework of e-commercial recommendation solutions”

supports you to solve perfectly three above difficulties and so following are your

achievements:

1. Realizing your solution is very fast and easy.

2. Evaluating your solution according to standard metrics by the best way.

3. Determining the feasibility of your algorithm in real-time applications.

The product has another preeminent function which is to provide two optimized

algorithms so that it is very convenient for you to assess and compare different solutions.

The product aims to help you, a scientist or software developer, to solve three above core

problems. The product proposes three solution stages for developing a recommendation

algorithm.

34 Loc Nguyen: Introduction to a Framework of E-commercial Recommendation Algorithms

1. Base stage: builds up algorithm model and data model to

help you to create new software with lowest cost.

2. Evaluation stage: builds up evaluation metrics and

algorithm evaluator to help you to assess your own

algorithm.

3. Simulation stage: builds up recommendation server or

simulator, which helps you to test feasibility of your

algorithm.

2. Related Works

Fig. 1. General architecture of product.

There are now some other open source software similar to

my product; the brief list of them is described as follows:

1. Carleton [11] is developed by Carleton College,

Minnesota, USA. The software implements some

recommendation algorithms and evaluates such

algorithms based on RMSE metric. The software

provides an implementing illustration of

recommendation algorithms and it is not

recommender system or framework. However, a

significant feature of Carleton is to recommend

courses to student based on their school reports. The

schema of programming classes in Carleton is clear.

2. Cofi [10] simply implements and evaluates some

recommendation algorithms. It is not recommender

system or framework. However, it is written by Java

language [14] and it works on various platforms. This

is the strong point of Cofi.

3. Colfi [11] is developed by Professor Lukáš Brožovský,

Charles University in Prague, Czech Republic. The

software builds up a recommendation server for dating

service. It is larger than Carleton and Cofi. Colfi

implements and evaluates some collaborative filtering

algorithms but there is no customization support of

algorithms and evaluation metrics. Note that

collaborative filtering (CF) algorithm and

content-based filtering (CBF) algorithm are typical

recommendation algorithms. The recommendation

server is simple and aims to research purposes.

However, the prominent aspect of Colfi is to support

dating service via client-server interaction.

4. Crab [2] is recommendation server written by

programming language Python. It is developed at

Muriçoca Labs. The strong point of Crab is to build up

a recommendation engine inside the server along with

 American Journal of Computer Science and Information Engineering 2015; 2(4): 33-44 35

algorithm evaluation mechanism. When compared

with this proposed framework, Crab does not support

developers to realize their solutions through three

stages such as implementation, evaluation, and

simulation. The architecture of Crab is not flexible and

built-in algorithms are not plentiful. Most of them are

SVD algorithm and nearest-neighbor algorithms.

5. Duine [16] is developed by Telematica Institute,

Novay. This is really a solid recommendation

framework. Its architecture is very powerful and

flexible. The strong point of Duine is to improve the

performance of recommendation engine. When

compared with this proposed framework, Duine does

not support developers to realize their solutions

through three stages such as implementation,

evaluation, and simulation. The algorithm evaluator of

Duine is not standardized and its customization is not

high.

6. easyrec [15] is developed by IntelliJ IDEA and

Research Studios Austria, Forschungsgesellschaft

mbH. Strong points of easyrec are convenience in use,

supporting consultancy via internet, and allowing

users to embed recommendation engine in a website in

order to call functions of easyrec from such website.

However, easyrec does not support developers to build

up new algorithms. This is the drawback of easyrec.

7. GraphLab [4] is a multi-functional toolkit which

supports collaborative filtering, clustering, computer

vision, graph analysis, etc. It is sponsored by Office of

Naval Research, Army Research Office, DARPA and

Intel. This toolkit is very large and multi-functional.

This strong point also implies its drawback.

Developers who get familiar with this toolkit in some

researches such as computer vision and graph analysis

will intend to use it for recommendation study.

However, GraphLab supports recommendation

research with restriction. It only implements some

collaborative filtering algorithms and it is not

recommendation server.

8. LensKit [5] is developed by the research group

GroupLen, University of Minnesota, Twin Cities,

USA. It is written by programming language Java and

so it works on various platforms. The strong point of

LensKit is to support developers to construct and

evaluate recommendation algorithms very well. The

evaluation mechanism is very sophisticated. However,

LensKit does not provide developers a simulator or a

server that helps developers to test their solutions in

client-server environment. Although the schema of

programming class library is fragmentary, LenKits

takes advantages of the development environment

Maven. In general, LenKits is a very good

recommendation framework.

9. Mahout [12] is developed by Apache Software

Foundation. It is a multi-functional toolkit which

supports data mining and machine learning, in which

some recommendation algorithms like

nearest-neighbor algorithms are implemented. Using

algorithms built in Mahout is very easy. Mahout aims

to end-users instead of developers. Its strong point and

drawback are very similar to the strong point and

drawback of GraphLab. Mahout is essentially a

multi-functional toolkit and so it does not focus on

recommendation system. If you intend to develop a

data mining or machine learning software, you should

use Mahout. If you want to focus on recommendation

system, you should use the proposed framework.

10. MyMedia [13] is a software that recommends

customers media products such as movies and pictures.

The preeminent feature of MyMedia is to focus on

multimedia entertainment data when implementing

social network mining algorithms, recommendation

algorithms, and personalization algorithms. MyMedia

is a very powerful multimedia recommendation

framework which aims to end-users such as

multimedia entertainment companies. However,

MyMedia does not support specialized mechanism of

algorithm evaluation based on pre-defined metrics.

MyMedia, written by the modern programming

language C#, is developed by EU Framework 7

Programme Networked Media Initiative together with

partners: EMIC, BT, the BBC, Technical University of

Eindhoven, University of Hildesheim, Microgenesis

and Novay.

11. MyMediaLite [6] is a small programming library

which implements and evaluates recommendation

algorithms. MyMediaLite is light-weight software but

it implements many recommendation algorithms and

evaluation metrics. Its architecture is clear. These are

strong points of MyMediaLite. However,

MyMediaLite does not build up recommendation

server. There is no customization support of

evaluation metrics. These are drawbacks of

MyMediaLite. MyMediaLite is developed by

developers Zeno Gantner, Steffen Rendle, Lucas

Drumond, and Christoph Freudenthaler at University

of Hildesheim.

12. recommenderlab [8] is developed by developer

Michael Hahsler and sponsored by NSF

Industry/University Cooperative Research Center for

Net-Centric Software & Systems. The

recommenderlab is statistical extension package of R

platform, which aims to build up a recommendation

infrastructure based on R platform. The preeminent

feature of recommenderlab is to take advantages of

excellent data-processing function built in R platform.

Ability to evaluate and compare algorithms is very

good. However, recommenderlab does not build up

recommendation server because it is dependent on R

platform. The recommenderlab is suitable to

algorithm evaluation in short time and scientific

researches on recommendation algorithms.

13. SVDFeature [3], written by programming language

C++, is developed by developers Tianqi Chen, Weinan

36 Loc Nguyen: Introduction to a Framework of E-commercial Recommendation Algorithms

Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, Yong

Yu. SVD is a collaborative filtering algorithm which

processes huge matrix very effectively in

recommendation task. SVDFeature focuses on

implementing SVD algorithm by the best way.

Although SVDFeature is not a recommendation server,

it can process huge matrix data and speed up SVD

algorithm. This is the strongest point of SVDFeature.

14. Vogoo [17] implements and deploys recommendation

algorithm on webpage written by web programming

language PHP. It is very fast and convenient for

developers to build up e-commercial website that

supports recommendation function. Although Vogoo

is simple and not a recommendation server, the

strongest point of Vogoo is that its library is small and

neat. If fast development has top-most priority, Vogoo

is the best choice.

After surveying 14 other typical products, my product is the

unique and most optimal if the function to support scientists

and software developers through 3 stages such as algorithm

implementation, quality assessment and experiment is

considered most. Moreover the architecture of product is very

flexible and highly customizable. Evaluation metrics to

qualify algorithms are standardized according to pre-defined

templates so that it is possible for software developers to

modify existing metrics and add new metrics.

3. Description of Product

The product is computer software which has three main

modules such as Algorithm, Evaluator and Recommender.

These modules correspond with solution stages such as base

stage, evaluation stage and simulation stage. Figure 1 depicts

the general architecture of product. As seen in figure 1, the

product is constituted of following modules:

� Algorithm, Evaluator and Recommender are main

modules. Algorithm, the most important module, defines

and implements abstract model of recommendation

algorithms. Algorithm defines specifications which

user-defined algorithms follow. It is possible to state that

Algorithm is the infrastructure for other modules.

Evaluator is responsible for evaluating algorithms

according to built-in evaluation metrics. Evaluator also

manages these built-in metrics. Recommender is the

simulation environment which helps users to test

feasibility of their algorithms in real-time applications.

Thus, Recommender is a real recommendation server.

Figures 2 and 3 depict the general sub-architectures of

Evaluator and Recommender, respectively.

� Plug-in manager, an auxiliary module, is responsible for

discovering and managing registered recommendation

algorithms.

� Listener and balancer, which are auxiliary modules, are

communication means between users/applications and

recommendation service.

� Parser and modeler, which are auxiliary modules, are

responsible for processing raw data. Raw data are read

and modeled as Dataset by parser and modeler.

Evaluator module evaluated algorithms based on such

Dataset. KBase, an abbreviation of knowledge base, is

the high-level abstract model of Dataset. For example, if

recommendation algorithm mines purchase pattern of

online customers from Dataset, such pattern is

represented by KBase.

The general sub-architecture of Evaluator shown in figure 2

implies the evaluation process including following steps:

1. Developer implements a recommendation algorithm A

based on specifications defined by Algorithm module.

2. Developer plugs algorithm A into Plug-in manager.

3. User requires to evaluate algorithm A by calling

Evaluator.

4. Evaluator discovers algorithm A via Plug-in manager.

Consequently, Evaluator loads and feeds Dataset or

KBase to algorithm A. If KBase does not exist yet,

algorithm A will create its own KBase.

5. Evaluator executes and evaluates algorithm A according

to built-in metrics. Note that these metrics are managed

by both metrics system and Plug-in manager. In

client-server environment, Evaluator executes remotely

algorithm A by calling Recommender module where

algorithm A is deployed. This is the most important step

which is the core of evaluation process.

6. Evaluator sends evaluation results to user with note that

these results are formatted according to evaluation

metrics aforementioned in step 5.

Please see the section “A Use Case of Proposed Framework”

to comprehend these evaluation steps.

The general sub-architecture of Recommender – a

recommendation server shown in figure 3 includes five layers

such as interface layer, service layer, share memory layer,

transaction layer, and data layer. These layers is described in

bottom-up order.

Data layer is responsible for manipulating rating data

organized into two formats:

� Low-level format is structured as rating matrix whose

each row consists of user ratings on items. Another

low-level format is Dataset which consists of rating

matrix and other information such as user profile, item

profile and contextual information. Dataset can be

considered as high or intermediate format when it is

modeled or implemented as complex and independent

entity. Dataset is the most popular format.

� High-level format also stores user ratings as low-level

format; besides, it has internal inference mechanism

which allows us to deduce new knowledge such as user

interests and user purchasing pattern from raw data like

rating matrix, user profile and item profile. High-level

format data is called knowledge base or KBase in short.

Knowledge base is less popular than Dataset because it is

only used by recommendation algorithms while Dataset

is exploited widely.

Because data layer processes directly read and write

so-called data operators, upper layers needs invoking data

layer to access rating data. That data operators are transparent

to upper layers provides ability to modify, add and remove

 American Journal of Computer Science and Information Engineering 2015; 2(4): 33-44 37

components inside architecture. Data layer also supports

checkpoint mechanism; whenever data is crashed, data layer

will perform recovery tasks based on checkpoints so as to

ensure data integrity. Note, checkpoint is the time point at

which data is committed to be consistent. The current version

of the product does not support recovery tasks yet. Process

unit of this layer, namely read or write operator, is atomic unit

over whole system. Data layer interacts directly with

transaction layer via receiving and processing data operators

request from transaction layer.

Transaction layer is responsible for managing concurrence

data access. When many clients issue concurrently

recommendation requests relating to a huge of data operators,

a group of data operators in the same request is packed as an

operator bunch considered as a transaction; thus, there are

many transactions. In other words, transaction layer splits

requests into data operators, which in turn groups data

operators into transactions. Transaction is process unit of this

layer. Transaction layer regulates transactions so as to ensure

data consistency before sending data operators request down

to data layer. Transaction layer connects directly to data layer

and connects to service layer via storage service.

Share memory layer is responsible for creating snapshot

and scanner according to requirement of storage service.

Snapshot or scanner is defined as an image of piece of Dataset

and knowledge base (KBase) at certain time point. This image

is stored in share memory for fast access because it takes long

time to access data and knowledge stored in hard disk. The

difference between snapshot and scanner that snapshot copies

whole piece of data into memory while scanner is merely a

pointer to such data piece. Snapshot consumes much more

memory but gives faster access and is more convenient.

Snapshot and scanner are read-only objects because they

provide only read operator. The main responsibility of this

layer is to create snapshots and scanners and to discard them

whenever they are no longer used. Recommendation service

and storage service in service layer can retrieve information of

Dataset or knowledge base by accessing directly to snapshot

or scanner instead of interacting with transaction layer. Hence,

the ultimate goal of share memory layer is to accelerate the

speed of information retrieval.

Service layer is the heart of architecture when it realized

two goals of recommendation server: giving the list of

recommended items in accordance with client request and

supporting users to retrieve and update rating database. Two

these goals are implemented by two respective services:

recommender service and storage service. Such services are

main components of service layer. Recommender service

receives request in the interchangeable format such as JSON

format from upper layer – interface layer and analyze this

request in order to understand its content such as who requires

recommendation and what her / his profile is. After that

recommender service applies an effective strategy into

producing a list of favorite items which are sent back to

interface layer in the same interchangeable format like JSON.

Recommendation strategy is defined as the co-ordination of

recommendation algorithms such as collaborative filtering

and content-based filtering in accordance with the coherent

process so as to achieve a best result of recommendation. In

simplest form, strategy identifies to a recommendation

algorithm. Recommender service is the most complex service

because it implements both algorithms and strategies and

applies these strategies in accordance of concrete situation.

Recommender service is the core of aforementioned

Recommender module shown in figure 1. Storage service is

simpler when it has two responsibilities:

� Retrieving and updating directly Dataset and knowledge

base by sending access request to transaction layer and

receive results returned.

� Requiring share memory layer to create snapshot or

scanner.

Because recommendation algorithms execute on memory

and recommender service cannot access Dataset and

knowledge base, recommender service will require snapshot

or scanner from storage service. Storage service, in succession,

requests share memory layer to create snapshot or scanner and

receives back a reference to such snapshot or scanner. Such

reference is used by recommender service.

Interface layer interacts with both clients (users and

application) and service layer. It is the intermediate layer

having two responsibilities:

� For clients, it receives request from users and sends back

response to them.

� For service layer, it parses and forwards user request to

service layer and receives back result.

There are two kinds of client request corresponding to two

goals of recommendation server:

� Recommendation request is that users prefer to get

favorite items.

� Access request is that users required to retrieve or update

Dataset and knowledge base.

User-specified request is parsed into interchangeable

format like JSON [18] because it is difficult for server to

understand user-specified request in plain text format.

Interpreter, the component of interface layer, does parsing

function. When users type request as text, interpreter will

parses such text into JSON object which in turn sends to

service layer. The result, for example: a list of favorite items,

is returned to interpreter in form of JSON object and thus,

interpreter translates such JSON result into text result easy to

be understood by users.

Because server supports many clients, it is more effective if

deploying server on different platforms. It means that we can

distribute service layer and interface layer in different sites.

Site can be a personal computer, mainframe, etc. There are

many scenarios of distribution, for example, many sites for

service layer and one site for interface layer. Interface layer

has another component – listener component which is

responsible for supporting distributed deployment. Listener

which has load balancing function is called balancer. For

example, service layer is deployed on three sites and balancer

is deployed on one site; whenever balancer receives user

request, it looks up service sites and choose the site whose

recommender service is least busy to require such

38 Loc Nguyen: Introduction to a Framework of E-commercial Recommendation Algorithms

recommender service to perform recommendation task. Load

balancing improves system performance and supports a huge

of clients. Note that it is possible for the case that balancer or

listener is deployed on more than one site.

The popular recommendation scenario includes five

following steps in top-down order:

1. User (or client application) specifies her / his request in

text format. Typical client application is the Evaluator

module shown in figure 2. Interpreter component in

interface layer parses such text into JSON format request.

Listener component in interface layer sends JSON

format request to service layer. In distributed

environment, balancer is responsible for choosing

optimal service layer site to send JSON request.

2. Service layer receives JSON request from interface layer.

There are two occasions:

a. Request is to get favorite items. In this case, request is

passed to recommender service. Recommender

service applies appropriate strategy into producing a

list of favorite items. If snapshot or scanner necessary

to recommendation algorithms is not available in

share memory layer, recommender service requires

storage service to create snapshot or scanner. After

that, the list of favorite items is sent back to interface

layer as JSON format result.

b. Request is to retrieve or update data such as querying

item profile, querying average rating on specified item,

rating an item, etc. In this case, request is passed to

storage service. If request is to update data then an

update request is sent to transaction layer. If request

is to retrieve information then storage service looks

up share memory layer to find out appropriate

snapshot or scanner. If such snapshot (or scanner)

does not exists or not contains requisite information

then a retrieval request is sent to transaction layer;

otherwise, in found case, requisite information is

extracted from found snapshot (or scanner) and sent

back to interface layer as JSON format result.

3. Transaction layer analyzes update requests and retrieval

requests from service layer and parses them into

transactions. Each transaction is a bunch of read and

write operations. All low-level operations are

harmonized in terms of concurrency requirement and

sent to data layer later. Some access concurrency

algorithms can be used according to pre-defined

isolation level.

4. Data layer processes read and write operations and

sends back raw result to transaction layer. Raw result is

the piece of information stored in Dataset and

knowledge base or the output variable indicating

whether or not update (write) request is processed

successfully. Transaction layer collects and sends back

the raw result to service layer. Service layer translates

raw result into JSON format result and sends such

translated result to interface layer in succession.

5. The interpreter component in interface layer receives

and translates JSON format result into text format result

easily understandable for users.

The separated multilayer architecture of Recommender

allows it to work effectively and stably with high

customization; especially, its use case in co-operation with

Evaluator is very simple. Please see the section “A Use Case

of Proposed Framework” for comprehending how to use

Recommender and Evaluator.

Fig. 2. Architecture of Evaluator.

 American Journal of Computer Science and Information Engineering 2015; 2(4): 33-44 39

Fig. 3. Architecture of Recommender (recommendation server).

The general architecture of the product shown in figure 1 is

decomposed into 9 packages as follows:

1. Data package standardizes and models data in abstract

level. Dataset and KBase are built in Data package.

2. Parser package analyzes and processes data.

3. Algorithm package models recommendation algorithm

in abstract level. Algorithm package supports mainly

Algorithm module.

4. Evaluate package implements built-in evaluation

mechanism of the framework. It also establishes

common evaluation metrics. Evaluate package supports

mainly Evaluator module.

5. Client package, Server package and Listener package

provides Recommender module (recommendation server)

in client-server network.

6. Logistic package provides computational and

mathematic utilities.

7. Plug-in package manages algorithms and evaluation

metrics. It supports mainly Plug-in manager module.

In general, three main modules Algorithm, Evaluator and

Recommender are constituted of such 9 packages. Figure 4

depicts such nine packages of product.

Fig. 4. Nine packages of product.

40 Loc Nguyen: Introduction to a Framework of E-commercial Recommendation Algorithms

Each package includes many software classes constituting

internal class diagrams. Especially, the Algorithm package

provides two optimized algorithms such as collaborative

filtering algorithm based on mining frequent itemsets and

collaborative filtering algorithm based on Bayesian network

inference.

The product helps you to build up a recommendation

algorithm fast and easily. Moreover, it is very convenient for

you to assess the quality and feasibility of your own algorithm

in real-time application. Suppose you want to set up a new

collaborative filtering algorithm so-called Green Fall, instead

of writing big software with a huge of complicated tasks such

as processing data, implementing algorithm, implementing

evaluation metrics, testing algorithm, creating simulation

environment and etc.; what you need to do is to follow three

steps below:

1. Inheriting Recommender class in Algorithm package and

hence, implementing your idea in two methods estimate

and recommend of this class. Please distinguish

Recommender class from Recommender module.

2. Starting up the Evaluator module (shown in figures 1

and 2) so as to evaluate and compare Green Fall with

other algorithms via pre-defined evaluation metrics.

3. Configuring the Recommender module

(recommendation server) in order to embed Green Fall

into such service. After that starting up Recommender so

as to test the feasibility of Green Fall in real-time

applications.

Fig. 5. Screen shot of module Evaluator. The product home link is http://www.locnguyen.net/st/products/hudup.

Operations in such three steps are very simple; there are

mainly configurations via software graphic user interface

(GUI), except that you require setting up your idea by

programming code lines in step 1. Because algorithm model is

designed and implemented very strictly, what you program is

encapsulated in two methods estimate and recommend of

Recommender class. The average time cost to build up and test

an algorithm is around 2 years but it remains 1 week for you to

realize your idea if you use my product. It means that the

algorithm development cost decreased very much and so it

only takes 1% origin expenditure. It is really exciting work.

Figure 5 shows a screen shot of module Evaluator.

4. A Use Case of Proposed

Framework

Recall that you want to set up Green Fall algorithm – a

collaborative filtering algorithm based on mining frequent

itemsets. You save a lot of efforts and resources when taking

advantages of the proposed framework.

Firstly, you create the Java project named Green Fall and

import the core Java library package “hudup-core.jar” into

Green Fall project. You create the GreenFall class inheriting

from Recommender class. This is base stage proposed by the

 American Journal of Computer Science and Information Engineering 2015; 2(4): 33-44 41

Hudup framework. Note that Hudup is written by the

object-oriented language Java [14]. You implement your idea

in two methods estimate and recommend of GreenFall class as

follows:

public class GreenFall extends Recommender {

public String getName() {

return “gfall”;

}

public RatingVector estimate(RecommendParam param,

Set<Integer> queryIds) {

//Your code here…

}

public RatingVector recommend(RecommendParam param,

int maxRecommend) {

//Your code here…

}

}

Fig. 6. Evaluator discovers the Green Fall algorithm.

Fig. 7. Evaluator lists evaluation result of Green Fall algorithm.

42 Loc Nguyen: Introduction to a Framework of E-commercial Recommendation Algorithms

The estimate method returns estimated rating values of

given items and the recommend method returns a list of

recommended items. Note that the short name of Green Fall

algorithm is gfall as a returned value of the getName method.

All things you do manually are to implement these two

methods. Following tasks are configured via the user graphic

interface (GUI) of the proposed framework. You compile the

Green Fall project and compress it into the Java package

gfall.jar. Subsequently, you put the package gfall.jar into

library directory of the proposed framework.

Secondly, you open the Evaluator, as shown in figure 6.

This is evaluation stage proposed by Hudup framework.

The Evaluator discovers the Green Fall algorithm via the

name gfall. Now you evaluate the Green Fall algorithm by

Evaluator. Database Movielens [7] including 100,000 ratings

of 943 users on 1682 movies is used for evaluation. Database

is divided into 5 folders, each folder includes training set over

80% whole database and testing set over 20% whole database.

Training set and testing set in the same folder are disjoint sets.

You do not need to consider database because Evaluator

processes it automatically. Moreover, the complex evaluation

mechanism and metrics system built in Evaluator are applied

into evaluating Green Fall algorithm according to pre-defined

metrics. There are 7 important pre-defined metrics [9] used in

this evaluation: MAE, MSE, precision, recall, F1, ARHR and

time. Note that time metric is calculated in seconds. MAE and

MSE are predictive accuracy metrics that measure how close

predicted value is to rating value. The less MAE and MSE are,

the high accuracy is. Precision, recall and F1 are quality

metrics that measure the quality of recommendation list – how

much the recommendation list reflects user’s preferences.

ARHR is also quality metric that indicates how well

recommendation list is matched to user’s rating list according

to rating ordering. The large quality metric is, the better

algorithm is. Evaluator also allows you to define custom

metrics. Figure 7 shows the evaluation result of Green Fall

algorithm.

Finally, you configure Recommender (recommendation

server) to deploy and test Green Fall algorithm in real-time

application. This is simulation stage proposed by Hudup

framework. Figure 8 shows up how to deploy Green Fall

algorithm by Recommender.

Fig. 8. Recommender Service deploys Green Fall algorithm.

Now you use the Evaluator to test Green Fall algorithm via client-server environment. Evaluator calls Green Fall algorithm

from Recommender with note that Green Fall algorithm is now separated from Evaluator because it is deployed inside

Recommender. Figure 9 indicates how to guide Evaluator to connect Recommender in order to call Green Fall algorithm

remotely.

 American Journal of Computer Science and Information Engineering 2015; 2(4): 33-44 43

Fig. 9. Configure Evaluator to connect Recommender.

Figure 10 shows again the evaluation result of Green Fall algorithm from remote execution.

Fig. 10. Evaluation result of Green Fall algorithm from remote execution.

44 Loc Nguyen: Introduction to a Framework of E-commercial Recommendation Algorithms

It is concluded that it is easy for you to implement, evaluate

and deploy your solution by taking advantages of the proposed

framework. Most tasks are configured via friendly GUI.

Complicated operations are processed by services and you

only focus on realizing your ideas. Hudup – a framework of

e-commercial recommendation solutions” is the best choice

for you to build up a recommendation solution.

Acknowledgements

This product is the place to acknowledge Ms. Do, Phung T.

M. – University of Information Technology, Vietnam National

University and Mr. Vu, Dong N. who gave me valuable

comments and advices. These comments help me to improve

this product.

References

[1] Brožovský, L. (2006, August). ColFi - Recommender System
for a Dating Service. (V. Petříček, Ed.) Prague, Czech Republic:
Charles University in Prague.

[2] Caraciolo, M., Melo, B., & Caspirro, R. (2011). Crab -
Recommender systems in Python. Muriçoca Labs.

[3] Chen, T., Zhang, W., Lu, Q., Chen, K., Zheng, Z., Yu, Y., et al.
(2012). SVDFeature: A Toolkit for Feature-based
Collaborative Filtering. 1.2.2. China: APEX Data &
Knowledge Management Lab.

[4] Dato-Team. (2013, October 15). GraphLab Create™. (C.
Guestrin, Ed.) Seattle, Washington, USA: Dato, Inc.

[5] Ekstrand, M., Kluver, D., He, L., Kolb, J., Ludwig, M., & He, Y.
(2013). LensKit - Open-Source Tools for Recommender
Systems. Group Lens Research, University of Minnesota.

[6] Gantner, Z., Rendle, S., Drumond, L., & Freudenthaler, C.
(2013). MyMediaLite Recommender System Library. 3.10.
University of Hildesheim and The European Commission 7th
Framework Programme.

[7] GroupLens. (1998, April 22). MovieLens datasets. (GroupLens
Research Project, University of Minnesota, USA) Retrieved
August 3, 2012, from GroupLens Research website:
http://grouplens.org/datasets/movielens.

[8] Hahsler, M. (2014, 08 18). recommenderlab: Lab for
Developing and Testing Recommender Algorithms. 0.1-5. NSF
Industry/University Cooperative Research Center for
Net-Centric Software & Systems.

[9] Herlocker, J. L., Konstan, J. A., Terveen, L. G., & Riedl, J. T.
(2004). Evaluating Collaborative Filtering Recommender
Systems. ACM Transactions on Information Systems (TOIS),
22 (1), 5-53.

[10] Lemire, D. (2003). Cofi: A Java-Based Collaborative Filtering
Library. Canada: National Research Council of Canada.

[11] Lew, D., & Sowell, B. (2007). Carleton Recommender systems.
(D. Musicant, Ed.) Northfield, Minnesota, USA: Carleton
College.

[12] Mahout-Team. (2013). Apache Mahout™. The Apache
Software Foundation.

[13] Microsoft, My Media PC, RichHanbidge, My Media Wp 2
Lead, My Media Wp 3 Lead, My Media Wp 4 Lead, et al.
(2013). My Media Dynamic Personalization and
Recommendation Software Framework Toolkit. MyMedia
project funded through the EU Framework 7 Programme
Networked Media initiative.

[14] Oracle. (n. d.). Java language. (Oracle Corporation) Retrieved
December 25, 2014, from Java website:
https://www.oracle.com/java.

[15] Smart-Agent-Technologies. (2013). easyrec. Research Studios
Austria Forschungsgesellschaft mbH.

[16] Telematica-Instituut. (2007, June 29). Duine Framework.
Telematica Instituut/Novay.

[17] Vogoo-Team, & DROUX, S. (2008). Vogoo PHP LIB. 2.2.
Source Forge.

[18] ECMA, "The JSON Data Interchange Format," ECMA
International, Geneva, 2013.

Loc Nguyen

Board of Directors, Sunflower Soft Company, Ho Chi Minh City, Vietnam
Loc Nguyen is a Director at Sunflower Soft Company, Vietnam. Currently, he is interested in computer science,
statistics, and mathematics. He serves as reviewer and editor in a wide range of international journals. He is a
volunteer of Statistics Without Borders of American Statistics Association. He finished Postdoctoral research in
Computer Science at Sunflower Soft Company. He has published more than 35 papers. He is author of 2 scientific
books, 11 scientific products, 1 verse story, 7 poem collections and 2 music albums. Ultimately, he is very
attractive, enthusiastic and creative. His favourite statement is “Creative man is The Creator”.

