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Abstract 
Recommendation algorithm is very important for e-commercial websites when it can 

recommend online customers favorite products, which results out an increase in sale 

revenue. I propose the framework of e-commercial recommendation algorithms. This is a 

middleware framework or “operating system” for e-commercial recommendation 

software, which support scientists and software developers build up their own 

recommendation algorithms based on this framework with low cost, high achievement and 

fast speed. 

1. Introduction 

The product is the “Framework of e-commercial recommendation solutions”, named 

Hudup. This is a middleware framework or “operating system” for e-commercial 

recommendation software, which support scientists and software developers build up their 

own recommendation solutions based on this framework. The term “recommendation 

solutions” mentions the computer algorithms which aim to recommend online customers 

an introduction list of items such as books, products, services, news papers, fashion 

clothes, etc. on commercial websites with expectation that customers will like these 

recommended items. The goal of recommendation algorithms is to gain high sale revenue. 

You need to develop a recommendation solution for online-sale website. You, a scientist, 

invent a new algorithm after researching many years. Your solution is excellent and very 

useful and so you are very exciting but: 

1. You cope with complicated computations when analyzing big data and there are a 

variety of heterogeneous models in recommendation studies. 

2. It is impossible for you to evaluate your algorithm according to standard metrics. 

3. There is no simulation environment or simulator for you to test the feasibility of your 

algorithm. 

The innovative product “Framework of e-commercial recommendation solutions” 

supports you to solve perfectly three above difficulties and so following are your 

achievements: 

1. Realizing your solution is very fast and easy. 

2. Evaluating your solution according to standard metrics by the best way. 

3. Determining the feasibility of your algorithm in real-time applications. 

The product has another preeminent function which is to provide two optimized 

algorithms so that it is very convenient for you to assess and compare different solutions. 

The product aims to help you, a scientist or software developer, to solve three above core 

problems. The product proposes three solution stages for developing a recommendation 

algorithm. 



34 Loc Nguyen:  Introduction to a Framework of E-commercial Recommendation Algorithms  

 

 

1. Base stage: builds up algorithm model and data model to 

help you to create new software with lowest cost. 

2. Evaluation stage: builds up evaluation metrics and 

algorithm evaluator to help you to assess your own 

algorithm. 

3. Simulation stage: builds up recommendation server or 

simulator, which helps you to test feasibility of your 

algorithm. 

2. Related Works 

 

Fig. 1. General architecture of product. 

There are now some other open source software similar to 

my product; the brief list of them is described as follows: 

1. Carleton [11] is developed by Carleton College, 

Minnesota, USA. The software implements some 

recommendation algorithms and evaluates such 

algorithms based on RMSE metric. The software 

provides an implementing illustration of 

recommendation algorithms and it is not 

recommender system or framework. However, a 

significant feature of Carleton is to recommend 

courses to student based on their school reports. The 

schema of programming classes in Carleton is clear. 

2. Cofi [10] simply implements and evaluates some 

recommendation algorithms. It is not recommender 

system or framework. However, it is written by Java 

language [14] and it works on various platforms. This 

is the strong point of Cofi. 

3. Colfi [11] is developed by Professor Lukáš Brožovský, 

Charles University in Prague, Czech Republic. The 

software builds up a recommendation server for dating 

service. It is larger than Carleton and Cofi. Colfi 

implements and evaluates some collaborative filtering 

algorithms but there is no customization support of 

algorithms and evaluation metrics. Note that 

collaborative filtering (CF) algorithm and 

content-based filtering (CBF) algorithm are typical 

recommendation algorithms. The recommendation 

server is simple and aims to research purposes. 

However, the prominent aspect of Colfi is to support 

dating service via client-server interaction. 

4. Crab [2] is recommendation server written by 

programming language Python. It is developed at 

Muriçoca Labs. The strong point of Crab is to build up 

a recommendation engine inside the server along with 
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algorithm evaluation mechanism. When compared 

with this proposed framework, Crab does not support 

developers to realize their solutions through three 

stages such as implementation, evaluation, and 

simulation. The architecture of Crab is not flexible and 

built-in algorithms are not plentiful. Most of them are 

SVD algorithm and nearest-neighbor algorithms. 

5. Duine [16] is developed by Telematica Institute, 

Novay. This is really a solid recommendation 

framework. Its architecture is very powerful and 

flexible. The strong point of Duine is to improve the 

performance of recommendation engine. When 

compared with this proposed framework, Duine does 

not support developers to realize their solutions 

through three stages such as implementation, 

evaluation, and simulation. The algorithm evaluator of 

Duine is not standardized and its customization is not 

high. 

6. easyrec [15] is developed by IntelliJ IDEA and  

Research Studios Austria, Forschungsgesellschaft 

mbH. Strong points of easyrec are convenience in use, 

supporting consultancy via internet, and allowing 

users to embed recommendation engine in a website in 

order to call functions of easyrec from such website. 

However, easyrec does not support developers to build 

up new algorithms. This is the drawback of easyrec. 

7. GraphLab [4] is a multi-functional toolkit which 

supports collaborative filtering, clustering, computer 

vision, graph analysis, etc. It is sponsored by Office of 

Naval Research, Army Research Office, DARPA and 

Intel. This toolkit is very large and multi-functional. 

This strong point also implies its drawback. 

Developers who get familiar with this toolkit in some 

researches such as computer vision and graph analysis 

will intend to use it for recommendation study. 

However, GraphLab supports recommendation 

research with restriction. It only implements some 

collaborative filtering algorithms and it is not 

recommendation server. 

8. LensKit [5] is developed by the research group 

GroupLen, University of Minnesota, Twin Cities, 

USA. It is written by programming language Java and 

so it works on various platforms. The strong point of 

LensKit is to support developers to construct and 

evaluate recommendation algorithms very well. The 

evaluation mechanism is very sophisticated. However, 

LensKit does not provide developers a simulator or a 

server that helps developers to test their solutions in 

client-server environment. Although the schema of 

programming class library is fragmentary, LenKits 

takes advantages of the development environment 

Maven. In general, LenKits is a very good 

recommendation framework. 

9. Mahout [12] is developed by Apache Software 

Foundation. It is a multi-functional toolkit which 

supports data mining and machine learning, in which 

some recommendation algorithms like 

nearest-neighbor algorithms are implemented. Using 

algorithms built in Mahout is very easy. Mahout aims 

to end-users instead of developers. Its strong point and 

drawback are very similar to the strong point and 

drawback of GraphLab. Mahout is essentially a 

multi-functional toolkit and so it does not focus on 

recommendation system. If you intend to develop a 

data mining or machine learning software, you should 

use Mahout. If you want to focus on recommendation 

system, you should use the proposed framework. 

10. MyMedia [13] is a software that recommends 

customers media products such as movies and pictures. 

The preeminent feature of MyMedia is to focus on 

multimedia entertainment data when implementing 

social network mining algorithms, recommendation 

algorithms, and personalization algorithms. MyMedia 

is a very powerful multimedia recommendation 

framework which aims to end-users such as 

multimedia entertainment companies. However, 

MyMedia does not support specialized mechanism of 

algorithm evaluation based on pre-defined metrics. 

MyMedia, written by the modern programming 

language C#, is developed by EU Framework 7 

Programme Networked Media Initiative together with 

partners: EMIC, BT, the BBC, Technical University of 

Eindhoven, University of Hildesheim, Microgenesis 

and Novay. 

11. MyMediaLite [6] is a small programming library 

which implements and evaluates recommendation 

algorithms. MyMediaLite is light-weight software but 

it implements many recommendation algorithms and 

evaluation metrics. Its architecture is clear. These are 

strong points of MyMediaLite. However, 

MyMediaLite does not build up recommendation 

server. There is no customization support of 

evaluation metrics. These are drawbacks of 

MyMediaLite. MyMediaLite is developed by 

developers Zeno Gantner, Steffen Rendle, Lucas 

Drumond, and Christoph Freudenthaler at University 

of Hildesheim. 

12. recommenderlab [8] is developed by developer 

Michael Hahsler and sponsored by NSF 

Industry/University Cooperative Research Center for 

Net-Centric Software & Systems. The 

recommenderlab is statistical extension package of R 

platform, which aims to build up a recommendation 

infrastructure based on R platform. The preeminent 

feature of recommenderlab is to take advantages of 

excellent data-processing function built in R platform. 

Ability to evaluate and compare algorithms is very 

good. However, recommenderlab does not build up 

recommendation server because it is dependent on R 

platform. The recommenderlab is suitable to 

algorithm evaluation in short time and scientific 

researches on recommendation algorithms. 

13. SVDFeature [3], written by programming language 

C++, is developed by developers Tianqi Chen, Weinan 
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Zhang, Qiuxia Lu, Kailong Chen, Zhao Zheng, Yong 

Yu. SVD is a collaborative filtering algorithm which 

processes huge matrix very effectively in 

recommendation task. SVDFeature focuses on 

implementing SVD algorithm by the best way. 

Although SVDFeature is not a recommendation server, 

it can process huge matrix data and speed up SVD 

algorithm. This is the strongest point of SVDFeature. 

14. Vogoo [17] implements and deploys recommendation 

algorithm on webpage written by web programming 

language PHP. It is very fast and convenient for 

developers to build up e-commercial website that 

supports recommendation function. Although Vogoo 

is simple and not a recommendation server, the 

strongest point of Vogoo is that its library is small and 

neat. If fast development has top-most priority, Vogoo 

is the best choice. 

After surveying 14 other typical products, my product is the 

unique and most optimal if the function to support scientists 

and software developers through 3 stages such as algorithm 

implementation, quality assessment and experiment is 

considered most. Moreover the architecture of product is very 

flexible and highly customizable. Evaluation metrics to 

qualify algorithms are standardized according to pre-defined 

templates so that it is possible for software developers to 

modify existing metrics and add new metrics. 

3. Description of Product 

The product is computer software which has three main 

modules such as Algorithm, Evaluator and Recommender. 

These modules correspond with solution stages such as base 

stage, evaluation stage and simulation stage. Figure 1 depicts 

the general architecture of product. As seen in figure 1, the 

product is constituted of following modules: 

� Algorithm, Evaluator and Recommender are main 

modules. Algorithm, the most important module, defines 

and implements abstract model of recommendation 

algorithms. Algorithm defines specifications which 

user-defined algorithms follow. It is possible to state that 

Algorithm is the infrastructure for other modules. 

Evaluator is responsible for evaluating algorithms 

according to built-in evaluation metrics. Evaluator also 

manages these built-in metrics. Recommender is the 

simulation environment which helps users to test 

feasibility of their algorithms in real-time applications. 

Thus, Recommender is a real recommendation server. 

Figures 2 and 3 depict the general sub-architectures of 

Evaluator and Recommender, respectively. 

� Plug-in manager, an auxiliary module, is responsible for 

discovering and managing registered recommendation 

algorithms. 

� Listener and balancer, which are auxiliary modules, are 

communication means between users/applications and 

recommendation service. 

� Parser and modeler, which are auxiliary modules, are 

responsible for processing raw data. Raw data are read 

and modeled as Dataset by parser and modeler. 

Evaluator module evaluated algorithms based on such 

Dataset. KBase, an abbreviation of knowledge base, is 

the high-level abstract model of Dataset. For example, if 

recommendation algorithm mines purchase pattern of 

online customers from Dataset, such pattern is 

represented by KBase. 

The general sub-architecture of Evaluator shown in figure 2 

implies the evaluation process including following steps: 

1. Developer implements a recommendation algorithm A 

based on specifications defined by Algorithm module. 

2. Developer plugs algorithm A into Plug-in manager. 

3. User requires to evaluate algorithm A by calling 

Evaluator. 

4. Evaluator discovers algorithm A via Plug-in manager. 

Consequently, Evaluator loads and feeds Dataset or 

KBase to algorithm A. If KBase does not exist yet, 

algorithm A will create its own KBase. 

5. Evaluator executes and evaluates algorithm A according 

to built-in metrics. Note that these metrics are managed 

by both metrics system and Plug-in manager. In 

client-server environment, Evaluator executes remotely 

algorithm A by calling Recommender module where 

algorithm A is deployed. This is the most important step 

which is the core of evaluation process. 

6. Evaluator sends evaluation results to user with note that 

these results are formatted according to evaluation 

metrics aforementioned in step 5. 

Please see the section “A Use Case of Proposed Framework” 

to comprehend these evaluation steps. 

The general sub-architecture of Recommender – a 

recommendation server shown in figure 3 includes five layers 

such as interface layer, service layer, share memory layer, 

transaction layer, and data layer. These layers is described in 

bottom-up order. 

Data layer is responsible for manipulating rating data 

organized into two formats: 

� Low-level format is structured as rating matrix whose 

each row consists of user ratings on items. Another 

low-level format is Dataset which consists of rating 

matrix and other information such as user profile, item 

profile and contextual information. Dataset can be 

considered as high or intermediate format when it is 

modeled or implemented as complex and independent 

entity. Dataset is the most popular format. 

� High-level format also stores user ratings as low-level 

format; besides, it has internal inference mechanism 

which allows us to deduce new knowledge such as user 

interests and user purchasing pattern from raw data like 

rating matrix, user profile and item profile. High-level 

format data is called knowledge base or KBase in short. 

Knowledge base is less popular than Dataset because it is 

only used by recommendation algorithms while Dataset 

is exploited widely. 

Because data layer processes directly read and write 

so-called data operators, upper layers needs invoking data 

layer to access rating data. That data operators are transparent 

to upper layers provides ability to modify, add and remove 
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components inside architecture. Data layer also supports 

checkpoint mechanism; whenever data is crashed, data layer 

will perform recovery tasks based on checkpoints so as to 

ensure data integrity. Note, checkpoint is the time point at 

which data is committed to be consistent. The current version 

of the product does not support recovery tasks yet. Process 

unit of this layer, namely read or write operator, is atomic unit 

over whole system. Data layer interacts directly with 

transaction layer via receiving and processing data operators 

request from transaction layer. 

Transaction layer is responsible for managing concurrence 

data access. When many clients issue concurrently 

recommendation requests relating to a huge of data operators, 

a group of data operators in the same request is packed as an 

operator bunch considered as a transaction; thus, there are 

many transactions. In other words, transaction layer splits 

requests into data operators, which in turn groups data 

operators into transactions. Transaction is process unit of this 

layer. Transaction layer regulates transactions so as to ensure 

data consistency before sending data operators request down 

to data layer. Transaction layer connects directly to data layer 

and connects to service layer via storage service. 

Share memory layer is responsible for creating snapshot 

and scanner according to requirement of storage service. 

Snapshot or scanner is defined as an image of piece of Dataset 

and knowledge base (KBase) at certain time point. This image 

is stored in share memory for fast access because it takes long 

time to access data and knowledge stored in hard disk. The 

difference between snapshot and scanner that snapshot copies 

whole piece of data into memory while scanner is merely a 

pointer to such data piece. Snapshot consumes much more 

memory but gives faster access and is more convenient. 

Snapshot and scanner are read-only objects because they 

provide only read operator. The main responsibility of this 

layer is to create snapshots and scanners and to discard them 

whenever they are no longer used. Recommendation service 

and storage service in service layer can retrieve information of 

Dataset or knowledge base by accessing directly to snapshot 

or scanner instead of interacting with transaction layer. Hence, 

the ultimate goal of share memory layer is to accelerate the 

speed of information retrieval. 

Service layer is the heart of architecture when it realized 

two goals of recommendation server: giving the list of 

recommended items in accordance with client request and 

supporting users to retrieve and update rating database. Two 

these goals are implemented by two respective services: 

recommender service and storage service. Such services are 

main components of service layer. Recommender service 

receives request in the interchangeable format such as JSON 

format from upper layer – interface layer and analyze this 

request in order to understand its content such as who requires 

recommendation and what her / his profile is. After that 

recommender service applies an effective strategy into 

producing a list of favorite items which are sent back to 

interface layer in the same interchangeable format like JSON. 

Recommendation strategy is defined as the co-ordination of 

recommendation algorithms such as collaborative filtering 

and content-based filtering in accordance with the coherent 

process so as to achieve a best result of recommendation. In 

simplest form, strategy identifies to a recommendation 

algorithm. Recommender service is the most complex service 

because it implements both algorithms and strategies and 

applies these strategies in accordance of concrete situation. 

Recommender service is the core of aforementioned 

Recommender module shown in figure 1. Storage service is 

simpler when it has two responsibilities: 

� Retrieving and updating directly Dataset and knowledge 

base by sending access request to transaction layer and 

receive results returned. 

� Requiring share memory layer to create snapshot or 

scanner. 

Because recommendation algorithms execute on memory 

and recommender service cannot access Dataset and 

knowledge base, recommender service will require snapshot 

or scanner from storage service. Storage service, in succession, 

requests share memory layer to create snapshot or scanner and 

receives back a reference to such snapshot or scanner. Such 

reference is used by recommender service. 

Interface layer interacts with both clients (users and 

application) and service layer. It is the intermediate layer 

having two responsibilities: 

� For clients, it receives request from users and sends back 

response to them. 

� For service layer, it parses and forwards user request to 

service layer and receives back result. 

There are two kinds of client request corresponding to two 

goals of recommendation server: 

� Recommendation request is that users prefer to get 

favorite items. 

� Access request is that users required to retrieve or update 

Dataset and knowledge base. 

User-specified request is parsed into interchangeable 

format like JSON [18] because it is difficult for server to 

understand user-specified request in plain text format. 

Interpreter, the component of interface layer, does parsing 

function. When users type request as text, interpreter will 

parses such text into JSON object which in turn sends to 

service layer. The result, for example: a list of favorite items, 

is returned to interpreter in form of JSON object and thus, 

interpreter translates such JSON result into text result easy to 

be understood by users. 

Because server supports many clients, it is more effective if 

deploying server on different platforms. It means that we can 

distribute service layer and interface layer in different sites. 

Site can be a personal computer, mainframe, etc. There are 

many scenarios of distribution, for example, many sites for 

service layer and one site for interface layer. Interface layer 

has another component – listener component which is 

responsible for supporting distributed deployment. Listener 

which has load balancing function is called balancer. For 

example, service layer is deployed on three sites and balancer 

is deployed on one site; whenever balancer receives user 

request, it looks up service sites and choose the site whose 

recommender service is least busy to require such 
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recommender service to perform recommendation task. Load 

balancing improves system performance and supports a huge 

of clients. Note that it is possible for the case that balancer or 

listener is deployed on more than one site. 

The popular recommendation scenario includes five 

following steps in top-down order: 

1. User (or client application) specifies her / his request in 

text format. Typical client application is the Evaluator 

module shown in figure 2. Interpreter component in 

interface layer parses such text into JSON format request. 

Listener component in interface layer sends JSON 

format request to service layer. In distributed 

environment, balancer is responsible for choosing 

optimal service layer site to send JSON request. 

2. Service layer receives JSON request from interface layer. 

There are two occasions: 

a. Request is to get favorite items. In this case, request is 

passed to recommender service. Recommender 

service applies appropriate strategy into producing a 

list of favorite items. If snapshot or scanner necessary 

to recommendation algorithms is not available in 

share memory layer, recommender service requires 

storage service to create snapshot or scanner. After 

that, the list of favorite items is sent back to interface 

layer as JSON format result. 

b. Request is to retrieve or update data such as querying 

item profile, querying average rating on specified item, 

rating an item, etc. In this case, request is passed to 

storage service. If request is to update data then an 

update request is sent to transaction layer. If request 

is to retrieve information then storage service looks 

up share memory layer to find out appropriate 

snapshot or scanner. If such snapshot (or scanner) 

does not exists or not contains requisite information 

then a retrieval request is sent to transaction layer; 

otherwise, in found case, requisite information is 

extracted from found snapshot (or scanner) and sent 

back to interface layer as JSON format result. 

3. Transaction layer analyzes update requests and retrieval 

requests from service layer and parses them into 

transactions. Each transaction is a bunch of read and 

write operations. All low-level operations are 

harmonized in terms of concurrency requirement and 

sent to data layer later. Some access concurrency 

algorithms can be used according to pre-defined 

isolation level. 

4. Data layer processes read and write operations and 

sends back raw result to transaction layer. Raw result is 

the piece of information stored in Dataset and 

knowledge base or the output variable indicating 

whether or not update (write) request is processed 

successfully. Transaction layer collects and sends back 

the raw result to service layer. Service layer translates 

raw result into JSON format result and sends such 

translated result to interface layer in succession. 

5. The interpreter component in interface layer receives 

and translates JSON format result into text format result 

easily understandable for users. 

The separated multilayer architecture of Recommender 

allows it to work effectively and stably with high 

customization; especially, its use case in co-operation with 

Evaluator is very simple. Please see the section “A Use Case 

of Proposed Framework” for comprehending how to use 

Recommender and Evaluator. 

 

Fig. 2. Architecture of Evaluator. 
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Fig. 3. Architecture of Recommender (recommendation server). 

The general architecture of the product shown in figure 1 is 

decomposed into 9 packages as follows: 

1. Data package standardizes and models data in abstract 

level. Dataset and KBase are built in Data package. 

2. Parser package analyzes and processes data. 

3. Algorithm package models recommendation algorithm 

in abstract level. Algorithm package supports mainly 

Algorithm module. 

4. Evaluate package implements built-in evaluation 

mechanism of the framework. It also establishes 

common evaluation metrics. Evaluate package supports 

mainly Evaluator module. 

5. Client package, Server package and Listener package 

provides Recommender module (recommendation server) 

in client-server network. 

6. Logistic package provides computational and 

mathematic utilities. 

7. Plug-in package manages algorithms and evaluation 

metrics. It supports mainly Plug-in manager module. 

In general, three main modules Algorithm, Evaluator and 

Recommender are constituted of such 9 packages. Figure 4 

depicts such nine packages of product. 

 

Fig. 4. Nine packages of product. 
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Each package includes many software classes constituting 

internal class diagrams. Especially, the Algorithm package 

provides two optimized algorithms such as collaborative 

filtering algorithm based on mining frequent itemsets and 

collaborative filtering algorithm based on Bayesian network 

inference. 

The product helps you to build up a recommendation 

algorithm fast and easily. Moreover, it is very convenient for 

you to assess the quality and feasibility of your own algorithm 

in real-time application. Suppose you want to set up a new 

collaborative filtering algorithm so-called Green Fall, instead 

of writing big software with a huge of complicated tasks such 

as processing data, implementing algorithm, implementing 

evaluation metrics, testing algorithm, creating simulation 

environment and etc.; what you need to do is to follow three 

steps below: 

1. Inheriting Recommender class in Algorithm package and 

hence, implementing your idea in two methods estimate 

and recommend of this class. Please distinguish 

Recommender class from Recommender module. 

2. Starting up the Evaluator module (shown in figures 1 

and 2) so as to evaluate and compare Green Fall with 

other algorithms via pre-defined evaluation metrics. 

3. Configuring the Recommender module 

(recommendation server) in order to embed Green Fall 

into such service. After that starting up Recommender so 

as to test the feasibility of Green Fall in real-time 

applications. 

 

Fig. 5. Screen shot of module Evaluator. The product home link is http://www.locnguyen.net/st/products/hudup. 

Operations in such three steps are very simple; there are 

mainly configurations via software graphic user interface 

(GUI), except that you require setting up your idea by 

programming code lines in step 1. Because algorithm model is 

designed and implemented very strictly, what you program is 

encapsulated in two methods estimate and recommend of 

Recommender class. The average time cost to build up and test 

an algorithm is around 2 years but it remains 1 week for you to 

realize your idea if you use my product. It means that the 

algorithm development cost decreased very much and so it 

only takes 1% origin expenditure. It is really exciting work. 

Figure 5 shows a screen shot of module Evaluator. 

4. A Use Case of Proposed 

Framework 

Recall that you want to set up Green Fall algorithm – a 

collaborative filtering algorithm based on mining frequent 

itemsets. You save a lot of efforts and resources when taking 

advantages of the proposed framework. 

Firstly, you create the Java project named Green Fall and 

import the core Java library package “hudup-core.jar” into 

Green Fall project. You create the GreenFall class inheriting 

from Recommender class. This is base stage proposed by the 
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Hudup framework. Note that Hudup is written by the 

object-oriented language Java [14]. You implement your idea 

in two methods estimate and recommend of GreenFall class as 

follows:  

public class GreenFall extends Recommender { 

public String getName() { 

return “gfall”; 

} 

public RatingVector estimate(RecommendParam param, 

Set<Integer> queryIds) { 

//Your code here… 

} 

public RatingVector recommend(RecommendParam param, 

int maxRecommend) { 

//Your code here… 

} 

} 

 

 

Fig. 6. Evaluator discovers the Green Fall algorithm. 

 

Fig. 7. Evaluator lists evaluation result of Green Fall algorithm. 
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The estimate method returns estimated rating values of 

given items and the recommend method returns a list of 

recommended items. Note that the short name of Green Fall 

algorithm is gfall as a returned value of the getName method. 

All things you do manually are to implement these two 

methods. Following tasks are configured via the user graphic 

interface (GUI) of the proposed framework. You compile the 

Green Fall project and compress it into the Java package 

gfall.jar. Subsequently, you put the package gfall.jar into 

library directory of the proposed framework. 

Secondly, you open the Evaluator, as shown in figure 6. 

This is evaluation stage proposed by Hudup framework. 

The Evaluator discovers the Green Fall algorithm via the 

name gfall. Now you evaluate the Green Fall algorithm by 

Evaluator. Database Movielens [7] including 100,000 ratings 

of 943 users on 1682 movies is used for evaluation. Database 

is divided into 5 folders, each folder includes training set over 

80% whole database and testing set over 20% whole database. 

Training set and testing set in the same folder are disjoint sets. 

You do not need to consider database because Evaluator 

processes it automatically. Moreover, the complex evaluation 

mechanism and metrics system built in Evaluator are applied 

into evaluating Green Fall algorithm according to pre-defined 

metrics. There are 7 important pre-defined metrics [9] used in 

this evaluation: MAE, MSE, precision, recall, F1, ARHR and 

time. Note that time metric is calculated in seconds. MAE and 

MSE are predictive accuracy metrics that measure how close 

predicted value is to rating value. The less MAE and MSE are, 

the high accuracy is. Precision, recall and F1 are quality 

metrics that measure the quality of recommendation list – how 

much the recommendation list reflects user’s preferences. 

ARHR is also quality metric that indicates how well 

recommendation list is matched to user’s rating list according 

to rating ordering. The large quality metric is, the better 

algorithm is. Evaluator also allows you to define custom 

metrics. Figure 7 shows the evaluation result of Green Fall 

algorithm. 

Finally, you configure Recommender (recommendation 

server) to deploy and test Green Fall algorithm in real-time 

application. This is simulation stage proposed by Hudup 

framework. Figure 8 shows up how to deploy Green Fall 

algorithm by Recommender. 

 

Fig. 8. Recommender Service deploys Green Fall algorithm. 

Now you use the Evaluator to test Green Fall algorithm via client-server environment. Evaluator calls Green Fall algorithm 

from Recommender with note that Green Fall algorithm is now separated from Evaluator because it is deployed inside 

Recommender. Figure 9 indicates how to guide Evaluator to connect Recommender in order to call Green Fall algorithm 

remotely. 
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Fig. 9. Configure Evaluator to connect Recommender. 

Figure 10 shows again the evaluation result of Green Fall algorithm from remote execution. 

 

Fig. 10. Evaluation result of Green Fall algorithm from remote execution. 
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It is concluded that it is easy for you to implement, evaluate 

and deploy your solution by taking advantages of the proposed 

framework. Most tasks are configured via friendly GUI. 

Complicated operations are processed by services and you 

only focus on realizing your ideas. Hudup – a framework of 

e-commercial recommendation solutions” is the best choice 

for you to build up a recommendation solution. 
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