
 

American Journal of Computer Science and Information Engineering 

2016; 3(2): 7-15 

http://www.aascit.org/journal/ajcsie  

ISSN: 2381-1110 (Print); ISSN: 2381-1129 (Online) 
 

 

 
 

 

 

Keywords 
Solution Space,  

Intelligent Tutoring System,  

Intelligent Programming Tutor,  

Programming Tutor,  

Programming Tutoring System,  

Programming,  

Programming Exercises,  

Learning Programming,  

Teaching Programming 

 

 

 

Received: December 10, 2015 

Accepted: December 27, 2015 

Published: August 18, 2016 

 

On Solution Space of Intelligent 
Tutoring Systems for Programming: 
A Review 

Hieu Bui 

Faculty of Information Technology, Ho Chi Minh City University of Transport, Ho Chi Minh City, 

Vietnam 

Email address 
hieubt@hcmutrans.edu.vn 

Citation 
Hieu Bui. On Solution Space of Intelligent Tutoring Systems for Programming: A Review. 

American Journal of Computer Science and Information Engineering.  

Vol. 3, No. 2, 2016, pp. 7-15. 

Abstract 
In intelligent tutoring systems (ITSs) for programming, a single programming exercise 

may produce many alternative solutions from students. It is difficult to build ITSs for 

programming due to the complexity and variety of possible solutions. In order for the 

students to learn from the system, it is necessary for them to receive feedback on their 

solutions to the programming exercises. To provide personalized feedback to students 

who are solving programming exercises effectively, the ITSs for programming must be 

able to cover a large space of possible solutions. The goal of this paper is to provide a 

brief review of the works in the literature related this problem. 

1. Introduction 

Programming is a useful skill and teaching basics of programming is part of many 

curricula in universities and higher education. Programming is a fundamental component 

of any Computer Science curriculum. It is also incorporated into many other disciplines 

such as Transportation Economics, Construction Economics, Logistics, Electronic 

Engineering, Transportation Engineering, Marine Engineering, Ship Engineering, Civil 

Engineering, Mechanical Engineering, Business, Accounting, and many more disciplines 

due to its widespread use in industry. The best method to learn programming is to write 

programs. However, programming is a subject that many beginning students find 

difficult. Also the student groups are large and heterogeneous and thus it is difficult to 

design the instruction so that it would be beneficial for everyone. This often leads to high 

drop-out rates on programming courses [19]. Learning how to program is a universal 

problem that is facing many students in introductory programming courses. This 

multinational problem created the need for an effective and easy to use learning system 

[2]. Teaching introductory programming has challenged educators for decades. Of the 

many suggested methods of improving the teaching process, individual tutoring has 

proven to be very effective [36]. Since teachers are limited in the amount of time they 

can spend helping students, an easy to access, automated help source would be a great 

benefit to students. ITSs are a natural solution to this need, as they are designed to give 

individualized feedback and assistance to students who are working on problems [31]. 

An ITS is a computer system that provides immediate and customized instruction or 

feedback to learners [23]. ITSs for programming are educational systems that teach 

algorithms or programming languages, usually without intervention from a human 

teacher [5]. 

A variety of ITSs for programming have been built to provide tutoring services for  
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programming problems. In this paper, 52 ITSs for 

programming (Table 1, Table 2 and Table 3) may be divided 

into three classes: 1) ITSs for curriculum sequencing (class 

1), 2) ITSs for analyzing solution (class 2) and 3) ITSs for 

programming problem solving support (class 3). The goal of 

ITSs for curriculum sequencing is to provide the student with 

the most suitable individually planned sequence of 

programming concepts/topics to learn and learning tasks 

(examples, questions, etc.) to work with. It helps the student 

find an “optimal learning path” through the learning material 

(learning content). In the context of Web-based education, 

curriculum sequencing technology becomes very important 

due to its ability to guide the student through the hyperspace 

of available information. The typical ITSs for programming 

of this class are No. 12, No. 13 (Table 1), No. 21, No. 22 

(Table 2), No. 44 (Table 3). ITSs for analyzing solution deal 

with students' solutions of programming exercises. Unlike 

automated grade system which can only tell whether the 

solution is correct or not, theses ITSs can tell what is wrong 

or incomplete and which missing or incorrect pieces of 

knowledge may be responsible for the error. These ITSs can 

provide the student with extensive error feedback. The 

typical ITSs for programming of the class 2 are No. 4, No. 5, 

No. 6, No. 7 (Table 1), No. 23, No. 24, No. 25 (Table 2), No. 

45, No. 46, No. 48, No. 51 (Table 3). The goal of ITSs for 

programming problem solving support is to provide the 

student with intelligent help on each step of programming 

problem solving - from giving a hint to executing the next 

step for the student. The typical ITSs for programming of the 

class 3 are No. 40, No. 46, No. 47 (Table 3). 

Most of the ITSs for programming have been developed to 

learn to write programs (class 2 and class 3). ITSs for 

programming are useful first year computer science students 

and non-major students. When using these systems, most 

students can remove compilation errors quickly because the 

errors messages generated by the ITSs for programming are 

usually very informative. As a consequence, the amount of 

time students spend on each programming exercise is 

reduced substantially. Besides, a large number of the students 

remove the error on their own, which helps in reducing the 

number of questions asked to the teachers [9]. 

The major challenge here is even simple programming 

problems can have multiple separate correct solutions and 

hundreds of intermediate states, and each of these states can 

be rewritten in hundreds of ways by varying the code’s 

ordering or adding extra code. As an example, a simple 

programming exercise is given: calculate and print the sum 

of all odd positive numbers under 100. This programming 

exercise can be solved in multiple ways using constructs of 

an imperative programming language, for example: 

 

We can also think of many variants for any of these solutions, for example: 

 

 

In this small example we can already see many syntactic 

differences, such as: 

� Using a while loop instead of a for loop. 

� Using a compound assignment operator (counter += 2) 

instead writing out the full assignment (counter = 

counter + 2). 

� Using a different name for a variable. 

We can also identify a minor semantic difference in variant 

1: looping until the counter is at least 101 instead of 100. The 

result is still a correct program. Also, if we swap two 

independent statements, do we get a different solution? 

Another issue is performing a calculation in steps instead of 

in a single assignment and even only printing the expected 

end result. Are these different solutions or simply variants of 

the same solution? [17] 

One of the main functions of ITSs for programming is 

providing feedback to hint students solve programming 

exercises. Understanding solution variation is important for 

providing appropriate feedback to students [7]. It is necessary 

that the system be capable of identifying all such variations 

[36]. The following section presents a brief review of the 

current studies related to this work. 
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Table 1. ITSs for programming from 1976 to 1999. 

No. System name Authors Year 
Programming 

Language 

Programming 

Paradigm 

1 
The computer as a tutorial laboratory: The 

Stanford BIP project. 
Barr, A., Beard, M., & Atkinson, R. C. 1976 BASIC Imperative 

2 
Meno-ii: An intelligent tutoring system for 

novice programmers 

Soloway, E. M., Woolf, B., Rubin, E., & 

Barth, P. 
1981 Pascal Imperative 

3 
Design considerations of an intelligent tutoring 

system for programming languages 
Elsom-Cook, M. 1984 Lisp Function 

4 The LISP tutor Anderson, J. R., & Reiser, B. J. 1985 Lisp Function 

5 
PROUST: Knowledge-based program 

understanding 
Johnson, W. L., & Soloway, E. 1985 Pascal Imperative 

6 
Talus: Automatic Program Debugging for 

Intelligent Tutoring Systems 
Murray, W. R 1986 Lisp Function 

7 
Towards an intelligent tutoring system for 

Pascal programming 

Doukidis, G. I., Angelides, M. C., & 

Harlow, J. L. 
1988 Pascal Imperative 

8 
Bridge: Intelligent tutoring with intermediate 

representations 
Bonar, J. G., & Cunningham, R. 1988 Pascal Imperative 

9 
Its Ada: An Intelligent Tutoring System for the 

ADA Programming Language 
DeLooze, L. L. 1991 Ada Imperative 

10 

An integrated knowledge-based intelligent 

programming environment for novice 

programmers 

Ueno, H. 1991 Pascal Imperative 

11 
Automatic debugging of Prolog programs in a 

Prolog intelligent tutoring system 
Looi, C. K. 1991 Prolog Logic 

12 
Hyperex: An intelligent tutoring hypertext 

system for learning programming 
Altamura, O., & Roselli, T. 1995 Pascal Imperative 

13 
ELM-ART: An intelligent tutoring system on 

World Wide Web 
Brusilovsky, P., Schwarz, E., & Weber, G. 1996 Lisp Function 

14 
An intelligent tutoring system for introductory 

C language course 

Song, J. S., Hahn, S. H., Tak, K. Y., & 

Kim, J. H. 
1997 C Imperative 

15 

Extraction of problem description from sample 

program for knowledge-based programming 

tutoring 

Hahn, S. H. 1997 C Imperative 

16 
Automatic diagnosis of student programs in 

programming learning environments 
Xu, S., & Chee, Y. S. 1999 Smalltalk Object Oriented 

Table 2. ITSs for programming from 2000 to 2010. 

No. System name Authors Year 
Programming 

Language 

Programming 

Paradigm 

17 

Model-based reasoning for domain modeling in a 

web-based intelligent tutoring system to help 

students learn to debug C++ programs 

Kumar, A. N. 2002 C++ 
Imperative, Object 

Oriented 

18 
Transformation-based diagnosis of student 

programs for programming tutoring systems 
Xu, S., & Chee, Y. S. 2003 Smalltalk Object Oriented 

19 
Propat: A programming ITS based on pedagogical 

patterns. In Intelligent Tutoring Systems 
Delgado, K. V., & de Barros, L. N 2004 C Imperative 

20 
Intelligent tutoring and knowledge base creation for 

the subject of computer programming 

Muansuwan, N., Sirinaovakul, B., 

& Thepruangchai, P. 
2004 C Imperative 

21 
Exercise sequence adaptation in programming 

education 
Taguchi, H., & Shimakawa, H 2004 C Imperative 

22 
A web-based intelligent tutoring system for 

computer programming 

Butz, C. J., Hua, S., & Maguire, R. 

B. 
2004 C++ 

Imperative, Object 

Oriented 

23 
Haskell-Tutor: An Intelligent Tutoring System for 

Haskell Programming language 
Xu, L., & Sarrafzadeh, A. 2004 Haskell Function 

24 
A Dialogue-Based Tutoring System for Beginning 

Programming 
Lane, H. C., & VanLehn, K. 2004 Pascal Imperative 

25 
Guided programming and automated error analysis 

in an intelligent Prolog tutor 
Hong, J. 2004 Prolog Logic 

26 
Teaching the tacit knowledge of programming to 

novices with natural language tutoring 
Lane, H. C., & VanLehn, K 2005 C, Java 

Imperative, Object 

Oriented 

27 
The Intelligent Web-Based Tutoring System using 

the C++ Standard Template Library 
Lee, C., & Baba, M. S. 2005 C++ 

Imperative, Object 

Oriented 

28 
Prototype Model of Tutoring System for 

Programming 
Dadic, T., Stankov, S., & Rosic, M 2006 BASIC Imperative 
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No. System name Authors Year 
Programming 

Language 

Programming 

Paradigm 

29 
A multi-agent intelligent tutoring system for 

learning computer programming 

Sierra, E., Hossian, A., Britos, P., 

Rodriguez, D., & Garcia-Martinez, 

R. 

2007 C++, Java 
Imperative, Object 

Oriented 

30 
Developing an intelligent tutoring system for 

students learning to program in C++ 
Naser, S. S. A. 2008 C++ 

Imperative, Object 

Oriented 

31 
M-PLAT: Multi-Programming Language Adaptive 

Tutor 

Nuez, A., Fernández, J., Garcia, J. 

D., Prada, L., & Carretero, J. 
2008 Java Object Oriented 

32 J-LATTE: a Constraint-based Tutor for Java. 
Holland, J., Mitrovic, A., & Martin, 

B. 
2009 Java Object Oriented 

33 An intelligent tutoring system for C++ Mishra, K., & Mishra, R. B. 2010 C++ 
Imperative, Object 

Oriented 

34 AlgoTutor: from algorithm design to coding Yoo, S., & Yoo, J. 2010 C++ 
Imperative, Object 

Oriented 

35 
Design, Development and Evaluation of the Java 

Intelligent Tutoring System 
Sykes, E. R. 2010 Java Object Oriented 

Table 3. ITSs for programming from 2011 to 10/15/2015. 

No. System name Authors Year 
Programming 

Language 

Programming 

Paradigm 

36 
Research and application of plan recognition in Intelligent 

Tutoring System 

Liu, L., Wang, H., Li, C., & 

Zhao, C. 
2011 Java Object Oriented 

37 
Using weighted constraints to build a tutoring system for logic 

programming 
Le, N. T. 2011 Prolog Logic 

38 

An Intelligent E-Learning System for Beginner Programming-

Using Analogical Reminder for Error Classification and 

Explanation 

Pollack, R. 2011 Scheme 
Imperative, Object 

Oriented, Function 

39 
Program representation for automatic hint generation for a 

data-driven novice programming tutor. 

Jin, W., Barnes, T., Stamper, 

J., Eagle, M. J., Johnson, M. 

W., & Lehmann, L. 

2012 C++ 
Imperative, Object 

Oriented 

40 ASK-ELLE: a Haskell Tutor Gerdes, A. 2012 Haskell Function 

41 Improving testing abilities of a programming tutoring system 
Vesin, B., Klasnja-Milicevic, 

A., & Ivanovic, M. 
2013 Java Object Oriented 

42 Intelligent tutoring system for learning PHP Weragama, D. S. 2013 PHP Scripting/Dynamic 

43 
Automated feedback generation for introductory programming 

assignments 

Singh, R., Gulwani, S., & 

Solar-Lezama, A. 
2013 Python Scripting/Dynamic 

44 
KEM Cs: A set of student's characteristics for modeling in 

adaptive programming tutoring systems 
Chrysafiadi, K., & Virvou, M 2014 C Imperative 

45 
Incorporating anchored learning in a C# intelligent tutoring 

system 
Hartanto, B. 2014 C# Object Oriented 

46 
Strategy-based feedback for imperative programming 

exercises 
Keuning, H. 2014 Java, PHP 

Object Oriented, 

Scripting 

47 
Data-Driven Program Synthesis for Hint Generation in 

Programming Tutors. In Intelligent Tutoring Systems 
Lazar, T., & Bratko, I. 2014 Prolog Logic 

48 
Introducing Code Adviser: A DFA-driven Electronic 

Programming Tutor 

Ade-Ibijola, A., Ewert, S., & 

Sanders, I. 
2015 C++ 

Imperative, Object 

Oriented 

49 
An exploration of data-driven hint generation in an open-

ended programming problem 
Price, T. W., & Barnes, T. 2015 Grace Object Oriented 

50 
Adaptive structure metrics for automated feedback provision 

in Java programming 

Paaßen, B., Mokbel, B., & 

Hammer, B. 
2015 Java Object Oriented 

51 
Learning to program using hierarchical model-based 

debugging 

de Barros, L. N., Pinheiro, 

W. R., & Delgado, K. V. 
2015 Java Object Oriented 

 

2. Current Approaches 

2.1. The Genetic Programming (GP) 

Approach 

A genetic programming algorithm for evolving imperative 

programs using memory, selection and iterative programming 

constructs was implemented. The GP approach was able to 

evolve solution programs for 10 programming problems 

taken from a first year course on programming [15]. One 

major drawback of this approach is that able to evolve 

solution programs for only 10 programming exercises. 

2.2. The Deterministic Finite Automaton 

(DFA) Approach 

This approach comprised the following steps: 

1. takes a model program for a programming problem 

written in C++ (provided by teacher/expert because they 

are experts in their field and their solutions serve as 

examples for students) with a number of test cases, 

cleans up and granulates the model program, 
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2. generates all possible variations of the model program, 

3. constructs a DFA from the solution space, taking each 

solution as a string, 

4. attempts to compare a buggy student program to the 

finite list of program strings accepted by the problem’s 

DFA, and 

5. depending on the student’s plan and output correctness, 

it reports on discovered bugs and suggest repairs or 

declares the student’s program as correct [1]. 

The main limitation of DFA, however, is not robust. It is a 

proof of concept that we have used to demonstrate how a tool 

can be used to tutor student programmers based on DFAs of 

alternative solutions and bug detection algorithms. 

2.3. The Constraint Based Modelling (CBM) 

Approach 

This approach uses constraints to model a space of correct 

solutions, rather than enumerating them. A constraint 

represents a domain principle or specifies a property of 

correct solutions. A set of constraints divides the space of 

solutions into two subspaces: the inner space for correct and 

the outer space for incorrect solutions as Figure 1. illustrates. 

Whenever a solution violates a constraint, that solution falls 

into the outer space, and a CBM tutoring system derives a 

feedback associated to that violated constraint [14], [21]. A 

programming exercise with this approach is that it fails to 

take the imperative programming languages into account. 

 

Figure 1. A solution space determined by the constraints. Ci: constraint, : space of correct solutions, : space of incorrect solutions. 

2.4. The Program Transformation Based 

Approach 

2.4.1. Intelligent Tutoring System for 

Learning PHP 

The system converts the student’s solution into a set of 

predicates. These predicates are then compared against an 

overall goal which is also depicted as a set of predicates. Any 

missing predicates are used to identify sub-goals of the 

programming exercise that are not met and to provide 

relevant feedback [17]. The main weakness with this system 

is that the tutor is not focused on providing feedback during 

programming. 

2.4.2. Intelligent Tutoring Systems for 

Learning C, Java and PHP 

Using programming strategies, in combination with 

program transformations, three these systems recognizes 

many different student programs from a limited set of model 

solutions. Using programming strategies, in combination 

with program transformations, three these systems recognizes 

many different student programs from a limited set of model 

solutions. The distinguishing characteristics of these 

programming tutors are: 

� it supports the incremental development of programs: 

students can submit incomplete programs and receive 

feedback and/or hints. 

� it calculates feedback automatically based on model 

solutions to exercises. A teacher does not have to 

specify feedback the feedback by hand. 

� correctness is based on provable equivalence to a model 

solution, using a normal form for functional programs. 

If system cannot determine whether or not a program is 

equivalent to a model solution, system uses testing as an 

approximation. 

� it recognizes arbitrary many student steps on the way to 

a solution [10], [17], [18]. 

� One major drawback of these systems is that these ones 

based on model solutions provide by teachers/experts, 

because they are experts in their field and their solutions 

serve as examples for students. However, variations to 

these model solutions are boundless. 

2.5. The Canonicalization Based Approach 

This approach is used extensively to identify alternate 

solutions to a given programming exercise is to convert the 

program code into a standardized form. The standardized 

form is then compared against a solution that is stored in the 

same standardized form. Different standardized forms have 

been proposed. 

2.5.1. Linkage Graph Based Program 

Representation 

A linkage graph is a directed acrylic graph whose nodes 

represent program statements and directed edges indicate 

dependencies between the different statements. This graph is 

represented as a two dimensional matrix. Equivalent 
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programs have equal matrices, thereby allowing accepting 

alternative solutions to a single exercise [16]. However, the 

published work only deals with the assignment statement. 

The probability that this method will be able to produce equal 

matrices for logically equivalent programs using other 

programming structures is, as yet doubtful. 

2.5.2. Abstract Syntax Tree (AST) Based 

Program Representation 

The completed student solution is converted into an AST, 

which captures the structure of a program. The form of the 

AST is dependent on the structure of the program. 

Therefore, alternative solutions to a single program have 

different ASTs. This means that the AST obtained from the 

student’s program is converted to a standard form using a 

set of rules. Once a student’s solution has been converted 

into an AST, systems can gather relevant information on 

what data structures and algorithms the student is used by 

checking the tree [31], [34]. Although this method seems 

suitable for identifying alternative solutions to small 

programming exercises, it is difficult to see it being 

expandable for larger programs. 

2.6. The Data-Driven Approach 

2.6.1. Data-Driven Program Synthesis 

I. Data-Driven Programming Synthesis for Hint 

Generation in Programming Tutors 

This method models programming directly in terms of 

textual edits, allowing us to trace student actions more 

closely. This one is generative: given an incorrect program, it 

finds a sequence of edits that transforms it into a correct 

solution. The goal of this method is to synthesis new 

programs from an incorrect solution [20]. One major 

drawback of this approach is the search algorithm. When 

searching for edit sequences, the scoring function only 

considers edits in the current sequence. 

II. Accessible Programming Using Program Synthesis 

The AutoProf [32] system for Python provides feedback 

for introductory programming exercises to students by 

telling them exactly what is wrong with their solution and 

how to correct it. Given the reference implementation and 

the error model, the synthesis algorithm symbolically 

searches over the space of all possible rewrites to a student 

solution and finds a corrected solution, which is 

functionally equivalent to the reference implementation and 

which requires minimum number of rewrites. This set of 

rewrites induces a large space of corrections (10
15

), and the 

AutoPro needs to check each one of them for functional 

equivalence. This system encodes this large solution space 

using constraints and uses an iterative minimization 

algorithm to efficiently solve them [32]. However, this is a 

first step towards using the power of automated program 

synthesis for democratizing programming, and there are 

many new exciting systems that can be built upon these 

foundations to make programming accessible to an even 

larger class of people. 

2.6.2. Machine Learning (ML) of Solution 

Spaces 

According to this method, solution spaces are 

automatically clustered by machine learning techniques 

operating on sets student solutions. Based on these 

structured solution spaces, system proposes feedback 

provision strategies that employ example based learning 

methods comparing student solution attempts to appropriate 

sample solutions [11]. The key problem with this method is 

that let us assume that a set of correct student solutions is 

given for a programming exercise. As described above, 

feedback can then be generated based on a sufficient 

number of examples, which are essentially high quality 

solutions, either included in a database of student solutions, 

or provided by teachers/experts as designated sample 

solutions. 

2.6.3. The Intelligent Teaching Assistant for 

Programming (ITAP) System 

The ITAP combines algorithms for state abstraction, path 

construction, and state reification to fully automate the 

process of hint generation, even when given states that have 

not occurred in the data before. ITAP makes it possible to 

generate a full chain of hints from any new code state to the 

closest goal state. Further, the ITAP is an instance of a self-

improving ITS, a tutor that continually improves its ability to 

provide hints that are personalized to each students’ 

individual solution to a programming exercise. 

The ITAP requires a two pieces of expert knowledge to run 

independently, though this knowledge is kept to a minimum. 

The needed data is: At least one reference solution to the 

problem (e.g. a teacher/expert exemplar) and a test method 

that can automatically score code (e.g. pairs of expected 

input and output). Both reference solutions and test methods 

are already commonly created by teachers/experts in the 

process of preparing assignments, so the burden of 

knowledge generation is not too large [31]. A major 

limitation of this method is that it relies on the existence of 

test cases that can measure the correctness of solutions. 

Though there are a large number of programming exercises 

which can easily be tested using input/output sets, there are 

many other programming exercises which are difficult to test; 

for example, graphical assignments, interactive programs, 

and programs using randomization. 

2.6.4. Inferring Problem Solving Policies 

Piech et al. have provided a definition of Problem Solving 

Policy (PSP): “PSP is a decision for any partial solution as to 

what next partial solution a student should take” (see the 

example in Figure 2). Furthermore, they claim “that data of 

how previous students navigated their way to the final 

answer can be leveraged to autonomously understand the 

landscape of such assessments and enable hints for future 

students,” thereby potentially increasing future student 

retention [28]. 
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Figure 2. Each node is a unique partial solution, node 0 is the correct answer. The edges show what next partial solution they think a teacher/expert would 

suggest students move towards. 

Piech et al. have offered a comparative analysis tested 

multiple solution space generation algorithms (including 

other’s path construction and their problem solving policies: 

all ten algorithms) from a MOOC (Massive Open Online 

Course: Code.org) to determine how often the selected next 

states matched the next states chosen by teachers/experts. 

They found that several of the algorithms had a high match 

rate, indicating that this new approach has great potential to 

generate the hints that students will benefit the most from. 

2.6.5. The Variation Theory Based Method 

Glassman et al. [8] proposed the use of variation theory to 

explain differences in student submissions. Applying 

variation theory to programming exercises essentially means 

using a hierarchical approach: first, distinguishing clusters of 

approaches to solving a problem, and then within each cluster 

identifying differences in various students’ implementation 

of a particular approach. This “divide and conquer” method 

has many other use cases, including pairing students based on 

their problem-solving strategies and making it easier to 

illustrate to students the relative merits of different 

approaches. 

Gulwani et al. [13] studied a large number of functionally 

correct student solutions to introductory programming 

assignments and observed: (1) There are different algorithmic 

strategies, with varying levels of efficiency, for solving a 

given problem. These different strategies merit different 

feedback. (2) The same algorithmic strategy can be 

implemented in countless different ways. 

However, the key problem with this method is that a 

teacher has to define an algorithmic strategy. 

3. Conclusions 

The objective of this research is to identify and category 

the current approaches to handling large solution space of 

ITSs for programming. 

The primary contributions of this paper are: 

� A review of existing ITSs for programming with many 

different programming languages and different 

programming paradigms from year 1976 to year 2015 

and 

� A brief review of recent approaches for solution space 

problem in the context of ITSs for programming. 

In the context of student solution, existing ITSs for 

programming may be divided into two categories which are 1) 

incomplete/partial solutions and 2) complete/final/full 

solutions. Data-Drive approach is suitable for ITSs for 

programming with incomplete/partial solutions. Data-driven 

methods have been a successful approach to covering solution 

spaces for programming exercises of ITSs for programming. 

An advantage of this data-driven approach is that the instructor 

does not have to provide any input. On the other hand, it 

requires the existence of a large data set. Furthermore, in this 

approach, most of these algorithms have only been evaluated 

on collected student programming exercise solving traces, and 

the ones that are being tested on real students are implemented 

in online learning environments such as MOOCs not in 

individual classrooms. In a typical course, each topic is 

presented in a specific lecture on a specific date according to 

the course curriculum, and, at each moment of time, students 
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are expected to focus on the current topic(s). To reflect this 

classroom practice, Data-Driven ITSs for programming should 

maintain the course schedule, which associates each topic with 

the date of its presentation. 

Only one system, the ITAP is an instance of a self-

improving ITS, a tutor that continually improves its ability to 

provide hints that are personalized to each students’ 

individual solution to a programming exercise. It does so by 

updating the solution space every time a student attempts a 

solution and recalculating optimal paths. 

In summary, for the informants in this study, compared to 

others, the data-driven approach is flexible. 
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