

American Journal of Computer Science and Information Engineering

2016; 3(2): 7-15

http://www.aascit.org/journal/ajcsie

ISSN: 2381-1110 (Print); ISSN: 2381-1129 (Online)

Keywords
Solution Space,

Intelligent Tutoring System,

Intelligent Programming Tutor,

Programming Tutor,

Programming Tutoring System,

Programming,

Programming Exercises,

Learning Programming,

Teaching Programming

Received: December 10, 2015

Accepted: December 27, 2015

Published: August 18, 2016

On Solution Space of Intelligent
Tutoring Systems for Programming:
A Review

Hieu Bui

Faculty of Information Technology, Ho Chi Minh City University of Transport, Ho Chi Minh City,

Vietnam

Email address
hieubt@hcmutrans.edu.vn

Citation
Hieu Bui. On Solution Space of Intelligent Tutoring Systems for Programming: A Review.

American Journal of Computer Science and Information Engineering.

Vol. 3, No. 2, 2016, pp. 7-15.

Abstract
In intelligent tutoring systems (ITSs) for programming, a single programming exercise

may produce many alternative solutions from students. It is difficult to build ITSs for

programming due to the complexity and variety of possible solutions. In order for the

students to learn from the system, it is necessary for them to receive feedback on their

solutions to the programming exercises. To provide personalized feedback to students

who are solving programming exercises effectively, the ITSs for programming must be

able to cover a large space of possible solutions. The goal of this paper is to provide a

brief review of the works in the literature related this problem.

1. Introduction

Programming is a useful skill and teaching basics of programming is part of many

curricula in universities and higher education. Programming is a fundamental component

of any Computer Science curriculum. It is also incorporated into many other disciplines

such as Transportation Economics, Construction Economics, Logistics, Electronic

Engineering, Transportation Engineering, Marine Engineering, Ship Engineering, Civil

Engineering, Mechanical Engineering, Business, Accounting, and many more disciplines

due to its widespread use in industry. The best method to learn programming is to write

programs. However, programming is a subject that many beginning students find

difficult. Also the student groups are large and heterogeneous and thus it is difficult to

design the instruction so that it would be beneficial for everyone. This often leads to high

drop-out rates on programming courses [19]. Learning how to program is a universal

problem that is facing many students in introductory programming courses. This

multinational problem created the need for an effective and easy to use learning system

[2]. Teaching introductory programming has challenged educators for decades. Of the

many suggested methods of improving the teaching process, individual tutoring has

proven to be very effective [36]. Since teachers are limited in the amount of time they

can spend helping students, an easy to access, automated help source would be a great

benefit to students. ITSs are a natural solution to this need, as they are designed to give

individualized feedback and assistance to students who are working on problems [31].

An ITS is a computer system that provides immediate and customized instruction or

feedback to learners [23]. ITSs for programming are educational systems that teach

algorithms or programming languages, usually without intervention from a human

teacher [5].

A variety of ITSs for programming have been built to provide tutoring services for

8 Hieu Bui: On Solution Space of Intelligent Tutoring Systems for Programming: A Review

programming problems. In this paper, 52 ITSs for

programming (Table 1, Table 2 and Table 3) may be divided

into three classes: 1) ITSs for curriculum sequencing (class

1), 2) ITSs for analyzing solution (class 2) and 3) ITSs for

programming problem solving support (class 3). The goal of

ITSs for curriculum sequencing is to provide the student with

the most suitable individually planned sequence of

programming concepts/topics to learn and learning tasks

(examples, questions, etc.) to work with. It helps the student

find an “optimal learning path” through the learning material

(learning content). In the context of Web-based education,

curriculum sequencing technology becomes very important

due to its ability to guide the student through the hyperspace

of available information. The typical ITSs for programming

of this class are No. 12, No. 13 (Table 1), No. 21, No. 22

(Table 2), No. 44 (Table 3). ITSs for analyzing solution deal

with students' solutions of programming exercises. Unlike

automated grade system which can only tell whether the

solution is correct or not, theses ITSs can tell what is wrong

or incomplete and which missing or incorrect pieces of

knowledge may be responsible for the error. These ITSs can

provide the student with extensive error feedback. The

typical ITSs for programming of the class 2 are No. 4, No. 5,

No. 6, No. 7 (Table 1), No. 23, No. 24, No. 25 (Table 2), No.

45, No. 46, No. 48, No. 51 (Table 3). The goal of ITSs for

programming problem solving support is to provide the

student with intelligent help on each step of programming

problem solving - from giving a hint to executing the next

step for the student. The typical ITSs for programming of the

class 3 are No. 40, No. 46, No. 47 (Table 3).

Most of the ITSs for programming have been developed to

learn to write programs (class 2 and class 3). ITSs for

programming are useful first year computer science students

and non-major students. When using these systems, most

students can remove compilation errors quickly because the

errors messages generated by the ITSs for programming are

usually very informative. As a consequence, the amount of

time students spend on each programming exercise is

reduced substantially. Besides, a large number of the students

remove the error on their own, which helps in reducing the

number of questions asked to the teachers [9].

The major challenge here is even simple programming

problems can have multiple separate correct solutions and

hundreds of intermediate states, and each of these states can

be rewritten in hundreds of ways by varying the code’s

ordering or adding extra code. As an example, a simple

programming exercise is given: calculate and print the sum

of all odd positive numbers under 100. This programming

exercise can be solved in multiple ways using constructs of

an imperative programming language, for example:

We can also think of many variants for any of these solutions, for example:

In this small example we can already see many syntactic

differences, such as:

� Using a while loop instead of a for loop.

� Using a compound assignment operator (counter += 2)

instead writing out the full assignment (counter =

counter + 2).

� Using a different name for a variable.

We can also identify a minor semantic difference in variant

1: looping until the counter is at least 101 instead of 100. The

result is still a correct program. Also, if we swap two

independent statements, do we get a different solution?

Another issue is performing a calculation in steps instead of

in a single assignment and even only printing the expected

end result. Are these different solutions or simply variants of

the same solution? [17]

One of the main functions of ITSs for programming is

providing feedback to hint students solve programming

exercises. Understanding solution variation is important for

providing appropriate feedback to students [7]. It is necessary

that the system be capable of identifying all such variations

[36]. The following section presents a brief review of the

current studies related to this work.

 American Journal of Computer Science and Information Engineering 2016; 3(2): 7-15 9

Table 1. ITSs for programming from 1976 to 1999.

No. System name Authors Year
Programming

Language

Programming

Paradigm

1
The computer as a tutorial laboratory: The

Stanford BIP project.
Barr, A., Beard, M., & Atkinson, R. C. 1976 BASIC Imperative

2
Meno-ii: An intelligent tutoring system for

novice programmers

Soloway, E. M., Woolf, B., Rubin, E., &

Barth, P.
1981 Pascal Imperative

3
Design considerations of an intelligent tutoring

system for programming languages
Elsom-Cook, M. 1984 Lisp Function

4 The LISP tutor Anderson, J. R., & Reiser, B. J. 1985 Lisp Function

5
PROUST: Knowledge-based program

understanding
Johnson, W. L., & Soloway, E. 1985 Pascal Imperative

6
Talus: Automatic Program Debugging for

Intelligent Tutoring Systems
Murray, W. R 1986 Lisp Function

7
Towards an intelligent tutoring system for

Pascal programming

Doukidis, G. I., Angelides, M. C., &

Harlow, J. L.
1988 Pascal Imperative

8
Bridge: Intelligent tutoring with intermediate

representations
Bonar, J. G., & Cunningham, R. 1988 Pascal Imperative

9
Its Ada: An Intelligent Tutoring System for the

ADA Programming Language
DeLooze, L. L. 1991 Ada Imperative

10

An integrated knowledge-based intelligent

programming environment for novice

programmers

Ueno, H. 1991 Pascal Imperative

11
Automatic debugging of Prolog programs in a

Prolog intelligent tutoring system
Looi, C. K. 1991 Prolog Logic

12
Hyperex: An intelligent tutoring hypertext

system for learning programming
Altamura, O., & Roselli, T. 1995 Pascal Imperative

13
ELM-ART: An intelligent tutoring system on

World Wide Web
Brusilovsky, P., Schwarz, E., & Weber, G. 1996 Lisp Function

14
An intelligent tutoring system for introductory

C language course

Song, J. S., Hahn, S. H., Tak, K. Y., &

Kim, J. H.
1997 C Imperative

15

Extraction of problem description from sample

program for knowledge-based programming

tutoring

Hahn, S. H. 1997 C Imperative

16
Automatic diagnosis of student programs in

programming learning environments
Xu, S., & Chee, Y. S. 1999 Smalltalk Object Oriented

Table 2. ITSs for programming from 2000 to 2010.

No. System name Authors Year
Programming

Language

Programming

Paradigm

17

Model-based reasoning for domain modeling in a

web-based intelligent tutoring system to help

students learn to debug C++ programs

Kumar, A. N. 2002 C++
Imperative, Object

Oriented

18
Transformation-based diagnosis of student

programs for programming tutoring systems
Xu, S., & Chee, Y. S. 2003 Smalltalk Object Oriented

19
Propat: A programming ITS based on pedagogical

patterns. In Intelligent Tutoring Systems
Delgado, K. V., & de Barros, L. N 2004 C Imperative

20
Intelligent tutoring and knowledge base creation for

the subject of computer programming

Muansuwan, N., Sirinaovakul, B.,

& Thepruangchai, P.
2004 C Imperative

21
Exercise sequence adaptation in programming

education
Taguchi, H., & Shimakawa, H 2004 C Imperative

22
A web-based intelligent tutoring system for

computer programming

Butz, C. J., Hua, S., & Maguire, R.

B.
2004 C++

Imperative, Object

Oriented

23
Haskell-Tutor: An Intelligent Tutoring System for

Haskell Programming language
Xu, L., & Sarrafzadeh, A. 2004 Haskell Function

24
A Dialogue-Based Tutoring System for Beginning

Programming
Lane, H. C., & VanLehn, K. 2004 Pascal Imperative

25
Guided programming and automated error analysis

in an intelligent Prolog tutor
Hong, J. 2004 Prolog Logic

26
Teaching the tacit knowledge of programming to

novices with natural language tutoring
Lane, H. C., & VanLehn, K 2005 C, Java

Imperative, Object

Oriented

27
The Intelligent Web-Based Tutoring System using

the C++ Standard Template Library
Lee, C., & Baba, M. S. 2005 C++

Imperative, Object

Oriented

28
Prototype Model of Tutoring System for

Programming
Dadic, T., Stankov, S., & Rosic, M 2006 BASIC Imperative

10 Hieu Bui: On Solution Space of Intelligent Tutoring Systems for Programming: A Review

No. System name Authors Year
Programming

Language

Programming

Paradigm

29
A multi-agent intelligent tutoring system for

learning computer programming

Sierra, E., Hossian, A., Britos, P.,

Rodriguez, D., & Garcia-Martinez,

R.

2007 C++, Java
Imperative, Object

Oriented

30
Developing an intelligent tutoring system for

students learning to program in C++
Naser, S. S. A. 2008 C++

Imperative, Object

Oriented

31
M-PLAT: Multi-Programming Language Adaptive

Tutor

Nuez, A., Fernández, J., Garcia, J.

D., Prada, L., & Carretero, J.
2008 Java Object Oriented

32 J-LATTE: a Constraint-based Tutor for Java.
Holland, J., Mitrovic, A., & Martin,

B.
2009 Java Object Oriented

33 An intelligent tutoring system for C++ Mishra, K., & Mishra, R. B. 2010 C++
Imperative, Object

Oriented

34 AlgoTutor: from algorithm design to coding Yoo, S., & Yoo, J. 2010 C++
Imperative, Object

Oriented

35
Design, Development and Evaluation of the Java

Intelligent Tutoring System
Sykes, E. R. 2010 Java Object Oriented

Table 3. ITSs for programming from 2011 to 10/15/2015.

No. System name Authors Year
Programming

Language

Programming

Paradigm

36
Research and application of plan recognition in Intelligent

Tutoring System

Liu, L., Wang, H., Li, C., &

Zhao, C.
2011 Java Object Oriented

37
Using weighted constraints to build a tutoring system for logic

programming
Le, N. T. 2011 Prolog Logic

38

An Intelligent E-Learning System for Beginner Programming-

Using Analogical Reminder for Error Classification and

Explanation

Pollack, R. 2011 Scheme
Imperative, Object

Oriented, Function

39
Program representation for automatic hint generation for a

data-driven novice programming tutor.

Jin, W., Barnes, T., Stamper,

J., Eagle, M. J., Johnson, M.

W., & Lehmann, L.

2012 C++
Imperative, Object

Oriented

40 ASK-ELLE: a Haskell Tutor Gerdes, A. 2012 Haskell Function

41 Improving testing abilities of a programming tutoring system
Vesin, B., Klasnja-Milicevic,

A., & Ivanovic, M.
2013 Java Object Oriented

42 Intelligent tutoring system for learning PHP Weragama, D. S. 2013 PHP Scripting/Dynamic

43
Automated feedback generation for introductory programming

assignments

Singh, R., Gulwani, S., &

Solar-Lezama, A.
2013 Python Scripting/Dynamic

44
KEM Cs: A set of student's characteristics for modeling in

adaptive programming tutoring systems
Chrysafiadi, K., & Virvou, M 2014 C Imperative

45
Incorporating anchored learning in a C# intelligent tutoring

system
Hartanto, B. 2014 C# Object Oriented

46
Strategy-based feedback for imperative programming

exercises
Keuning, H. 2014 Java, PHP

Object Oriented,

Scripting

47
Data-Driven Program Synthesis for Hint Generation in

Programming Tutors. In Intelligent Tutoring Systems
Lazar, T., & Bratko, I. 2014 Prolog Logic

48
Introducing Code Adviser: A DFA-driven Electronic

Programming Tutor

Ade-Ibijola, A., Ewert, S., &

Sanders, I.
2015 C++

Imperative, Object

Oriented

49
An exploration of data-driven hint generation in an open-

ended programming problem
Price, T. W., & Barnes, T. 2015 Grace Object Oriented

50
Adaptive structure metrics for automated feedback provision

in Java programming

Paaßen, B., Mokbel, B., &

Hammer, B.
2015 Java Object Oriented

51
Learning to program using hierarchical model-based

debugging

de Barros, L. N., Pinheiro,

W. R., & Delgado, K. V.
2015 Java Object Oriented

2. Current Approaches

2.1. The Genetic Programming (GP)

Approach

A genetic programming algorithm for evolving imperative

programs using memory, selection and iterative programming

constructs was implemented. The GP approach was able to

evolve solution programs for 10 programming problems

taken from a first year course on programming [15]. One

major drawback of this approach is that able to evolve

solution programs for only 10 programming exercises.

2.2. The Deterministic Finite Automaton

(DFA) Approach

This approach comprised the following steps:

1. takes a model program for a programming problem

written in C++ (provided by teacher/expert because they

are experts in their field and their solutions serve as

examples for students) with a number of test cases,

cleans up and granulates the model program,

 American Journal of Computer Science and Information Engineering 2016; 3(2): 7-15 11

2. generates all possible variations of the model program,

3. constructs a DFA from the solution space, taking each

solution as a string,

4. attempts to compare a buggy student program to the

finite list of program strings accepted by the problem’s

DFA, and

5. depending on the student’s plan and output correctness,

it reports on discovered bugs and suggest repairs or

declares the student’s program as correct [1].

The main limitation of DFA, however, is not robust. It is a

proof of concept that we have used to demonstrate how a tool

can be used to tutor student programmers based on DFAs of

alternative solutions and bug detection algorithms.

2.3. The Constraint Based Modelling (CBM)

Approach

This approach uses constraints to model a space of correct

solutions, rather than enumerating them. A constraint

represents a domain principle or specifies a property of

correct solutions. A set of constraints divides the space of

solutions into two subspaces: the inner space for correct and

the outer space for incorrect solutions as Figure 1. illustrates.

Whenever a solution violates a constraint, that solution falls

into the outer space, and a CBM tutoring system derives a

feedback associated to that violated constraint [14], [21]. A

programming exercise with this approach is that it fails to

take the imperative programming languages into account.

Figure 1. A solution space determined by the constraints. Ci: constraint, : space of correct solutions, : space of incorrect solutions.

2.4. The Program Transformation Based

Approach

2.4.1. Intelligent Tutoring System for

Learning PHP

The system converts the student’s solution into a set of

predicates. These predicates are then compared against an

overall goal which is also depicted as a set of predicates. Any

missing predicates are used to identify sub-goals of the

programming exercise that are not met and to provide

relevant feedback [17]. The main weakness with this system

is that the tutor is not focused on providing feedback during

programming.

2.4.2. Intelligent Tutoring Systems for

Learning C, Java and PHP

Using programming strategies, in combination with

program transformations, three these systems recognizes

many different student programs from a limited set of model

solutions. Using programming strategies, in combination

with program transformations, three these systems recognizes

many different student programs from a limited set of model

solutions. The distinguishing characteristics of these

programming tutors are:

� it supports the incremental development of programs:

students can submit incomplete programs and receive

feedback and/or hints.

� it calculates feedback automatically based on model

solutions to exercises. A teacher does not have to

specify feedback the feedback by hand.

� correctness is based on provable equivalence to a model

solution, using a normal form for functional programs.

If system cannot determine whether or not a program is

equivalent to a model solution, system uses testing as an

approximation.

� it recognizes arbitrary many student steps on the way to

a solution [10], [17], [18].

� One major drawback of these systems is that these ones

based on model solutions provide by teachers/experts,

because they are experts in their field and their solutions

serve as examples for students. However, variations to

these model solutions are boundless.

2.5. The Canonicalization Based Approach

This approach is used extensively to identify alternate

solutions to a given programming exercise is to convert the

program code into a standardized form. The standardized

form is then compared against a solution that is stored in the

same standardized form. Different standardized forms have

been proposed.

2.5.1. Linkage Graph Based Program

Representation

A linkage graph is a directed acrylic graph whose nodes

represent program statements and directed edges indicate

dependencies between the different statements. This graph is

represented as a two dimensional matrix. Equivalent

12 Hieu Bui: On Solution Space of Intelligent Tutoring Systems for Programming: A Review

programs have equal matrices, thereby allowing accepting

alternative solutions to a single exercise [16]. However, the

published work only deals with the assignment statement.

The probability that this method will be able to produce equal

matrices for logically equivalent programs using other

programming structures is, as yet doubtful.

2.5.2. Abstract Syntax Tree (AST) Based

Program Representation

The completed student solution is converted into an AST,

which captures the structure of a program. The form of the

AST is dependent on the structure of the program.

Therefore, alternative solutions to a single program have

different ASTs. This means that the AST obtained from the

student’s program is converted to a standard form using a

set of rules. Once a student’s solution has been converted

into an AST, systems can gather relevant information on

what data structures and algorithms the student is used by

checking the tree [31], [34]. Although this method seems

suitable for identifying alternative solutions to small

programming exercises, it is difficult to see it being

expandable for larger programs.

2.6. The Data-Driven Approach

2.6.1. Data-Driven Program Synthesis

I. Data-Driven Programming Synthesis for Hint

Generation in Programming Tutors

This method models programming directly in terms of

textual edits, allowing us to trace student actions more

closely. This one is generative: given an incorrect program, it

finds a sequence of edits that transforms it into a correct

solution. The goal of this method is to synthesis new

programs from an incorrect solution [20]. One major

drawback of this approach is the search algorithm. When

searching for edit sequences, the scoring function only

considers edits in the current sequence.

II. Accessible Programming Using Program Synthesis

The AutoProf [32] system for Python provides feedback

for introductory programming exercises to students by

telling them exactly what is wrong with their solution and

how to correct it. Given the reference implementation and

the error model, the synthesis algorithm symbolically

searches over the space of all possible rewrites to a student

solution and finds a corrected solution, which is

functionally equivalent to the reference implementation and

which requires minimum number of rewrites. This set of

rewrites induces a large space of corrections (10
15

), and the

AutoPro needs to check each one of them for functional

equivalence. This system encodes this large solution space

using constraints and uses an iterative minimization

algorithm to efficiently solve them [32]. However, this is a

first step towards using the power of automated program

synthesis for democratizing programming, and there are

many new exciting systems that can be built upon these

foundations to make programming accessible to an even

larger class of people.

2.6.2. Machine Learning (ML) of Solution

Spaces

According to this method, solution spaces are

automatically clustered by machine learning techniques

operating on sets student solutions. Based on these

structured solution spaces, system proposes feedback

provision strategies that employ example based learning

methods comparing student solution attempts to appropriate

sample solutions [11]. The key problem with this method is

that let us assume that a set of correct student solutions is

given for a programming exercise. As described above,

feedback can then be generated based on a sufficient

number of examples, which are essentially high quality

solutions, either included in a database of student solutions,

or provided by teachers/experts as designated sample

solutions.

2.6.3. The Intelligent Teaching Assistant for

Programming (ITAP) System

The ITAP combines algorithms for state abstraction, path

construction, and state reification to fully automate the

process of hint generation, even when given states that have

not occurred in the data before. ITAP makes it possible to

generate a full chain of hints from any new code state to the

closest goal state. Further, the ITAP is an instance of a self-

improving ITS, a tutor that continually improves its ability to

provide hints that are personalized to each students’

individual solution to a programming exercise.

The ITAP requires a two pieces of expert knowledge to run

independently, though this knowledge is kept to a minimum.

The needed data is: At least one reference solution to the

problem (e.g. a teacher/expert exemplar) and a test method

that can automatically score code (e.g. pairs of expected

input and output). Both reference solutions and test methods

are already commonly created by teachers/experts in the

process of preparing assignments, so the burden of

knowledge generation is not too large [31]. A major

limitation of this method is that it relies on the existence of

test cases that can measure the correctness of solutions.

Though there are a large number of programming exercises

which can easily be tested using input/output sets, there are

many other programming exercises which are difficult to test;

for example, graphical assignments, interactive programs,

and programs using randomization.

2.6.4. Inferring Problem Solving Policies

Piech et al. have provided a definition of Problem Solving

Policy (PSP): “PSP is a decision for any partial solution as to

what next partial solution a student should take” (see the

example in Figure 2). Furthermore, they claim “that data of

how previous students navigated their way to the final

answer can be leveraged to autonomously understand the

landscape of such assessments and enable hints for future

students,” thereby potentially increasing future student

retention [28].

 American Journal of Computer Science and Information Engineering 2016; 3(2): 7-15 13

Figure 2. Each node is a unique partial solution, node 0 is the correct answer. The edges show what next partial solution they think a teacher/expert would

suggest students move towards.

Piech et al. have offered a comparative analysis tested

multiple solution space generation algorithms (including

other’s path construction and their problem solving policies:

all ten algorithms) from a MOOC (Massive Open Online

Course: Code.org) to determine how often the selected next

states matched the next states chosen by teachers/experts.

They found that several of the algorithms had a high match

rate, indicating that this new approach has great potential to

generate the hints that students will benefit the most from.

2.6.5. The Variation Theory Based Method

Glassman et al. [8] proposed the use of variation theory to

explain differences in student submissions. Applying

variation theory to programming exercises essentially means

using a hierarchical approach: first, distinguishing clusters of

approaches to solving a problem, and then within each cluster

identifying differences in various students’ implementation

of a particular approach. This “divide and conquer” method

has many other use cases, including pairing students based on

their problem-solving strategies and making it easier to

illustrate to students the relative merits of different

approaches.

Gulwani et al. [13] studied a large number of functionally

correct student solutions to introductory programming

assignments and observed: (1) There are different algorithmic

strategies, with varying levels of efficiency, for solving a

given problem. These different strategies merit different

feedback. (2) The same algorithmic strategy can be

implemented in countless different ways.

However, the key problem with this method is that a

teacher has to define an algorithmic strategy.

3. Conclusions

The objective of this research is to identify and category

the current approaches to handling large solution space of

ITSs for programming.

The primary contributions of this paper are:

� A review of existing ITSs for programming with many

different programming languages and different

programming paradigms from year 1976 to year 2015

and

� A brief review of recent approaches for solution space

problem in the context of ITSs for programming.

In the context of student solution, existing ITSs for

programming may be divided into two categories which are 1)

incomplete/partial solutions and 2) complete/final/full

solutions. Data-Drive approach is suitable for ITSs for

programming with incomplete/partial solutions. Data-driven

methods have been a successful approach to covering solution

spaces for programming exercises of ITSs for programming.

An advantage of this data-driven approach is that the instructor

does not have to provide any input. On the other hand, it

requires the existence of a large data set. Furthermore, in this

approach, most of these algorithms have only been evaluated

on collected student programming exercise solving traces, and

the ones that are being tested on real students are implemented

in online learning environments such as MOOCs not in

individual classrooms. In a typical course, each topic is

presented in a specific lecture on a specific date according to

the course curriculum, and, at each moment of time, students

14 Hieu Bui: On Solution Space of Intelligent Tutoring Systems for Programming: A Review

are expected to focus on the current topic(s). To reflect this

classroom practice, Data-Driven ITSs for programming should

maintain the course schedule, which associates each topic with

the date of its presentation.

Only one system, the ITAP is an instance of a self-

improving ITS, a tutor that continually improves its ability to

provide hints that are personalized to each students’

individual solution to a programming exercise. It does so by

updating the solution space every time a student attempts a

solution and recalculating optimal paths.

In summary, for the informants in this study, compared to

others, the data-driven approach is flexible.

References

[1] Ade-Ibijola, A., Ewert, S., & Sanders, I. (2015). Introducing
Code Adviser: A DFA-driven Electronic Programming Tutor.
In Implementation and Application of Automata (pp. 307-
312). Springer International Publishing.

[2] AlShamsi, F., & Elnagar, A. (2009, December). JLearn-DG:
Java learning system using dependence graphs. In Proceedings
of the 11th International Conference on Information
Integration and Web-based Applications & Services (pp. 633-
637). ACM.

[3] Assaf, D., Escherle, N., Basawapatna, A., Maiello, C., &
Repenning, A. Retention of Flow: Evaluating a Computer
Science Education Week Activity.

[4] Brusilovsky, P., & Peylo, C. (2003). Adaptive and intelligent
web-based educational systems. International Journal of
Artificial Intelligence in Education (IJAIED), 13, 159-172.

[5] Chrysafiadi, K., & Virvou, M. (2014, July). KEM Cs: A set of
student's characteristics for modeling in adaptive
programming tutoring systems. InInformation, Intelligence,
Systems and Applications, IISA 2014, The 5th International
Conference on (pp. 106-110). IEEE.

[6] Fossati, D., Di Eugenio, B., Ohlsson, S. T. E. L. L. A. N.,
Brown, C., & Chen, L. (2015). Data driven automatic
feedback generation in the iList intelligent tutoring system.
Technology, Instruction, Cognition and Learning, 10(1), 5-26.

[7] Glassman, E. L., Scott, J., Singh, R., Guo, P. J., & Miller, R.
C. (2015). Over Code: Visualizing variation in student
solutions to programming problems at scale. ACM
Transactions on Computer-Human Interaction (TOCHI),
22(2), 7.

[8] Glassman, E. L., Singh, R., & Miller, R. C. (2014, March).
Feature engineering for clustering student solutions. In
Proceedings of the first ACM conference on Learning@ scale
conference (pp. 171-172). ACM.

[9] Gómez-Albarrán, M. (2005). The Teaching and Learning of
Programming: A Survey of Supporting Software Tools. The
Computer Journal, 48(2), 130-144.

[10] Gerdes, A. (2012). Ask-Elle: a Haskell Tutor. PhD thesis,
Universiteit Utrecht.

[11] Gross, S., Mokbel, B., Paassen, B., Hammer, B., & Pinkwart,
N. (2014). Example-based feedback provision using structured
solution spaces. International Journal of Learning Technology
10, 9(3), 248-280.

[12] Gross, S., & Pinkwart, N. (2015, July). Towards an Integrative
Learning Environment for Java Programming. In Advanced
Learning Technologies (ICALT), 2015 IEEE 15th
International Conference on (pp. 24-28). IEEE.

[13] Gulwani, S., Radiček, I., & Zuleger, F. (2014, November).
Feedback generation for performance problems in
introductory programming assignments. In Proceedings of the
22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (pp. 41-51). ACM.

[14] Holland, J. (2009). A Constraint-Based ITS for the Java
Programming Language (Doctoral dissertation, University of
Canterbury). Retrieved from
https://www.csse.canterbury.ac.nz/research/reports.

[15] Igwe, K., Pillay, N., Corchado, E., Yun-Huoy, C., & Ma, K.
(2013, December). Automatic Programming Using Genetic
Programming. In Proceedings of the World Congress on
Information and Communication Technologies., Hanoi,
Vietnam (pp. 339-344).

[16] Jin, W., Barnes, T., Stamper, J., Eagle, M. J., Johnson, M. W.,
& Lehmann, L. (2012, January). Program representation for
automatic hint generation for a data-driven novice
programming tutor. In Intelligent Tutoring Systems (pp. 304-
309). Springer Berlin Heidelberg.

[17] Keuning, H. (2014). Strategy-based feedback for imperative
programming exercises. PhD thesis, Utrecht University.

[18] Keuning, H., Heeren, B., & Jeuring, J. (2014, November).
Strategy-based feedback in a programming tutor. In
Proceedings of the Computer Science Education Research
Conference (pp. 43-54). ACM.

[19] Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005, June).
A study of the difficulties of novice programmers. In ACM
SIGCSE Bulletin (Vol. 37, No. 3, pp. 14-18). ACM.

[20] Lazar, T., & Bratko, I. (2014, January). Data-Driven Program
Synthesis for Hint Generation in Programming Tutors. In
Intelligent Tutoring Systems (pp. 306-311). Springer
International Publishing.

[21] Le, N.-T. (2011). Using weighted constraints to build a
tutoring system for logic programming. (PhD thesis),
University of Hamburg, Germany.

[22] Le, N. T., Loll, F., & Pinkwart, N. (2013). Operationalizing
the Continuum between Well-Defined and Ill-Defined
Problems for Educational Technology. Learning Technologies,
IEEE Transactions on, 6(3), 258-270.

[23] Lee, M. R., & Chen, T. T. (2015). Digital creativity: Research
themes and framework. Computers in Human Behavior, 42,
12-19.

[24] Luxton-Reilly, A., Denny, P., Kirk, D., Tempero, E., & Yu, S.
Y. (2013, July). On the differences between correct student
solutions. In Proceedings of the 18th ACM conference on
Innovation and technology in computer science education (pp.
177-182). ACM.

[25] Maghdid, D., Szybek, P., & Führer, C. (2015). A Study on
Variation Technique in Courses on Scientific Computing.
Science Journal of Education, 3 (June 2015), 60-67.

[26] Nguyen, A., Piech, C., Huang, J., & Guibas, L. (2014, April).
Codewebs: scalable homework search for massive open online
programming courses. InProceedings of the 23rd international
conference on World wide web (pp. 491-502). ACM.

 American Journal of Computer Science and Information Engineering 2016; 3(2): 7-15 15

[27] Paaßen, B., Mokbel, B., & Hammer, B. (2015). Adaptive
structure metrics for automated feedback provision in Java
programming. In English. In: European Symposium on
Artificial Neural Networks (ESANN). Ed. by Michel
Verleysen.(accepted/in press). Bruges, Belgium.

[28] Piech, C., Sahami, M., Huang, J., & Guibas, L. (2015, March).
Autonomously Generating Hints by Inferring Problem Solving
Policies. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale (pp. 195-204). ACM.

[29] Rivers, K., & Koedinger, K. R. (2012, January). A
canonicalizing model for building programming tutors. In
Intelligent Tutoring Systems (pp. 591-593). Springer Berlin
Heidelberg.

[30] Price, T. W., & Barnes, T. (2015, June). An exploration of
data-driven hint generation in an open-ended programming
problem. In Workshop on Graph-Based Data Mining held at
Educational Data Mining (EDM).

[31] Rivers, K., & Koedinger, K. R. (2015). Data-Driven Hint
Generation in Vast Solution Spaces: a Self-Improving Python

Programming Tutor. International Journal of Artificial
Intelligence in Education, 1-28.

[32] Singh, R. (2014). Accessible programming using program
synthesis (Doctoral dissertation, Massachusetts Institue of
Technology).

[33] Sudol, L. A., Rivers, K., & Harris, T. K. (2012). Calculating
Probabilistic Distance to Solution in a Complex Problem
Solving Domain. International Educational Data Mining
Society.

[34] Truong, N. (2007). A web-based programming environment
for novice programmers (Doctoral dissertation, Queensland
University of Technology).

[35] Thuné, M., & Eckerdal, A. (2009). Variation theory applied to
students’ conceptions of computer programming. European
Journal of Engineering Education, 34(4), 339-347.

[36] Weragama, D. S. (2013). Intelligent tutoring system for
learning PHP. PhD thesis, Queensland University of
Technology.

