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oise and late reverberation reduction algorithms were compared by means of objective speech quality and speech 

recognition accuracy (Acc%) measures. Negative effects of excessive noise reduction for automatic speech recognition 

(ASR) had been shown. It was found possibility of improvement the noise suppression algorithms quality, in terms of Acc%, by 

proper choice of a priori signal-to-noise assessment technique. It was shown that decision-directed technique is the best for 

speech quality, when “rough” assessment technique is the best for ASR, and the maximum likelihood technique occupies an 

intermediate position. When studying late reverberation suppression algorithms, it was found existence of optimal, in terms of 

Acc%, parameters values of the algorithms. It was shown also that these parameters values are different for ASR and for speech 

enhancement. Thus, late reverberation suppression algorithms behavior is similar to one of noise suppression algorithms. Study 

of speech quality measures had showed that only few of them were in good agreement with Acc%. But existence of such 

measures is very important, because it enables use them instead of Acc% and, thus, enables essentially simplify assessment of 

noise and reverberation robustness in ASR. 

 

Introduction 
 

Noise and late reverberation reduction pre-processors (Fig. 1) are widely used for speech quality improvement in embedded 

and communication systems, hearing aids, as well as in ASR [1, 2, 3, 4]. 

 

Fig. 1. Noise and/or late reverberation reduction system as ASR pre-processor. 

Two relatively recent proposed noise reduction algorithms named Wiener-TSNR and Wiener-HRNR [5, 6] were compared in 

[7] with a set of traditionally used algorithms, such as spectral subtraction (SpecSub), Wiener filtering (Wiener), minimum 

mean-square error amplitude spectrum estimator (MMSE) and minimum mean-square error log-spectral amplitude estimator 

(logMMSE) algorithms. It was shown that Wiener-TSNR and Wiener-HRNR algorithms have a serious drawback: when 

radically suppressing residual noise, they significantly reduce ASR robustness. Since the Wiener-TSNR and Wiener-HRNR 

algorithms are based on a special correction of a priori SNR evaluation, one would hope to improve the algorithms quality by 

changing of averaging parameter value of “decision-directed” technique [2] used for a priori SNR estimation. Checking the 

validity of this assumption had been made in [8] and it was shown that improvement of the algorithms quality in terms of Acc% 

is possible. Moreover, it was shown also usefulness of other a priori SNR estimation techniques. 

N 
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Some features of late reverberation reduction algorithms were studied in [9] and it was found that excessive late reverberation 

suppression is harmful for ASR. At the same time it was shown in [9] that speech quality is much less sensitive to excessive late 

reverberation reduction. 

As it was shown in [7, 8, 9], objective speech quality measures [10, 11] are not in good agreement with Acc% measure, though 

there can be find a few measures with satisfactory characteristics. Existence of such measures is very important, because it 

enables use them instead of Acc% and, thus, it enables essentially simplify assessment of noise and reverberation robustness in 

ASR [12]. 

In this paper, the results of [7-9] are generalized and equipped with extended comments. 

 

Noise and Late Reverberation Reduction Algorithms 
 

Noise reduction algorithm transforms the mixture ( ) ( ) ( )y t x t n t= +  by means of operator {}A ⋅  to get restored signal 

(̂ ) { ( )}x t A y t= . 

Frequency domain speech enhancing technique is the most popular: 

( )[ ] ( )[ ] 2121

ˆ ,ˆ),(ˆ,ˆ mfmfGmf yx λ⋅=λ
 

where ( )ˆ ,
y
f mλ  and ( )ˆ

ˆ ,
x
f mλ  are power spectrum estimators of the m th frame of signal ( )y t  and restored signal (̂ )x t , 

respectively; ˆ( , )G f m  is estimator of transfer function for each m th frame. Phase spectrum of signal ( )y t  is usually used when 

signal (̂ )x t  is calculated. SpecSub, Wiener, MMSE and logMMSE algorithms [1, 2, 3], and also Wiener-TSNR and 

Wiener-HRNR algorithms [5, 6] are considered in this paper. 

 

Traditional Noise Reduction Algorithms 
 

Traditional noise reduction algorithms discussed in this paper are SpecSub, Wiener, MMSE and logMMSE algorithms [1, 2, 3, 

4], where ˆ( , )G f m  is calculated as follows: 
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where (̂ , )f mξ  is a priori signal-to-noise ratio (SNR) estimator, ),(ˆ),(ˆ),(ˆ mfmfmf ny λλ=γ  is a posteriori SNR, 

)],(ˆ1[),(ˆ),(ˆ),(ˆ mfmfmfmfv ξ+γξ= , ()Γ ⋅  is gamma function, 
0
()I ⋅  and 

1
()I ⋅  are modified Bessel functions of zero and first 

order, respectively. 

“Decision-directed” method had been proposed in [2] for (̂ , )f mξ  calculation: 

,10],1),(ˆ[)1()1,(ˆ)1,(ˆ),(ˆ
ˆ ≤α≤−γ⋅α−+−λ−λ⋅α=ξ mfPmfmfmf nxDD                                (5) 
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Radical Noise Reduction Algorithms 
 

Wiener-TSNR and Wiener-HRNR algorithms had been proposed relatively recently [5, 6]. Their noise suppression action is 

much more efficient compared to the aforementioned traditional algorithms. The word «Wiener» in their names means that the 

transfer functions of the correction filters are formed according to (2). However, this does not mean that the transfer functions are 

prohibited from forming a different way. 

Wiener-TSNR transfer function is formed in two steps. 

Step 1: 

)(ˆ/),(ˆ)1,(ˆ),(ˆ
ˆ fmfmfmf nxDDTSNR λλ≈+ξ=ξ                                                 (6) 

Step 2: 
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When noise suppression is strong as is the case of Wiener-TSNR algorithm, speech signal components are also suppressed 

intensively. Wiener-HRNR algorithm was proposed for regeneration of the lost signal components. This procedure consists of 

three steps. 

Step 1. Output of TSNR algorithm (or other noise reduction algorithm) is used as input of half-wave rectifier: 

)](ˆ[)(ˆ)( tsPtstsharm ⋅=                                                                             (8) 

Step 2. Using (8), a priori SNR is calculated: 
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ˆ fmfmffmfmfmf nharmnxHRNR λλ⋅ρ−λλ⋅ρ=ξ                           (9) 

where ˆ ( , )
harm

f mλ  is power spectrum estimator of signal ( )
harm
s t ; ( , )f mρ  ( 0 ( , ) 1f mρ≤ ≤ ) is weight coefficient. Although 

there is a certain freedom of ( , )f mρ  choice, it was proposed designate ˆ( , ) ( , )
TSNR

f m G f mρ =  in [5]. 

Step 3. Transfer function for HRNR algorithm is formed: 
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It is naturally to assume that the ability of Wiener-TSNR and Wiener-HRNR algorithms radically suppress the noise is 

balanced by unpleasant consequence such as unacceptably high distortion of the speech signal. Therefore it is important to verify 

the validity of this assumption. 

 

A Priori SNR Estimation Technique 
 

Important component of almost any noise suppression algorithm is a priori SNR (̂ , )f mξ  estimation technique [2]. Apart from 

“decision-directed” (DD) technique (5), other two techniques considered here are maximum likelihood (ML) and “rough” (RO) 

techniques 

ˆ ( , ) ( ( , ) 1)
ML
f m P f mξ γ= −                                                                   (11) 

ˆ( , ) ( , 1) (1 ) ( , ) / , 0 1, 1f m f m f mγ α γ α γ β α β′ ′ ′= ⋅ − + − ⋅ ≤ ≤ ≥  
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ˆ ˆ( , ) ( , ) 1
RO
f m f mξ γ= −                                                                        (12) 

 

Late Reverberation Suppression 
 

For reverberated signal ( ) ( ) ( )y t x t h t= ⊗ , where ⊗  is convolution symbol, room impulse response (RIR) ( )h t  can be 

decomposed as follows [13] 
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l
T  is time, corresponding to boundary between early reflections and late reverberation. Thus, reverberated signal ( )y t  can be 

represented as 

( ) ( ) ( ) ( )
i

y t h t x t r t= ⊗ +                                                                        (13) 

where ( ) ( ) ( )
l l

r t h t x t T= ⊗ −  is late reverberation component. Terms of (13) are statistically independent, thus late 

reverberation may be interpreted as kind of noise and its suppression can been made by means of noise reduction algorithm. Late 

reverberation power spectrum 
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where ( , )Y l k  is spectrogram of ( )y t . Recommendations for choosing optimal, in terms of Acc% maximum, parameters 
l
T  and 

d

z
η  values can be found in [9]. 

 

Quality Measures 
 

When speech enhancement algorithm is used as ASR pre-processor, it is naturally use end-to-end quality measure 

% ( )/ 100%Acc N D S I N= − − − ×  

where N  is the total number of labels in the reference transcriptions, D  is the number of deletion errors, S  is the number of 

substitution errors, I  is the number of insertion errors [12]. 

For speech enhancement algorithms used in communication systems or in applications for people with hearing loss, it is 

naturally use speech quality indicators. Nine speech quality measures were explored in [7-9]. They are segmental SNR (SSNR), 

logarithmic spectral distortion (LSD), weighted spectral slope distance (WSS), log-likelihood ratio (LLR), Itacura-Saito distance 

(IS), cepstral distance (CEP), composite index [SCI, NCI, OCI], bark spectral distortion (BSD) and perceptual evaluation of 

speech quality (PESQ). 

Measures SSNR, LSD and BSD are described as follows: 
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where ( , )x l n  and (̂ , )x l n  are n th samples of l th frames of clean speech signal ( )x t  and enhanced signal (̂ )x n , respectively, 

( , )X l k  and ˆ( , )X l k  are spectrograms of signals ( , )x l n  and (̂ , )x l n , respectively; { ( , )}B X l k  and ˆ{ ( , )}B X l k  are bark 

spectrums of signals ( , )x l n  and (̂ , )x l n , respectively, k  is critical bandwidth number. 

WSS is described as follows: 

2
1

1

1

( , )( ( , ) ( , ))1

( , )

K
M

c pj

K
m

j

W j m S j m S j m
WSS

M W j m

−
=

=

−
=

∑
∑

∑
                                               (18) 

where ( , )W j m  are weighting coefficients, K  is the number of bands, M  is the total number of frames in the signal, ( , )
c
S j m , 

( , )
p
S j m  are the spectral slopes for j th frequency band at m th frame of clean and processed speech signals, respectively. 

The LLR, IS and CEP measures are calculated for each frame as follows: 
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where 
c
a
�

 and 
p
a
�

 are LPC vectors of the clean and enhanced speech signals frames, respectively; R
c

 is the autocorrelation 

matrix of the original speech signal; 2

c
σ  and 

2

p
σ  are the LPC gains of the clean and enhanced signals, respectively; ( )c k  are the 

cepstrum coefficients; p  is the order of the LPC analysis. 

Composite measure [SCI, NCI, OCI] consists of three “elementary” measures [11]: signal distortion composite index (SCI), 

noise distortion composite index (NCI), and overall distortion composite index (OCI): 

3, 093 1, 029 0, 603 0, 009 ,

1,634 0, 478 0, 007 0, 063 ,

1,594 0, 805 0,512 0, 007 .

SCI LLR PESQ WSS

NCI PESQ WSS SSNR

OCI PESQ LLR WSS

= − ⋅ + ⋅ − ⋅

= + ⋅ − ⋅ + ⋅
= + ⋅ − ⋅ − ⋅

                                      (22) 

PESQ estimation algorithm description is bulky, its description can be found in [14]. 

 

Experimental Results and Discussion 
 

Clean speech signals (single words) were recorded in anechoic room and had been used for ASR system training. Parameters 

of digitized sounds are as follows: sampling rate 22050 Hz, linear quantization 16 bit, overall SNR about 35 dB. 

Noised signals were simulated by adding a discrete white noise to the clean speech signal. This operation was implemented in 
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Matlab, ensuring a wide range of overall SNR values [–10,+30] dB. Reverberated signals had been simulated by convolving of 

clear speech and RIRs for three rooms with reverberation times 0.74 s, 0.89 s and 1.1 s. 

Signals processing was also implemented in Matlab. Signal’s 32 ms frames with 50% overlapping and Hamming window were 

used for noise and late reverberation suppression. 

Toolkit composite [15] was used for calculation of SSNR, LLR, WSS, and complex measure [SCI, NCI, OCI]. This toolkit was 

used also, after some editing, for calculation of IS and CEP distances. Some routines from toolkit rastamat [16, 17] were used for 

BSD calculation. Indicator PESQ was estimated for wideband PESQ version [18, 19]. 

Toolkit HTK [12] had been used for ASR simulation. Training of ASR system had been made with usage of 269 samples of 27 

words of clean speech recorded for two speakers-women. Noised discrete speech signals (with 0.2…0.5 s pauses between single 

words) were used as test signals, and there were presented in testing all 27 words used in training. There were 27 phonemes of 

Ukrainian language in phoneme vocabulary and 39 MFCC_0_D_A coefficients were used when ASR simulating. 

 

Comparison of Noise Reduction Algorithms and Quality Measures 
 

Calculation results of Acc% and quality measures (15)-(21) for different SNR values are shown in Figs. 2-5. 

As can be seen from Fig. 2, Acc% and perceptual measures PESQ and BSD are not in good matching. For example, when 

SNR>10 dB, Wiener algorithm is noticeably inferior than SpecSub, MMSE and logMMSE algorithms in terms of Acc%, while 

in terms of PESQ and BSD measures the algorithm is quite competitive. 

 

Fig. 2. Dependency of Acc% (a), WB-PESQ (b) and BSD (c) from SNR. 

Measures SSNR and LSD (Fig. 3) also indicate that the group of "Wiener" algorithms is best for SNR<5 dB, however when 

SNR>10 dB, SSNR and LSD values are almost the same for all algorithms. 

Measures IS, CEP and WSS (Fig. 4) differ from other indicators. They evaluate the action of almost all considered noise 

reduction algorithms as negative and the group of "Wiener" algorithms is defined as the worst in almost the entire range of SNR 

values. 

 

Fig. 3. Dependency of SSNR (a) and LSD (b) from SNR. 
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Fig. 4. Dependency of IS (a), CEP (b) and WSS (c) from SNR. 

Among studied measures, only SCI and LLR were in sufficiently good agreement with the Acc% measure (Fig. 5), indicating 

that Wiener-TSNR and Wiener-HRNR algorithms are harmful for SNR>10...15 dB. Note that good matching of SCI and LLR 

could have been predicted, given the relationship (18) [15]. 

 

Fig. 5. Dependency of SCI (a) and LLR (b) from SNR. 

At the same time, the SCI and LLR measures are unable, in contrast to Acc% measure, display a significant efficiency 

difference between MMSE, logMMSE and SpecSub algorithms as ASR pre-processors. 

These results seem some surprising because they do not agree with ones for Wiener-TSNR and Wiener-HRNR algorithms [5, 

6]. But the fact that these algorithms strongly suppress noised spectral samples should be alerted anyone, because signal 

components are also strongly suppressed. It means that consonants which are much more important than vowels for speech 

recognition and whose power is comparable with the noise power, is strongly distorted too. 

 

Comparison of A Priori SNR Assessment Techniques 
 

Since the Wiener-TSNR and Wiener-HRNR algorithms are based on a special correction of a priori SNR evaluation, one 

would hope to improve the algorithms quality by changing value of averaging parameter α  for “decision-directed” technique. 

Optimal α  value, in terms of subjective speech quality, is 0.98α =  for 8
s
F =  kHz sample rate and 64

inc
N =  frame shift 

[2]. It can be shown that for arbitrary 
s
F  and 

inc
N  optimal is exp( ( 0.396))

opt inc s
N Fα = − ⋅ . 

Effectiveness of ML and RO techniques was studied in [2] in terms of subjective speech quality. Speech quality objective 

measures and Acc% measure were used in [8]. Below is an excerpt of these results. 

When varying α  values in (5), the results of speech recognition are essentially changed (Fig. 6). For convenience, the values 

of the time constant 
avr
τ  corresponding to different exp( ( ))

inc s avr
N Fα τ= − ⋅  are shown in Table 1, where 

Ephr
τ  values 

calculated for 8000
s
F = Hz and 64

inc
N =  are shown too. 
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Table 1. Time constant values. 

α  0.02 0.5 0.9 0.95 0.98 

avr
τ , s 0.004 0.023 0.152 0.312 0.792 

Ephr
τ , s 0.002 0.012 0.076 0.156 0.396 

As can be seen from Fig. 6, recommended in [2] optimal, in terms of speech quality, value 0.98α =  is optimal in terms of 

Acc% measure only for SNR<10…15 dB, when Acc% values are low. But for SNR>15 dB, Acc% values for α =0.02…0.5 are 

much higher (10-20% for Wiener and up to 50% for Wiener-TSNR algorithms) than ones for α =0.98. It means that for SNR>15 

dB ASR is sufficiently more sensitive to the speech signal distortions than to the residual noise. 

The situation is quite different for the assessments of the speech quality. As it follows from Fig. 7 graphs, value α ≈ 0.95 is the 

best in terms of WB-PESQ, and values α ≈ 0,02…0,5 are the worst for all considered range of SNR values. This result is in 

good agreement with optimal value α ≈ 0.98 pointed in [2]. 

When studying the parameter α′  values action in ML technique (11), we restrict ourselves to the Wiener algorithm (Fig. 8). 

As it can be seen, the value 0.8α ′ =  can be considered as optimal in terms of Acc%. It is interesting that proper values of 

Acc% are very close to ones obtained by DD technique for 0.02...0.5α = . 

Because of ),(ˆ1),(ˆ),(ˆlim
0

mfmfmf RODD ξ=−γ≈ξ
→α

, one would suggest that RO technique (12) can be much more preferable 

for ASR when SNR>15 dB. It can be expected also that ML technique occupies an intermediate position between RO and DD 

techniques. Graphs shown in Fig. 9 confirm the validity of these assumptions. 

 
Fig. 6. Dependency of Acc%(SNR) on α  for algorithms: Wiener (a), Wiener-TSNR (b) and Wiener-HRNR (c). 

 

Fig. 7. Dependency of WB-PESQ ,^$(SNR) on α  for algorithms: Wiener (a), Wiener-TSNR (b) and Wiener-HRNR (c). 

Here curve WienerDD corresponds to the DD technique for 0.396
avr
τ =  which is equivalent to α =0.98 pointed as optimal 

in [2], and curve WienerRO corresponds to the RO technique. Curve WienerML corresponds to the ML technique where 

0.5273, 2α β′ = =  which is equivalent to optimal values 0.725, 2α β′ = =  pointed in [2]. 
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Fig. 8. Acc% (a), WB-PESQ (b) and LLR (c) measures for ML technique. 

 
Fig. 9. Comparison of DD, ML and RO techniques for Acc% (a) and WB-PESQ (b) measures. 

 

Optimization of Late Reverberation Suppression 
 

It was shown in [9] that when late reverberation is suppressed, boundary value 100
l
T ≈  ms is the best for ASR systems (Fig. 

10a), whereas 50
l
T ≈  ms value is the best for speech quality [13]. This fact can be explained as sign of high sensitivity of ASR 

systems to excessive late reverberation reduction, which leads to inappropriate speech signal distortion. Parameter 

0,66 0,75d

z
η ≈ …  values in (14) are optimal in terms of Acc%. 

PESQ measure graphs (Fig. 10b) have no extreme on parameter 
l
T  for 0,66 0,75d

z
η ≈ … , but there is extreme when 0d

z
η ≈  

with proper boundary value 80 100
l
T ≈ …  ms. It can be shown that signal-to-reverberation ratio SRR (which is identical to 

SSNR) and LSD measures have similar properties [9], that can be interpreted as low fitness of these speech quality measures to 

inform us about Acc% reliability when late reverberation suppression is made. Thus, in the future, it is advisable to test the 

usefulness of LRR and SCI measures for this task. 

 

Fig. 10. Different indicators as functions of 
l
T  and d

z
η

.
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Conclusion 
 

Comparison of noise and late reverberation reduction algorithms had showed a risk of excessive reduction of interferences, 

which leads to strong signal distortions and, as consequence, to essentially reduced robustness of ASR. At the same time speech 

quality is much less sensitive to excessive reduction of interferences. This result was confirmed after comparing of three 

techniques of a priori SNR assessment, when it was founded that “rough” assessment technique with its noticeable residual noise 

is the best for ASR. At the same time decision-directed technique is the best for speech quality, and maximum likelihood 

technique occupies an intermediate position. 

Analysis of speech quality measures reliability showed that when the noise reduction algorithm is used as pre-processor of 

ASR system, two speech quality measures - LLR and SCI – from nine considered ones are in quite satisfactory agreement with 

the speech recognition accuracy Acc%. The practical usefulness of the result is the ability to simplify testing of noise reduction 

algorithms which are used as ASR pre-processors. It is advisable in the future to test the usefulness of LLR and SCI measures for 

late reverberation suppression task. ■ 
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