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Abstract 
The way how authors deal with missing data in health care research is often still not 

optimal, even if modern computers have a high power and there are programs available 

that would do much better. In the present paper, various ways how to deal with missing 

data are described, and their pro's and con's are mentioned. Out of the no imputation or 

single imputation methods, complete case analysis (CC), pairwise deletion (PD), mean 

imputation, regression imputation, Full information Maximum Likelihood (FIML) and 

Restricted Maximum Likelihood (REML), hot-deck, missing value indicator, Last 

observation carried forward (LOCF), Yates method, propensity score and worst case 

imputation are described. Out of the multiple imputation methods, hot-deck, propensity 

score, expectation maximation (EM), data augmentation (DA), multiple imputations by 

chained equations (MICE) and predictive mean matching (PMM) are described. Finally 

some recommendations were given which method can be applied for which data. 

1. Why We do Need to Be Mindful of Missing Data 

Missing values in datasets are still widely ignored in health care research. This is 

unfortunate, because it leads to a loss of precision and sometime even bias in the results. 

And it is not necessary, because modern computer have enough power to easily handle 

complex methods for missing values, and a variety of programmes is available. Most 

statistical methods developed between 1870 and 1970 required data without missing 

values, so that it became common practice to use only cases where no variables were 

missing. This led to various drawbacks, which were often overlooked in research 

practice and are in consequence often not taken into account sufficiently even today. 

1.1. Precision 

When the method of analyzing complete cases in multivariate procedures is used, even 

small ratios of missing values can reduce the size of a survey and hence the statistical 

power of the evaluation. Despite this fact, this is still a default setting in most statistical 

packages. To illustrate the problem, we will consider a dataset containing a completely 

random proportion of missing values, about 5% of the cases for each variable. If only 

complete cases are analyzed, the sample size is reduced by about half if there are 14 

variables (1 -.95
14

 =.52) if data are missing completely at random (CMAR), i.e. the 

probability that a case has a missing value in one variable is completely independed of 

missing values in the other 13 variables. Accordingly, the precision of statistical 

parameters is often lower than it should be because the available data is only partially 

used. 
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1.2. Bias 

It has also been shown that restricting the analysis to cases 

with complete data can lead to a distortion of statistical 

parameters in certain datasets – so-called bias [e.g. 1]. In 

most cases, the strength of statistical associations tends to be 

underestimated, but the opposite can also occur. 

A first necessity when dealing with missing data is a 

distinction between unit non-response and item non-

response. Unit non-response is when a subject in a survey 

does not respond at all, while item non-response means that a 

subject does not answer one or more questions in a larger set. 

If only aggregated information about distributions is 

available, the adequate way to deal with the former is 

weighting, an overview of this was provided by Seaman et al. 

[2]. The problem is finding the variables that define the 

weights. In surveys, age, sex, nationality etc. are generally 

used. Utilizing them for weighting somewhat improves the 

estimates, but it is unlikely to remove bias completely 

because usually additional, unobserved variables contribute 

to the mechanism of missingness [3]. If register data or 

background variables are available on an individual level, 

propensity score adjustment and imputation are alternative 

options. Here, multiple imputation is one suitable way to 

handle the missing data. In some cases, however, basic data 

such as age, sex, etc. are provided from non-responding 

units, so that item non-response models could be applied to 

unit non-response. On the other hand, combining both 

approaches is also a valid option [e.g. 4], this merely entails 

more complex analyses. An important aspect is that data 

should be principally observable. For example, it would not 

make sense to impute the number of pregnancies in men. 

Extrapolating for cases where all data is missing is also not 

helpful – some algorithms would leave such cases empty, 

some would impute a distribution around the sample mean. 

For item non-response, a second distinction refers to the 

mechanisms explaining how missing values occur in a 

dataset. Data can be Missing Completely at Random 

(MCAR), Missing at Random (MAR), or Missing Not at 

Random (MNAR) [5, 6]. Other classifications [e.g. 7] or 

further differentiations [e.g. 8] are rarely used nowadays. 

MCAR (sometimes CMAR: Completely Missing at 

Random) means that the pattern of missing data is 

completely coincidental, i.e. independent of all other 

variables that can be found in or outside of the dataset. A 

classic example would be a researcher carrying his 

questionnaire forms home and being hit by a gust of wind, 

causing the pages to fly out of his hand and making it 

impossible for him to retrieve all of them. A missing data 

pattern can look very regular for example when it is created 

by design, but the mechanism might still be MCAR. 

MAR is a somewhat misleading term because it allows 

strong dependencies of the mechanism of missing values on 

other variables in the dataset. If, for example, all the data for 

men is missing but all the data for women is available, the 

dataset is MAR as long as sex is contained as a variable. The 

formal definition states that in order to explain whether a value 

is missing or observed, the information obtainable from the 

dataset is sufficient. This definition has the disadvantage that it 

can never be tested on a real dataset since it is always possible 

that variables not included in the dataset influence the pattern 

of missing values, at least partially. Hence, no definitive test 

exists to prove that data is MAR and approximations can only 

be performed in large samples [e.g. 9]. 

MNAR (sometimes also NMAR: Not Missing at Random) 

means that there is an unknown process in the data 

accounting for the pattern of missingness. For example, if 

somebody is interviewing subjects about socially undesirable 

behaviour like lying, stealing or cheating, it is plausible that 

missing values imply a higher degree of such behaviour 

rather than a lower one. Likewise, when assessing quality of 

life for people with severe, potentially fatal illnesses, there 

will always be missing values, which, systematically, should 

be in the lower realm of quality of life. An exact 

reconstruction of why certain data are missing is generally 

not possible using only the information provided in the 

dataset. 

2. No Imputation and Single 

Imputation 

Basic methods for substituting missing data were already 

in use at the beginning of the 20th century. For continuous 

variables, the mean value was used, for categorical variables 

the modal value. A more complex method was developed 

early on by Yates [10], who proposed an iterative method for 

analysis of variance using line and column means – even 

before there were computers. With higher computation power 

in the 1970s, different algorithms to substitute missing data 

were developed [1]. Two milestones occurred with a book by 

Rubin alone and a further book by Rubin and Little, both 

were first published in 1987, the latter has a second edition, 

now [5, 11]. Little and Rubin (2002) compare various 

methods of dealing with missing data and demonstrate that 

multiple imputation performs best in many situations. This 

chapter describes the mostly applied methods for no 

imputation and single imputation, even if some of them can 

also become applied in multiple imputation. 

2.1. Listwise Deletion 

Listwise Deletion (or CC analysis, the terms refer to 

identical procedures) is one of the simpler methods of 

dealing with missing values. People sometimes think 

ignoring the missing data would not raise a problem. This is 

wrong, CC only leads to unbiased estimates under MCAR 

conditions. Also, a reduction of the sample size decreases 

power and precision. A further popular method was a 

calculation of covariance, correlations, etc. for those partial 

datasets for which both variables of a pair were available. 

This method is referred to as pairwise deletion (PD). Its 

advantage is that it is more economical in comparison to CC 
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because more datasets are used without having to perform a 

substitution. However, the drawback of this method is that 

individual parameters are estimated on the basis of different 

partial datasets. In some cases, this may lead to 

inconsistencies. In an example with only five cases, Arbuckle 

[12] illustrated that pairwise deletion can lead to a correlation 

coefficient of r = -1.48, but correlation coefficients larger 

than |1| are not defined. A further disadvantage of this 

method becomes apparent when it comes to calculating the 

standard errors: it is unclear which number of cases should be 

applied. Pairwise deletion is often used for calculating 

Cronbach's Alpha (a measure for internal consistency over 

various items). Here, it's application is relatively 

unproblematic, because usually items have moderate positive 

correlations, ideally of similar magnitude. 

Simple methods for a substitution, usually referred to as 

the ad hoc methods, replace each missing value with a single, 

estimated value. The label “ad hoc” was given because they 

do perform well under certain conditions (usually those under 

which they were first explored), but not under others. When 

only few data are missing (say less than 5%), application of 

these methods usually does not lead to serious distortion. 

More sophisticated methods have also been developed for 

single imputation. For example, van Ginkel et al. [13] 

explored the performance of two methods for substituting 

missing data when single items from a score had missing 

values. Both rely on a combination of simple and conditional 

mean substitution as described below. When up to 15% of the 

data was missing, almost no bias was seen in the parameters 

estimated. However, the application of these ad hoc methods 

is currently out of fashion. Sometimes, reviewers reject 

articles using ad hoc methods, even though they are 

appropriate in a certain context. Hopefully, this will change 

in the future. We will give a brief description of commonly 

used methods and some of their pros and cons. 

2.2. Mean Substitution 

The sample mean is substituted for missing values. 

Formerly, the modal value was used for categorical values, 

but this has been proven to introduce unforeseeable bias [14] 

– the mean should therefore also be used to replace missing 

values in these cases [15]. This sounds easy and often is, but 

it can also lead to some difficulties. For example, if a variable 

“sex” is coded “0” and “1”, the substituted value may be 

0.45. The disadvantage is that a previously binary variable 

now has three categories, therefore simple statistics like 

logistic regression can no longer be applied: one would, for 

example, need to switch to ordered or multinominal logistic 

regression. Although mean substitution provides undistorted 

point estimates (means, regression coefficients) in many 

cases, it has been shown that, in general, the variances are 

underestimated. Regression coefficients are typically 

estimated well when missing values in the explanatory 

variables are substituted by the mean, but they are distorted 

when data are missing in the responses [e.g. 16, 17] or in 

both the responses and explanatory variables [18]. A different 

example would be when substantial amounts of cases in 

many explanatory variables in small samples receives mean 

substitution. An analysis can become completely destroyed 

then. 

2.3. Conditional and Stochastic Regression 

Substitution 

Missing values are replaced with the mean of a set of 

values or a value predicted by a regression equation. 

Conditional mean substitution provides undistorted point 

estimates (mean, regression coefficients) when missing data 

are in the responses, but usually tends to overestimate 

associations when missing data are in the explanatory 

variables. Also, it has been shown that variances are also 

underestimated. As a consequence, if a mediator with 

missing data is to be analyzed, neither mean substitution nor 

conditional mean substitution will work, because a mediator 

is defined as a response for one set of variables, and as an 

explanatory variable for another set. Correlations are usually 

biased as well. Hence, the development of more sophisticated 

methods was desirable. An intuitively appealing approach 

would be to perform a regression imputation and add some 

error created by a stochastic process to the estimated values. 

Enders [19, p. 48] warns against this because there will still 

be an underestimation of error terms, and with it an increased 

type I error rate, i.e. falsely significant results. One way to 

deal with the problem adequately is to generate error terms 

via bootstrap [19, p. 145ff]. Using graphics, Baraldi and 

Enders [20] demonstrated vividly what data look like that are 

generated with mean -, regression - and stochastic regression 

imputation. 

2.4. Expectation Maximization and Full 

Information Maximum Likelihood 

Another method for single substitution of missing values 

using random error is expectation maximization (EM). With 

Maximum-Likelihood functions, a covariance matrix is 

calculated over the incomplete data. Based on this, the value 

that fits best for any missing item is found. Some random 

error is added, and then it replaces the missing data. Then, 

the covariance matrix is fitted again using the imputed 

values, and the imputed values are again estimated using the 

new covariance matrix. Again, random error is introduced. 

This is repeated until a convergence criterion is reached. [21, 

p. 176] demonstrates on a simple data set how this 

mechanism converges. Intuitively, the method seems perfect; 

however, it also underestimates error terms. Enders [19, p. 

113] notes that a single EM substitution does not differ much 

from the stochastic regression approach, the only difference 

being that the regression prediction is replaced by a 

maximum likelihood estimate. EM is not an imputation 

method as such. It works perfectly without estimating the 

individual values (see next paragraph). The estimated values 

for individuals are rather a byproduct of the algorithms. 

Full information Maximum Likelihood (FIML) and 

Restricted Maximum Likelihood (REML) are two methods 

that become increasingly applied. Utilizing a maximum 
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likelihood approach similar to EM, they can make use of 

cases having partitially observed data without performing 

imputations. They have been explored in detail as alternative 

to Analysis of Variance (ANOVA), in particular with 

repeated measures [via a procedure called mixed models: 

22]. Graham et al. [23] suggest some designs with planned 

empty cells – impossible to analyze with ANOVA, but with 

mixed models easy to handle. (1) The data does not need to 

be balanced, even empty cells can be handled. The former is 

often referred to as the ability of mixed models to deal with 

correlated predictors. This is easy to understand. When all 

cells have the same size, i.e. same number of subjects, the 

factors are uncorrelated. In experimental designs, this can be 

striven for and, as long as there are no dropouts, also often 

achieved. With dropouts or in observational studies, equal 

cell sizes are often not possible. In these cases, the variance 

that can be attributed to one factor in ANOVA is not 

independent of the variance of another factor. There are 

several ways to deal with it. However, they do lead to 

different results, which some researchers are probably not 

aware of (this refers to the so called Type I, II, and III error in 

Anova). The latter, empty cells, constitute a more or less 

unsolvable problem in ANOVA. (2) Mixed models allow a 

specification of the link function between predictors and 

responses, it can be linear for continuous -, poisson for count 

- or logit for binary variables. Various other links are 

available. The link in ANOVA is always linear. 

Transformation of the responses can partially overcome this 

problem, but mixed models are more flexible. (3) Mixed 

models are more efficient than ANOVA when the cells have 

unequal sizes [24]. (4) Factors comprising more than two 

categories require contrast or post hoc tests in ANOVA – 

mixed models set contrast automatically and report 

coefficients. Contrary to ANOVA, the omnibus tests needs to 

be requested separately. Mixed models have the advantage of 

handling data much more easy than multiple imputation, they 

have the disadvantage that the inclusion of auxiliary variables 

is more difficult. 

It is known that when cells have equal sizes, there are no 

missing data and data are linked by a linear function, 

ANOVA and mixed models (using effect coding and the 

restricted maximum likelihood estimator – REML rather than 

FIML) return identical results [e.g. 25]. Understanding the 

mathematics behind mixed models is not easy and the 

literature describing mixed models is often quite technical. 

Short descriptions containing only a few formulae are 

available by Cnaan et al. [26] and Kwok et al. [27]. For a 

more detailed overview, I would recommend West et al. [28]. 

Gelman & Hill [29] provide a detailed introduction which is 

especially interesting for “R” users, Raabe-Hesketh & 

Skrondal [24] provide a similar one for STATA users, while 

SPSS users may wish to read Seltman [30]. 

2.5. Hot Deck 

A further group of substitution procedures is called hot 

deck. The name hot deck derives from the time of punch 

cards. If a punch card was missing, another was randomly 

selected from the pile of already read punch cards (hot deck, 

i.e. still warm from the reading device) and inserted into the 

reading device. Hence, cases with missing data are 

substituted with randomly chosen other cases. Hot deck 

imputations substitute each missing value with the value of 

an observed neighbour, the latter varies depending on how 

this is defined. Simple hot deck procedures randomly select a 

case, more complex processes stratify data based on 

categorical variables [31, 32]. There are more complex 

methods which also take continuous variables into 

consideration [e.g. 33]. As mentioned in the introduction, 

predictive mean matching can be regarded as a sophisticated 

hot deck. Probably due to its history, some hot deck 

procedures not only substitute the missing values, but replace 

the whole record with one that has no missing values (e.g. 

STATA’s “hotdeck”). 

2.6. Missing Value Indicator 

An intuitively appealing method to deal with missing 

values is to create a so-called indicator for each variable in 

a dataset with missing values. This indicator is zero when a 

value is observed and one when the value is missing. Then, 

the missing values in the original variables are substituted 

with a constant. Theoretically, this can be any value, but in 

most cases it would be the mean. This doubles the number 

of variables (that had at least one missing observation) in 

the dataset because for each variable, we have the indicator 

additionally, but there are no missing values left. Any 

analysis will now include not only variables of interest but 

also their missing indicator(s). The latter will always be on 

the side of the explanatory variables to help decide if an 

effect is due to the explanatory variable itself or the 

mechanism of missingness. As easy as this method may 

seem, it has a serious drawback: coefficients can be 

distorted. This has been demonstrated in a variety of 

examples [e.g. 16, 34] and can be explained in several 

ways. One is to say that the analysis model has changed. If, 

for example, a simple regression of Y on X was intended 

and missing values were only in X, we now perform a 

regression of Y on X and I, with I being the indicator 

variable of X being missing. The fact that the estimated 

coefficients bYX and bYX|I will not be identical in both 

regressions is obvious, but this method still has its place in 

randomized studies [35]. The missing data indicator may 

well be utilized to examine the missing data mechanism and 

is an underlying part of the EM algorithm, but including it 

simply into the regression equations can lead to distorted 

coefficients even when the data are fully MCAR. 

2.7. Last Observation Carried Forward (LOCF) 

A method widely applied in medical longitudinal research 

was to carry the last observed value forward when a subject 

dropped out of the study rather than having a missing value. 

If, for example, a patient received a value of 32 for 

depression in the second wave of a study and did not respond 

in the third and following waves, (s)he would keep this value 
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for all following waves – in many studies without even being 

contacted again. For continuous variables, the typical 

statistical approach was to perform a repeated measurement 

analysis of variance (ANOVA), without considering whether 

a value was observed or carried forward. Thus, the user 

obtains a matrix without any missing values and the method 

even seems to control for different levels among the subjects. 

Unfortunately, though this method is intuitively appealing, it 

has two serious disadvantages. First, when group means are 

changing, the values carried forward do not. Hence, effects 

can be over- or underestimated by LOCF. If, for example, 

various cancer treatments for a disease that causes 

deterioration are to be compared, the one with the most 

missing data would receive the best evaluation if LOCF is 

applied. Second, the error term “within subjects” of the 

ANOVA is reduced, often drastically, if many data are 

missing. Because treatment effects are usually tested against 

this error term, LOCF can produce dubious significant results 

[36, e.g. 37]. The first drawback can be addressed by 

utilizing a so-called z-LOCF, where a relative position within 

the group and not the raw value is carried forward [38], but it 

is unknown today how far this is sufficient in regard to the 

second. Applying LOCF to binary data is even more 

problematic [e.g. 39] and cannot be recommended given 

today’s alternative options.
1
 

2.8. Yates Method 

Early on, Yates [10] suggested a procedure which 

alternated cycling over rows and columns to estimate values 

for the missing data in analysis of variance. Though this is 

also intuitively appealing and works well in the first few 

cycles, it can run into extreme values when cycling on. It has 

been described in detail by Little and Rubin [5]. 

2.9. Propensity Score 

For each variable that has missing values, a logistic 

regression is performed to explain if a value is observed or 

missing. Explanatory variables are chosen by the analyst. 

Now, the probability of a variable being missing can be 

calculated for each case using the regression function, this is 

called the propensity score. Its distribution is cut into a 

distinct number of categories, usually five or eight. The 

missing data in each category is finally replaced with a 

random draw from the observed data in the same category. 

This method was developed by Rosenbaum and Rubin [40] 

to correct for bias in estimating treatment effects. It focuses 

on missing data in responses and is not recommended for 

small or medium sample size research [41] or when missing 

data are in an explanatory variable [42]. 

2.10. Worst Case Imputation 

A method that is widely used in research on alcoholism 

                                                             

1 A variant of LOCF is Baseline Observation Carried Forward (BOCF). It is 

sometimes applied with the rationale that it is very conservative, so cannot do 

harm. Such a rationale is wrong, any critique on LOCF described above also 

holds true for BOCF, it may even perform worse than LOCF. 

therapy is the worst case imputation [e.g. 43]. Every missing 

value is substituted with the worst case, i.e. therapy was not 

successful or a score of zero. The underlying rationale is that 

if a subject does not respond after therapy, he has probably 

relapsed. Apart from the fact that this rationale is quite 

reasonable sometimes, the method has the added advantage 

of motivating therapists to collect data – certainly one of the 

best ways to deal with missing values. On the other hand, it 

obviously introduces bias [44], and its application is of 

course restricted to specific cases [45]. 

3. Multiple Imputation 

Multiple imputation creates multiple datasets that contain 

identical copies of the originally observed data. The 

missing observations in these datasets are then imputed, 

using one of the stochastic algorithms described below. 

Their common ground is that they estimate values utilizing 

information from the observed values and add random error. 

Hence, they create different values to be substituted for the 

missing data in each dataset. The additional variance 

between various datasets caused by differences in the 

imputed values reflects the uncertainty of the imputation 

[46]. The relative variance increase (RVI) due to missing 

value substitution can be calculated easily for any given 

multiply imputed dataset [11]. After imputation, statistics 

are performed separately in all of these datasets and 

coefficients are combined at the conclusion of the analysis 

by applying Rubin’s rules [11, 47]. 

Table 1. Representation of a dataset before and after multiple imputation. 

Original dataset - - Imputed dataset 

i X1 X2 X3 X4 - - i m X1 X2 X3 X4 

1 0 0 1 2 - - 1 0 0 0 1 2 

- - - - - - - 1 1 0 0 1 2 

- - - - - - - 1 2 0 0 1 2 

- - - - - - - 1 3 0 0 1 2 

2 1 2 mis 4 - - 2 0 1 2 mis 4 

- - - - - - - 2 1 1 2 2 4 

- - - - - - - 2 2 1 2 1 4 

- - - - - - - 2 3 1 2 3 4 

3 2 mis mis 3 - - 3 0 2 mis mis 3 

- - - - - - - 3 1 2 2 2 3 

- - - - - - - 3 2 2 1 1 3 

- - - - - - - 3 3 2 2 3 3 

... - - - - - - 3 - - - - - 

N mis 1 3 mis - - N 0 mis 1 3 mis 

- - - - - - - N 1 3 1 3 3 

- - - - - - - N 2 4 1 3 2 

- - - - - - - N 3 3 1 3 2 

To provide an example: with three imputed datasets, a 

result will generally appear as displayed in Table 1. In this 

case, “i” is the individual identifier, “m” the imputation 

number, X1 to X4 are the variables and “mis” indicates 

missing values. Most programs will copy the original dataset 

with the number m = 0 into the imputed dataset. This is 

practical because it allows the user to review and analyze the 
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original data in the program without much effort. Lines with 

m = 0 are not incorporated into the MI analyses
2
. It can be 

seen that in the first case, which had no missing data, all data 

were adopted identically in the three imputed datasets. In the 

second case, there are substitutions for X3, which differ in the 

three datasets. The values of the other three variables are 

again adopted identically [e.g. 48]. Various algorithms exist 

to determine the imputed values. 

3.1. Hot Deck 

Early on, Hot Deck methods were used for single 

imputations. Multiple imputations are obtained if the 

operation is repeated several times [even using programs that 

are not designated for multiple imputations, e.g. 31, 49]. In 

first simulations with medium-size datasets (n=500), this led 

to good results [e.g. 50] and hot deck is still recommended by 

some researchers [51]. Others compared it with various other 

methods of multiple imputation and found that it was usually 

not the best-suited method [e.g. 14, 52]. In some own 

simulations, hot deck did not perform well when the 

proportion of missing data was large. Since other procedures 

which require the same effort but perform better are 

available, I will not discuss hot deck further. 

3.2. Propensity Score Estimation 

Propensity Score Estimation can also be repeated to 

perform multiple imputation. Unlike predictive mean 

matching, which directly estimates a value and replaces with 

the nearest neighbour, in propensity score matching it is not 

the missing value itself that is estimated first, but the fact that 

a value is missing or not. This probability creates the donor 

pool where the value to replace a missing data is drawn from. 

It was examined in detail by Allison [42] and did not lead to 

a satisfactory result. Allison states that it produces “badly 

biased estimates when data on a predictor variable are 

missing at random or even missing completely at random” (p. 

301). Solas [53] offers two multiple imputation routines 

utilizing the propensity score estimate. 

3.3. Expectation Maximization 

Expectation Maximization (EM) algorithms [54], were 

initially utilized for single imputations, but multiple 

imputation leads to better results here as well. If the process 

is performed repeatedly with different random values, a 

variation in the substitutions occurs. Implementations of EM 

algorithms differ significantly in individual programs. 

Amelia II, for example, applies a Bootstrapping-Sampling in 

addition to EM [55]. It should be noted that these algorithms 

were developed for continuous variables, handling 

categorical ones requires some additional care 

                                                             

2 In fact, there are some differences between and within the programs regarding 

how multiply imputed data can be stored. The above described structure is an 

example for one that is easy to understand. Especially when transferring imputed 

data from one program to another, it becomes necessary to check the storing 

format. 

3.4. Data Augmentation (DA) 

Data Augmentation (DA) works similar to EM, but relies 

on stochastic processes instead of the (deterministic) 

maximum likelihood function using a special version of 

Gibbs sampling [21, pp 181-9]. EM and DA share the fact 

that parameters for the variables of a data set are assessed 

jointly, therefore they are both called Joined Modelling (JM). 

It makes them extremely fast running on the computers. 

Additionally they have the advantage of a better theoretical 

foundation [56, p. 116] then fully conditional specification 

(see paragraph below), but the main disadvantage is that they 

were developed for quantitative variables. 

3.5. Multiple Imputations by Chained 

Equations 

Multiple Imputations by Chained Equations [MICE: 1] is 

an algorithm used increasingly often. It is also referred to as 

fully conditional specification (FCS). First, based on a 

random sample from the data, a regression equation is 

calculated in order to predict missing values in any variable. 

Depending on the scale level of the variable containing 

missing data that is to be substituted, it can basically be a 

linear, logistic, ordered logistic or multi-nominal regression. 

Random error is also added to the estimation. The program 

then switches to the next variable, and imputes the missing 

data there. Contrary to EM, the missing values in the 

variables are not imputed simultaneously, but step by step 

while cycling over the variables. Similar to EM, MICE 

algorithms circulate over all variables several times. During 

this process, the estimated values of the previous 

substitutions are the starting values for the next series of 

substitutions. For MICE, defining a convergence criterion is 

difficult, therefore a definite number of cycles (usually 10) 

is specified. More detailed descriptions of the MICE 

algorithm are provided by Allison [57] or van Buuren [56, 

58]. Differences regarding the performance of various 

MICE algorithms are smaller than those between MICE and 

EM algorithms, but they are indeed present. For example, 

the sequence of the variables that are to receive imputed 

values differs, and most importantly how they deal with a 

situation when a categorical variable receives a perfect 

prediction. 

3.6. Chained Equation Algorithms 

Chained equation algorithms can be combined with 

predictive mean matching (PMM). Here, the regression 

equation to predict the missing values for a certain variable is 

taken. Cases with observed and missing values are sorted 

according to their predicted value (ranking). Any case 

without an observed value will adopt the observed value 

from its nearest neighbour on the prediction line
3
. If there is 

                                                             

3 In fact, the selection isn’t limited to one single neighbor. Rather, a group of the 

size “k” (usually 3-5) should be chosen. Of these, one is selected randomly to 

“donate” its observed value. The procedure is also called “k nearest neighbors” 

and produces more stable estimates than selecting just one neighbor. 
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more than one nearest neighbour, a random choice is drawn. 

Using PMM after chained equations is said to be robust 

against violations of assumptions of MI, such as multivariate 

normality [59-61]. It solves some problems other algorithms 

face, such as rounding and setting boundaries. The chained 

equations algorithm combined with PMM is probably the 

least problematic way to perform multiple imputations – on 

the cost of long computing times. 

After multiple imputation, the statistical parameters are 

estimated separately for the various imputation samples and 

combined. For this combination, Rubin’s rules are usually 

applied [11]. Even if the programs are getting better, 

imputation itself and analysis of the multiply imputed data 

set can cost considerably more time than analyzing a single 

data set. Theoretically, any statistic can be done in multiply 

imputed data sets, practically programs offers are limited. 

But in addition to the usual statistical parameters, in multiply 

imputed data, the relative variance increase (RVI), which is 

the ratio of variances between and within the m datasets, is 

computed for a certain estimate. It is small when there are 

few missing data and has a maximum of 1 when all variation 

is due to the imputation – which will rarely be the case. A 

related measure, which is sometimes confused with the RVI, 

is the fraction of missing information [FMI: 11, 56, p 41]. 

When there is only one variable with missing data and there 

is an MCAR mechanism, it would be identical to the 

proportion of missing data. When more than one variable has 

missing data and these variables are correlated, it usually 

becomes smaller because some missing information can be 

estimated based on neighboring variables. 

Degrees of freedom (DF) for the denominator are adjusted 

using a ratio of variances between and within the imputations 

[e.g. 19]. When this ratio is small, the denominater-DF can 

be larger than the sample size, though this may seem 

counterintuitive. The formulae were suggested by Rubin and 

Schenker [62] and proven to be valid in large samples, while 

some modifications were later suggested for smaller samples 

[63, 64]. Van Buuren [56, pp 42f] briefly describes Barnard 

and Rubin’s [63] formula to adjust the degrees of freedom so 

that their number is never higher than the number of cases. 

Today, most programs may still provide DFs that are larger 

than the sample size. Unless the sample is not extremely 

small, it should not bother a researcher too much – it is 

mainly a problem of aesthetics. 

It is agreed upon that DA and MICE lead to very similar 

results in large samples, especially when many datasets are 

created for multiple imputations [e.g. 65, 66]. For multiple 

hot deck imputations, there are not enough examples to allow 

for a comparison to DA or MICE. 

4. Conclusion and Recommendations 

I described some of the mostly applied methods to deal 

with missing data, to allow the reader to make a choice which 

one to apply in a certain situation. Here, I want to conclude 

with four warnings. (1) Any use of LOCF or BOCF today 

should be accompanied by a clear rationale why it is superior 

to less problematic methods in the specific case. (2) Applying 

the indicator variable method should be very well considered, 

taking into account that beside dealing with the missings it 

comprises a change of the measurement model. (3) With hot-

deck procedures it should be kept in mind that not only the 

missing data are substituted, but also some of the observed 

ones. (3) And the propensity score method is surely for 

experienced statisticians only, a wrong implementation can 

do more harm than good. 

However, beside personal preferences, characteristics of 

the data set count. If there are very few missings in a data set 

(< 1%), there are not many variables and the mechanism is 

likely to be mainly MCAR, CC is usually fully sufficient. If 

there are more missings (< 5%), a simple substitution like the 

mean will often be a good solution – it enhances the power 

with a risk of (a) introducing small bias and (b) making 

significance tests falsely positive. Both effects are, given the 

small amount of missing data, in most cases negligible. 

Handbooks of psychological tests often recommend to 

substitute single missing items of a scale by the mean of the 

other items. If items have similar means and less than 
1
/3 of 

the items of the respective scale are missing, this seems to be 

a good advice. If item means vary strongly, the sample mean 

would be a better choice. If the proportion of missings is 

larger than 5%, van Ginkels [13] method can be applied to 

item sets, and mixed models can substitute ANOVA or 

regression models for other variables. Van Ginkels method 

makes use of the information that non-missing variables of 

the data set measuring the same construct carry, but mixed 

models do not. If such information is assumed to be present 

in the data set, multiple imputation would become an option 

and the additional effort of performing separate analyses and 

combining them is likely to pay off. When all variables are 

continuous and approximately normally distributed, I would 

chose DA due to computational speed. When data are (partly) 

categorical or strongly skew, MICE in combination with 

PMM would be my first choice. 
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