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Abstract 
This paper formulates a unit commitment optimization problem for renewable and 

combined energy sources distributed in a smart grid. Also we present two experiments. 

The first experiment consists of cluster analysis of the daily diagrams of electric 

energy-consumption of smart grid (namely for a work day and a day off on the basis of its 

annual history) by self-organizing map neural network. The resulting type daily diagrams 

are used as a basis for the second experiment. The second experiment consists of a solution 

of the mentioned optimization problem by simulated annealing. 

1. Introduction 

With the development of computing technology and the growth of its computational 

power, there has been an increasing focus on artificial intelligence methods. These methods 

include terms such as artificial neural networks or evolutionary algorithms. However, their 

massive utilization in practical applications across all human activities only occurred in the 

eighties of the previous century, due to the development of personal computers. 

Artificial neural networks are used to process and evaluate incomplete, indeterminate or 

inconsistent information, especially for tasks involving recognition, diagnostics, 

classification of objects with respect to provided categories or prediction of the time 

development of the given variable, compression and coding information, noise filtering, 

extrapolation or interpolation of the trends of a given variable and last but not least the 

cluster analysis of multidimensional data, as described in this article. 

Evolutionary algorithms are used to find a solution with sufficient quality for 

large-scale general optimization tasks in a sufficiently short time. Evolutionary algorithms 

inspired by nature include a whole spectrum of optimization heuristic techniques, e.g. 

Particle Swarm resp. Ant Colony Optimization, Genetic Algorithms or Simulated 

Annealing. Heuristics may be described as a procedure for searching the solution space via 

shortcuts, which are not guaranteed to find the correct solution but do not suffer from a 

range of problems of conventional optimization methods such as e.g. the requirement of 

connectivity or differentiability of the criterion or link function, the problem of respecting 

constraints, being stuck in a shallow local minimum or divergence. However, their 

application requires the configuration of certain free parameters, which need to be setup 

based on the specific optimization task – these may e.g. include the starting or final 

temperature and the number of iterations of the simulated annealing algorithm described 

below and based on the evolution of thermodynamic systems. In physics, annealing is a 

process where an object, heated up to a certain high temperature, is being gradually cooled 

down to remove internal defects in the object. The high temperature causes the particles in 

the object to rearrange randomly, which destroys defects in the crystal lattice, and the 
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gradual cooling then allows the particles to stabilize in 

equilibrium points with a lower probability of the creation of 

new defects. 

In the context of sustainable development of human society, 

which depends on the planet's energy sources, covering the 

needs of the society requires a focus on renewable energy 

sources such as geothermal energy, atmospheric currents, 

hydro-geological cycles, solar radiation or biomass, due to 

their relative inexhaustibility and the minimization of the 

impacts of human activities on the environment related to their 

conversion to energy. 

The implementation rate of the above proposition depends 

on the cost of the chain of production, transmission and 

consumption of energy. In relation to electricity, we are 

therefore minimizing production costs through the optimal 

operation of the electrical transmission network, i.e. a suitable 

choice for the connection and size of the injection active or 

reactive power in the network nodes, and finally by 

minimizing the consumption side. 

Minimizing the above costs, due to the complexity of the 

problem as a whole, is usually realized more or less separately 

on three separate planes (generation, transmission and 

consumption), i.e. instead of one optimum we only obtain 

three sub-optima. In connection with the second or third plane, 

we speak about smart grids; however the subject of this paper 

is the solution of this problem on the first level, i.e. unit 

commitment optimization problem. 

2. Unit Commitment 

The task of unit commitment [11-22] is an optimization 

problem with a goal of minimizing the total costs of producing 

the volume of energy given by the prediction of its 

consumption for the considered period, sampled e.g. by hours. 

In other words, this constitutes a plan for the sorting of sources 

and their generated outputs covering the predicted 

consumption in each hour of the given period. 

The optimization problem may in general formally be 

expressed as follows: 

�:�� → �					���	
� � min�	∈Ω ���	� 				Ω ⊂ ��     (1) 

where �	
  is the optimum, whereas Ω specifies the area of 

admissible solutions containing the optimum as given by 

operating-technical parameters of sources, and whereas f 

represents the cost function given by a sum of operating and 

start-up costs (Fig. 1) for sources integrated in the given 

period: 

� ���	���, �	���� � ∑ ∑ ��� � ������� � ���� �! ��� 	� "��1 $ %&
∆()�*�
+) ��	�����                  (2) 

where 	, ∈ -1, $,./, � ∈ -1, $, 0/  and �����  resp. ����� 
are the output resp. state of the i-th source in time t, and where 

�� , �� , ��, "�  resp. ∆0����  and 1�  are the appropriate cost 

coefficients resp. downtime and the time constant of the 

exponential growth of start-up costs for the i-th source in time 

t, and furthermore N resp. T is the number of sources in the 

network resp. the number of time snaps of the considered 

period. 

Admissible solutions are in general specified by the 

following inequalities resp. equality: 

��2�� 3 �� 3 ��24�                 (3) 

∑ ���������� � �����                 (4) 

where ���� represents a prediction of the consumption in the 

appropriate hour of the considered period. 

 

Fig 1. Dependence of Operating Costs on Power and Start-up Costs on Downtime. 
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3. Competitive Model of Neural 

Network 

We define an artificial neural network as the oriented graph 

with vertices and edges dynamically evaluated, i.e. as the 

ordered quintuplet[6, 7, 8, 9, :]: 
V set of vertices (neurons) 

E set of edges (synapses) 

ε mapping edges with incidence vertices (8: 7 → 6 × 6) 
y dynamic evaluation of vertices (9: 6 × � → ℝ) 
w dynamic evaluation of edges (:: 8(7) × 0 → ℝ). 

The vector 9	(�) = [9�(�)|, ∈ 6]  is called the network 

state in time t and the vector :��	(0) = [:�>(0)|[,, ?] ∈ 6 × 6] 
is called the network configuration in time T (∀[,, ?] ∉
8(7) ⇒ :�>(0) = 0 ). The state resp. configuration of the 

network as a vector function of time t resp. T we term as the 

active dynamics resp. adaptive dynamics of the neural 

network. 

Using time separation of the active and adaptive dynamics 

we expressed the fact that a neural network works in two 

time-independent modes, in an active and adaptive mode. 

The active resp. adaptive dynamics of a neural network in 

continuous time can be defined as a solutions vector of the 

following systems of differential equations [1-2]: 

D

D!
�>(�) + �>(�) = ∑ ��(��(� − ∆�)):�>� − E> 	     (5) 

resp. 

D

DF
:�>(0) + GH>(�>(0)):�>(0) = I��(��(0))H>(�>(0))  (6) 

,, ? ∈ 6 ,I, G ∈< 0,1 > , and then analogously to biological 

neural network we call: 

xi potential of the i-th neuron 

fi activation function of the i-th neuron (��(��) = 9�) 
gj adaptation function of the j-th neuron 

ϑj threshold of the j-th neuron 

wij synaptic weight links of the i-th neuron to the j-th neuron 

α measure of plasticity of synapses 

β measure of elasticity of synapses 

∆t signal delay time 

and where the activation function of the neuron we 

approximate by sigmoid function: �(�) = 1 (1 + %&L�⁄ ) . 

The parameter N > 0 expresses the slope of the sigmoid. For 

a slope approaching zero resp. infinity we get the activation 

function in the shape of linearity resp. non-linearity: 

lim
L→


�(�) =
1
2
		 lim
L→Q

�(�) = 0			� < 0			 lim
L→Q

�(�) =1			� > 0 

If we replace in (5) and (6) the derivations by analogous 

expressions for discrete time: 

R
R�

�>(�) ≡
�>(� + 1) − �>(�)

� + 1 − �
								

R
R�

:�>(0) ≡
:�>(0 + 1) − :�>(0)

0 + 1 − 0
 

then we obtain for ∆� = 0  the following systems of 

difference equations and the vectors of its solutions define the 

active and adaptive dynamics of a neural network in discrete 

time: 

�>(� + 1) = ∑ ��(��(�)):�>� − E>  resp.  9>(� + 1) = �>(∑ 9�(�):�>� − E>)                      (7) 

:�>(0 + 1) = (1 − GH>(�>(0))):�>(0) + I��(��(0))H>(�>(0))                               (8) 

,, ? ∈ 6. 

Let us divide the population of the neurons in V to two 

disjoint populations V1 and V2 (6T ∪ 6 = 6 , 6T ∩ 6 = ∅, 

|6T| = X, |6 | = Y), and let us connect them by edges so that 

there is an edge from each neuron in V1 to each neuron in V2 

(8(7T) = 6T × 6 ), i.e. the network is oriented from V1 to V2 

and V1 resp. V2 is then understood as the input resp. output 

population. Let us furthermore connect neurons in V2 by edges 

so that there is an edge from each neuron in V2 to every other 

neuron in V2 (8(7 ) = 6 × 6 − -[?, ?]|? ∈ 6 /). The vector 

function which sets the network state for an input stimulus 

��(0) we define as the network function: 

Z	[�	(0)\ = 9	(∞)																�	(0) = [��(0)|, ∈ 6T]															9	(∞) = [9>(∞)|? ∈ 6 ] 

Let us choose the activation function of neurons of 

population V1as an identity, i.e. modified linearity and the 

activation function of neurons of population V2 as 

non-linearity. Then during the active dynamics for constantly 

applied stimulus �	(0) attached to population V1 we can 

express the active dynamics (7) for 9^(0) = 0 as follows: 

9>(� + 1) = �>(∑ 9^(�)	:^>^ − E>), −E> = ∑ ��(0):�>�   (9) 

, ∈ 6T , ?, _ ∈ 6  and let us call the parameter −	E>  the 

potential gain of the j-th neuron. 

Let us choose the following initial conditions for the 

network configuration :^>(0) = −2, :�>(0) = �̀>  and let us 

add templates from the training set specified in the form 

-a	(0)|0 ∈ ∆0/ for the population V1, where∆0is the network 

adaptation period. If we only let the mutual links between 

neurons in V1 and V2 adapt, and if we select the adaptation 

function for the neurons in V2 to match the activation 

functions, then, assuming elasticity is equal to plasticity 

(I = G), we can express the adaptive dynamics (8) as follows: 

:^>(0) = :^>(0 − 1) 

:�>(0) = :�>(0 − 1) + I9>(0)(a�(0) − :�>(0 − 1)) (10) 

, ∈ 6T , ?, _ ∈ 6 , 0 ∈ ∆0 = -1, −, ./  where N resp. �̀>  is 

the number of patterns of training set resp. the value specified 
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of the random number generator. 

In each step of the adaptive dynamics (10) it is required to 

designate the states of neurons in V2, i.e. the steps of the 

adaptive dynamics are conditioned by the active dynamics, 

which, from the perspective of adaptive dynamics, runs 

infinitely fast. Thus the state of V2 is determined 

synchronously with the state of V1. 

Let us assign to each neuron in V2 a weight vector 

:��	> = b:�>|, ∈ 6Tc. Then the neurons in V2 together with the 

edges E2 and the active dynamics (9) form a Hopfield 

optimization network [3-4] with the following energy 

function: 

7(9	) = ∑ ∑ 9^9>^> + ∑ 9>E>> , −E> = ∑ a�(0):�>� = a	(0) ∙ :��	>  (11) 

, ∈ 6T, ? ∈ 6 , _ ∈ 6 − -?/. 
If the vectors of the training set resp. the weight vectors are 

normal, then the received potential gain of each neuron will 

comply with −E> = cosh (a	(0), :��	>)  and the distance 

between the specified vectors can be defined as the angle 

h ∈< 0, i > between them. The energy function specified 

above will then reach its minimum if and only if only one 

neuron in V2 is excited, specifically the neuron with the 

maximum potential gain (11) – the so-called gain neuron. 

The process of energy minimization of the state of V2 

realized by the active dynamics (9), when the excited neuron 

with the maximum potential gain inhibits (by negative links) 

other neurons, is called lateral inhibition. Lateral inhibition, 

which designates a corresponding state of the population of V2 

based on the presented training template, replaces the missing 

template association in the training set – in other words, it 

replaces the statement of a teacher, and we thus speak of 

teacher-less learning. 

Lateral inhibition in each adaptation step will ensure the 

adaptation of only the weight vector corresponding to the k-th 

gain neuron, i.e. of the weight vector as per the 

above-specified non-Euclidian metric of the closest presented 

training set template, to which it will advance on the surface of 

an n-dimensional ball of unit radius by an adaptation step 

proportional to the plasticity of the synapse: 

:��	^(0) = :��	^(0 − 1) + I(a	(0) − :��	^(0 − 1))    (12) 

and the gain neuron thus won the competition for the presented 

template of the training set. The normality of the adapted 

weight vector will be ensured by its subsequent normalization. 

The objective function (13) will reach its minimum if and 

only if the weight vector is on the position with a minimal sum 

of distances from all vectors of the training set which excite 

the appropriate neuron, i.e. in the center of the cluster of the 

specified vectors: 

j[:��	>\ = ½∑ 9>(0)∑ (a�(0) − :�>) �F 									−
lm[n��	o\

ln)o
= ∑ 9>(0)[a�(0) − :�>\F              (13) 

, ∈ 6T, ? ∈ 6 , 0 ∈ ∆0. 

Adaptive dynamics (9) is a gradient descent on a 

lower-bounded objective function, and so, assuming that the 

vectors of the training set form clusters in the n-dimensional 

space whose size corresponds to the cardinality of V2, the 

(initially randomly located) weight vectors will converge 

towards the centers of these clusters during adaptive 

dynamics. 

Let us define the following categories of normal vectors: 

�^ = p�	 ∈ Ω|h(�	, :��	^) < h(�	, :��	>)q			Ω = -�	 ∈ ℝ�||�	| = 1/ (14) 

_ ∈ 6 , ? ∈ 6 − -_/ and ϕ is a non-Euclidean metric, i.e. 

the angle between the vectors. 

The network function will thus assign, during lateral 

inhibition, a vector of the canonical basis of an m-dimensional 

space with a one on the k-th position to an arbitrary normal 

network input, if and only if the network input lies in the k-th 

category (14). The function of the network of the competitive 

model can thus be understood as a classification with respect 

to the categories specified above. 

If we set |6 | = Y , then we can interpret the neurons in 

V2as elements of a square Y ×Y  grid. Let us define the 

square neighborhood of the r-th order of the k-th element of 

the grid as the set containing all grid elements which lie at a 

distance of less than or equal to order r, i.e. r(_, `) =
-? ∈ 6 |s(_, ?) ≤ `/, where s is the metric defined on the 

grid as the neighborhood of elements of the appropriate order, 

and let us adjust the adaptive dynamics (12) for the k-th gain 

neuron: 

:��	>(0) = :��	>(0 − 1) + I>(0)(a	(0) − :��	>(0 − 1))  (15) 

? ∈ r(_, `) and the plasticity drops globally with the time of 

the adaptive dynamics and locally with the order of the 

distance of the appropriate neuron from the gain neuron in the 

population grid of V2. 

The adjustment of the adaptive dynamics specified above 

generalize lateral inhibition by the extension of the excitation 

of the gain neuron to its neighborhood, which links the 

above-specified metric ϕ with the above-specified metric	s. 

If the vectors of the training set are randomly distributed in the 

n-dimensional space in accordance with some distribution 

function, then after the adaptation of the network the weight 

vectors will be randomly distributed in the same area in 

accordance with the same distribution function. 

If we present a training set on an adapted network in active 

mode, then the map of the frequency of excitations of neurons 

in V2, the so-called Kohonen’s map [5-6] will provide a 

mapping of the clusters of vectors of the training set in an 

n-dimensional space. Such a generalized competitive model, 

under assumption of a sufficiently large cardinality of V2, 

performs the cluster analysis of the training set, i.e. determines 

the number of clusters and their distribution in the 

n-dimensional space. 

Let us adjust the topology of the already adapted 

competitive model by adding a population set V3, connected 

by edges to the population V2 so that there is an edge from 

each neuron in V2 to each neuron in V3 (8(7t) = 6 × 6t). Let 
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the new output population V3 have the same cardinality as the 

input population V1, and thus the population V2 becomes a 

hidden population. 

Let us set the weights of edges E3 as follows: :>u(�) = :�> , 

, ∈ 6T, ? ∈ 6 , v�,� ∈ 6t,where v�,� is the image of thei-th 

neuron of population V1 in population V3. The output 

populationV3 together with the weighted edges E3 thus forms 

an image of the output population V1 together with the 

weighted edges E1 mirrored over the hidden population V2, a 

phenomenon which we call counter propagation [7-8] of the 

synaptic weights of edges E1 to edges E3 in the direction of the 

orientation of edges. Let us select the activation functions of 

neurons in V3 identically to the activation functions of neurons 

in V1. Then, during active dynamics after the stabilization of 

the state of the population of V2, the excitation of the k-th gain 

neuron will lead to the following values of potentials of 

neurons in V3: 

�u��� � w9>:>u��� � :^u��� � :�^
>

 

, ∈ 6T , ? ∈ 6 , then stimulus�	 ∈ �^ implies the following 

network function: Z	��	� � :��	^. 

The function of the network in the competitive model with 

forward propagation of weights will thus assign a prototype 

(the closest weight vector) to each normal network input. 

Prototypes lie in the centers of the appropriate clusters and 

thus represent these clusters – they are their typical 

representatives. 

4. Simulated Annealing 

Let’s the cost function argument (2) expresses the 

macroscopic state of a thermodynamic system with energy 

equal to the function value. Then we can express its 

thermodynamic probability as the number of micro-states 

corresponding to it: 

��7�� � │p�	 ∈ ��│���	� � 7�q│        (16) 

If we immerse this system with various macro-states with 

energies 7�  in a thermal reservoir, then the Boltzmann 

equation for the unit size of the Boltzmann constant together 

with the Taylor expansion of a differentiable function, allows 

us to express the entropy of the reservoir after the 

temperatures equilibration for 7 � 7
 � 7� � yzX{�  and 

7 ≫ 7� as follows: 

}�7�� � 	}�7� $ D~���
D�)

7� � ln��7 $ 7��      (17) 

and then, by using the definition of temperature 

R}�7�	 R7⁄ � 1 0⁄ 	 we can express the thermodynamic 

probability of a macro-state of the thermal reservoir as a 

function of the energy of the macro-state of the inserted 

system, i.e. by the following Boltzmann factor �0 K 0�: 

��7 $ 7�� � y%&
�)
(               (18) 

The simulated annealing algorithm is based on the 

perturbation of an optimum candidate and a following 

decision on its replacement by a perturbation in each iteration 

of the algorithm based on the Metropolis criterion [9]: 

N[�	� → �	>\ �
��7>�
��7�� � %&∆�F 										∆7 K 0 

N[�	� → �	>\ � 1																																	∆7 3 0 

which expresses the probability of the system transferring 

from one macro-state to another, where ∆7 � 7> $ 7� and 

∆7 0⁄  expresses the increase of entropy, i.e. in accordance 

with the second law of thermodynamics an impossible event is 

artificially redefined as a certain event in the specified 

criterion. 

The sequence of accepted perturbations, i.e. acceptable 

solutions to the optimization task, forms a Markov chain with 

memory of order one, i.e. the occurrence of the given solution 

is only conditioned by the occurrence of the previous solution. 

The perturbations which lie outside of the area of admissible 

solutions are automatically rejected. 

 

Fig 2. Dependence of Probability on Increase of Energy. 
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Fig 3. Dependence of Probability on Temperature. 

From N(∆7� (Fig. 2), it is clear that a significantly "worse" 

solution is accepted with respect to the previous solution at a 

much lower probability than a slightly "worse" solution. N�0� 
(Fig. 3) may be used to control the probability of the 

acceptance of the solution during the iteration cycle. We 

initiate the iteration cycle with a sufficiently high temperature 

to ensure that almost every proposed solution is accepted for a 

certain period of time, which will allow an initial 

approximation of the solution to "escape" areas with shallow 

local minima. Later on, we reduce the temperature so that 

almost no "worse" solution is accepted, i.e. during the iteration 

cycle we cool down the system representing the optimization 

task from a sufficiently high temperature to a sufficiently low 

temperature until a solution is "frozen" in a sufficiently deep 

local minimum (Fig. 4). The temperature drop may be 

modeled e.g. as an exponentially decreasing function: 

0 � 0
%&
)*��
+ 														1 � $ �

���F� F�⁄ � 													0Q � lim�!��→Q 0
%&
)*��
+ � 0               (19) 

where 0
  resp. 0Q  are the initial resp. final temperatures 

and N is the number of iterations of the algorithm. 

 

Fig 4. Freezing of Solution. 

5. Experiment 1 

The goal of this experiment is the identification of type 

daily diagrams of hourly smart grid consumption of electric 

energy on a workday, i.e. Wednesday, and on a non-work day, 

i.e. on Saturday, based on the recorded annual history of hour 

electric energy consumption of smart grid. 

To allow the measuring of the efficiency of the utilized 

cluster analysis method, the annual history of hourly 

consumption of electric energy has been artificially modeled 

so that a typical daily diagram may be compared to a certain 

standard. The default standards of daily diagrams of hourly 

consumptions were the characteristic hourly developments of 

the consumption of the above-listed two days, where each 

hourly consumption of each of these was randomly modified 

by a random number generator with a normal probability 

distribution, as many times as was necessary to fill the annual 

history of hourly consumption. 

Although individual daily diagrams of the annual history 

(Fig. 6,8) are mutually relatively different, the resulting type 

daily diagrams are very similar to the appropriate standards 

(Fig. 7,9). This documents the high efficiency of the utilized 

cluster analysis method. The experiment was processed in the 

computer program ArtInt © 2010 (Fig. 5). 
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Fig 5. Example of Kohonen’s Map from Program ArtInt. 

 

Fig 6. Examples of Randomly Modelled Diagrams of Wednesday. 
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Fig 7. Type Daily Diagram and Standard of Wednesday. 

 

Fig 8. Examples of Randomly Modelled Diagrams of Saturday. 
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Fig 9. Type Daily Diagram and Standard of Saturday. 

 

Fig 10. Smart Grid with Distributed Generation. 

6. Experiment 2 

The scenario of the following computational experiment is 

as follows: Let us assume a fictitious town supplied from 

smart grid (Fig. 10) [10]. The town, located near the foothills 

of a mountain range, is near a small river flowing from a lake, 

with a sufficient slant to build two hydro-electric plants. The 

vicinity of the mountains provides stable winds which are of 

sufficient power to build a park with wind power plants. Next 

to the town, there is a cogeneration plant which supplies the 

town with heat and power. Due to the highly developed 

agricultural production in the inland areas nearby, a biomass 

power plant has been built near the town. Due to the dominant 

cloudy weather in the considered period, the photovoltaic 

power cells located in the town do not provide sufficient 

output, and so these will not be included in the experiment. To 
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retain the reliability of the delivery of power, the town is 

connected to two high-voltage power lines from different 

power suppliers. 

The objective of the experiment is a proposal for an 

ordering of sources for a typical autumn Saturday resp. 

Wednesday, for which predictions of the hourly consumptions 

are available. In the specified experiment, the town is supplied 

by electrical power from thirty two rotary (synchronous 

generator) and eight non-rotary (transformer) machines, i.e. a 

total of forty sources and its cost characteristics and technical 

limitations are specified in Tab. 1, where HC=HC1+HC2*P is 

the consumption of the source itself based on the produced 

output. The experiment was processed in the computer 

program UniCom © 2010 (Fig. 11). 

Tab 1. Parameters of Sources. 

UNIT NR 
Pmin Pmax HC1 HC2 A B C D TAU 

[kW] [kW] [kW] [-] [CZK] [CZK/MW] [CZK/MW2] [CZK] [-] 

Water1 1 600 980 5 0.065 12046 142.0 0.029 48429 6.257 

Water1 2 600 980 5 0.065 12046 142.0 0.029 48429 6.257 

Water2 1 390 440 5 0.065 14667 161.2 0.030 53826 5.948 

Water2 2 390 440 5 0.065 14667 160.7 0.030 53826 5.948 

Water2 3 390 440 5 0.067 14667 161.4 0.030 53826 5.948 

Water2 4 390 440 5 0.068 14667 162.4 0.030 53826 5.948 

Wind1 1 120 200 10 0.078 15104 170.7 0.383 220797 6.633 

Wind1 2 120 200 10 0.078 15104 170.7 0.380 220797 6.633 

Wind1 3 120 200 10 0.078 15104 170.7 0.387 220797 6.633 

Wind1 4 120 200 10 0.078 15104 170.7 0.390 220797 6.633 

Wind1 5 120 200 10 0.078 15104 170.7 0.393 220797 6.633 

Wind2 1 140 210 10 0.114 16480 188.3 0.448 352258 7.164 

Wind2 2 140 210 10 0.114 16659 188.3 0.459 352258 7.164 

Wind2 3 140 210 10 0.114 16480 188.3 0.451 352258 7.164 

Wind2 4 140 210 10 0.114 16659 188.3 0.462 352258 7.164 

Wind2 5 140 210 10 0.114 16480 188.3 0.455 352258 7.164 

Cogener1 1 300 500 15 0.054 15902 198.8 0.152 278466 5.788 

Cogener2 1 130 200 15 0.088 15815 176.8 0.437 230474 7.948 

Cogener2 2 130 200 15 0.088 15815 176.8 0.431 230474 7.948 

Cogener2 3 130 200 15 0.088 15815 176.8 0.434 230474 7.948 

Cogener2 4 130 200 15 0.088 15815 176.8 0.427 230474 7.948 

Biomass1 1 100 150 5 0.131 8483 199.5 0.884 167598 9.224 

Biomass1 2 100 150 5 0.131 9534 200.7 0.853 155921 9.076 

Biomass1 3 100 150 5 0.120 9273 224.0 0.701 153513 9.044 

Biomass2 1 100 150 5 0.132 7948 204.4 0.939 72779 7.447 

Biomass2 2 100 150 5 0.132 7948 204.4 0.943 72779 7.447 

Biomass2 3 100 150 5 0.132 7948 204.4 0.947 72779 7.447 

Biomass2 4 100 150 5 0.132 7948 204.4 0.950 72779 7.447 

Biomass3 1 100 150 5 0.173 10505 282.3 1.101 128197 8.669 

Biomass3 2 100 150 5 0.173 10505 282.3 1.051 128197 8.669 

Biomass3 3 100 150 5 0.173 10505 282.3 1.001 128197 8.669 

Biomass3 4 100 150 5 0.173 10505 282.3 0.951 128197 8.669 

Network1 1 100 200 1 0.084 20903 338.8 1.554 50000 5 

Network1 2 100 200 1 0.084 20903 338.8 1.550 50000 5 

Network1 3 100 200 1 0.084 20903 338.8 1.545 50000 5 

Network1 4 100 200 1 0.084 20903 338.8 1.541 50000 5 

Network2 1 100 200 1 0.071 24409 387.2 1.574 50000 5 

Network2 2 100 200 1 0.071 24409 387.2 1.569 50000 5 

Network2 3 100 200 1 0.071 24409 387.2 1.563 50000 5 

Network2 4 100 200 1 0.071 24409 387.2 1.580 50000 5 
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Fig 11. Program UniCom. 

 

Fig 12. Unit Commitment of Wednesday. 
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Fig 13. Unit Commitment of Saturday. 

7. Conclusion 

By comparing Fig. 7 to Fig. 12, it is clear that the 

Wednesday consumption is covered in a similar fashion, but 

due to the increased volumes, i.e. a larger area below its 

progression, the cluster of outputs supplied by the first and 

second biomass power plants covering the mid-day and 

evening peaks is larger. Three transformers of one of the 

distribution companies, specifically the one with the lower 

price of energy, were turned on during the midday peak – one 

of which was turned off temporarily between the peak hours. 

The third biomass power plant was not used at all due to its 

higher start-up costs and relatively high operating costs. 

Referential resp. optimal costs for the coverage of the 

Wednesday energy consumption then amount to 69 216 resp. 

45 006 CZK. 

By comparing Fig. 9 to Fig. 13, it is clear that the power 

consumption on Saturday is primarily covered by sources with 

more or less lower production costs, such as both 

hydro-electric plants and the first wind-power park together 

with cogeneration units, which contribute by supplying the 

town with heat. The mid-day consumption peak corresponds 

well with the cluster of outputs supplied by the biomass power 

plant and the start-up of one transformer, which together with 

one source of the specified cluster also covers the evening 

consumption peak. Referential resp. optimal costs for the 

coverage of the Saturday energy consumption then amount to 

65 254 resp. 38 446 CZK. 

In practice, unit commitment optimization problem was 

usually solved by Lagrange multipliers method, but it does not 

work correct with bivalent independent variables from 

objective function, i.e. with state of source. Therefore, 

heuristic methods seem more appropriate to solve our 

optimization problem. 
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