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Abstract

This paper formulates a unit commitment optimization problem for renewable and
combined energy sources distributed in a smart grid. Also we present two experiments.
The first experiment consists of cluster analysis of the daily diagrams of electric
energy-consumption of smart grid (namely for a work day and a day off on the basis of its
annual history) by self-organizing map neural network. The resulting type daily diagrams
are used as a basis for the second experiment. The second experiment consists of a solution
of the mentioned optimization problem by simulated annealing.

1. Introduction

With the development of computing technology and the growth of its computational
power, there has been an increasing focus on artificial intelligence methods. These methods
include terms such as artificial neural networks or evolutionary algorithms. However, their
massive utilization in practical applications across all human activities only occurred in the
eighties of the previous century, due to the development of personal computers.

Artificial neural networks are used to process and evaluate incomplete, indeterminate or
inconsistent information, especially for tasks involving recognition, diagnostics,
classification of objects with respect to provided categories or prediction of the time
development of the given variable, compression and coding information, noise filtering,
extrapolation or interpolation of the trends of a given variable and last but not least the
cluster analysis of multidimensional data, as described in this article.

Evolutionary algorithms are used to find a solution with sufficient quality for
large-scale general optimization tasks in a sufficiently short time. Evolutionary algorithms
inspired by nature include a whole spectrum of optimization heuristic techniques, e.g.
Particle Swarm resp. Ant Colony Optimization, Genetic Algorithms or Simulated
Annealing. Heuristics may be described as a procedure for searching the solution space via
shortcuts, which are not guaranteed to find the correct solution but do not suffer from a
range of problems of conventional optimization methods such as e.g. the requirement of
connectivity or differentiability of the criterion or link function, the problem of respecting
constraints, being stuck in a shallow local minimum or divergence. However, their
application requires the configuration of certain free parameters, which need to be setup
based on the specific optimization task — these may e.g. include the starting or final
temperature and the number of iterations of the simulated annealing algorithm described
below and based on the evolution of thermodynamic systems. In physics, annealing is a
process where an object, heated up to a certain high temperature, is being gradually cooled
down to remove internal defects in the object. The high temperature causes the particles in
the object to rearrange randomly, which destroys defects in the crystal lattice, and the



45 Milo$ Kfivan:

gradual cooling then allows the particles to stabilize in
equilibrium points with a lower probability of the creation of
new defects.

In the context of sustainable development of human society,
which depends on the planet's energy sources, covering the
needs of the society requires a focus on renewable energy
sources such as geothermal energy, atmospheric currents,
hydro-geological cycles, solar radiation or biomass, due to
their relative inexhaustibility and the minimization of the
impacts of human activities on the environment related to their
conversion to energy.

The implementation rate of the above proposition depends
on the cost of the chain of production, transmission and
consumption of energy. In relation to electricity, we are
therefore minimizing production costs through the optimal
operation of the electrical transmission network, i.c. a suitable
choice for the connection and size of the injection active or
reactive power in the network nodes, and finally by
minimizing the consumption side.

Minimizing the above costs, due to the complexity of the
problem as a whole, is usually realized more or less separately
on three separate planes (generation, transmission and
consumption), i.e. instead of one optimum we only obtain
three sub-optima. In connection with the second or third plane,
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we speak about smart grids; however the subject of this paper
is the solution of this problem on the first level, i.e. unit
commitment optimization problem.

2. Unit Commitment

The task of unit commitment [11-22] is an optimization
problem with a goal of minimizing the total costs of producing
the volume of energy given by the prediction of its
consumption for the considered period, sampled e.g. by hours.
In other words, this constitutes a plan for the sorting of sources
and their generated outputs covering the predicted
consumption in each hour of the given period.

The optimization problem may in general formally be
expressed as follows:

fiR" > R f(X) = mingeq f(X) QcR" (1)

where %, is the optimum, whereas Q specifies the area of
admissible solutions containing the optimum as given by
operating-technical parameters of sources, and whereas f
represents the cost function given by a sum of operating and
start-up costs (Fig. 1) for sources integrated in the given
period:

ATy ()
f(P@),2(®) = 5 TilAi + BiPi(6) + CGPE () +Di(1—e 1 ) xi(t) @
where i €{1,— N}, t€{l,—,T} and P;(t) resp. x;(t) following inequalities resp. equality:
are the output resp. state of the i-th source in time ¢, and where i ax
A;, B;, C;, D; resp. AT;(t) and T; are the appropriate cost P™" < P < P €)
coefficients resp. downtime and the time constant of the
y P (O)x(8) = C(©) “

exponential growth of start-up costs for the i-th source in time
t, and furthermore N resp. T is the number of sources in the
network resp. the number of time snaps of the considered
period.

Admissible solutions are in general specified by the
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Fig 1. Dependence of Operating Costs on Power and Start-up Costs on Downtime.
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3. Competitive Model of Neural
Network

We define an artificial neural network as the oriented graph
with vertices and edges dynamically evaluated, i.e. as the
ordered quintuplet[V, E, €, y, w]:

V set of vertices (neurons)

E set of edges (synapses)

& mapping edges with incidence vertices (e: E = V X V)
y dynamic evaluation of vertices (y:V X t = R)

w dynamic evaluation of edges (w:e(E) X T = R).

The vector y(t) = [y;(®)]i € V] is called the network
state in time t and the vector W(T) = [w;;(T)|[i,j] € V X V]
is called the network configuration in time T (V[i,j] &
e(E) > w;;(T) = 0). The state resp. configuration of the
network as a vector function of time t resp. T we term as the
active dynamics resp. adaptive dynamics of the neural
network.

Using time separation of the active and adaptive dynamics
we expressed the fact that a neural network works in two
time-independent modes, in an active and adaptive mode.

The active resp. adaptive dynamics of a neural network in
continuous time can be defined as a solutions vector of the
following systems of differential equations [1-2]:

x50 + 500 = D fixa(t — AW =8 (5)
resp.
Sy (T) + Bg; (o (M)wyy (T) = afi(xi (T g; (x5 (T))  (6)

xi(t+1) =3, fi(x(t))w; —

i,jeV,a,f €<0,1>, and then analogously to biological
neural network we call:

X; potential of the i-th neuron

f; activation function of the i-th neuron (f;(x;) = y;)

g; adaptation function of the j-th neuron

9; threshold of the j-th neuron

wjj synaptic weight links of the i-th neuron to the j-th neuron
o measure of plasticity of synapses

B measure of elasticity of synapses

At signal delay time

and where the activation function of the neuron we
approximate by sigmoid function: f(x) =1/(1+ e™P¥).
The parameter p > 0 expresses the slope of the sigmoid. For
a slope approaching zero resp. infinity we get the activation
function in the shape of linearity resp. non-linearity:

1
limf(x) =7 lim f(x) =0 x<0 limf(x)=1 x>0
p—>0 2 p—oo p—ooo

If we replace in (5) and (6) the derivations by analogous
expressions for discrete time:

x(t+1) — x;(t) d

wii(T + 1) —w;;(T)
t+1—¢ 2= - -

T+1-T

d
Ex]'(t) =

then we obtain for At =0 the following systems of
difference equations and the vectors of its solutions define the
active and adaptive dynamics of a neural network in discrete
time:

resp. yi(t+1) = f;(X;yi(Ow;; —9;) Q)

wij (T +1) = (1 = Bg; (g (M)Nwy;(T) + afy(x:(T))g;(x;(T)) ®)

iL,jEV.

Let us divide the population of the neurons in V to two
disjoint populations V; and V, (Vy UV, =V, V, NV, =@,
|[Vi| = n, |V,| = m), and let us connect them by edges so that
there is an edge from each neuron in V| to each neuron in V,
(e(Ey) =V, X V,), i.e. the network is oriented from V, to V,

F(2(0)) = §()

Let us choose the activation function of neurons of
population Vlas an identity, i.e. modified linearity and the
activation function of neurons of population V, as
non-linearity. Then during the active dynamics for constantly
applied stimulus %(0) attached to population V, we can
express the active dynamics (7) for y,(0) = 0 as follows:

it +1) =iy (©) wi; —9p), =9 = X x;(0)wy;  (9)

i€V, j,k€V, and let us call the parameter —dU; the
potential gain of the j-th neuron.

Let us choose the following initial conditions for the
network configuration wy;(0) = —2, w;;(0) = 7;; and let us

%(0) = [x;(0)]i € 1]

and V; resp. V, is then understood as the input resp. output
population. Let us furthermore connect neurons in V, by edges
so that there is an edge from each neuron in V, to every other
neuron in V, (e(Ey) =V, XV, — {[j,j1lj € V,}). The vector
function which sets the network state for an input stimulus
x;(0) we define as the network function:

y(0) = [y;()j € V]

add templates from the training set specified in the form
{d@(T)|T € AT} for the population V|, whereATis the network
adaptation period. If we only let the mutual links between
neurons in V; and V, adapt, and if we select the adaptation
function for the neurons in V, to match the activation
functions, then, assuming elasticity is equal to plasticity
(a = B), we can express the adaptive dynamics (8) as follows:

wy;(T) = wy; (T — 1)
wi;(T) = wy; (T = 1) + ay;(T)(a;(T) — w; (T — 1)) (10)

i€V, jjk€V,, T€AT ={1,—,N} where N resp. r;; is
the number of patterns of training set resp. the value specified
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of the random number generator.

In each step of the adaptive dynamics (10) it is required to
designate the states of neurons in V,, i.e. the steps of the
adaptive dynamics are conditioned by the active dynamics,
which, from the perspective of adaptive dynamics, runs
infinitely fast. Thus the state of V, 1is determined
synchronously with the state of V.

Let us assign to each neuron in V, a weight vector
w; = [Wi il € Vl]. Then the neurons in V, together with the
edges E, and the active dynamics (9) form a Hopfield
optimization network [3-4] with the following energy
function:

EQW) =X Xk yiyj + 2;¥%, =9 = Xia;(Twy; = d(T) - w; (11)

ieV,jev,, keVv,—{}

If the vectors of the training set resp. the weight vectors are
normal, then the received potential gain of each neuron will
comply with —; = cos¢ (d(T),w;) and the distance
between the specified vectors can be defined as the angle
@ €< 0,m > between them. The energy function specified
above will then reach its minimum if and only if only one
neuron in V, is excited, specifically the neuron with the
maximum potential gain (11) — the so-called gain neuron.

The process of energy minimization of the state of V,
realized by the active dynamics (9), when the excited neuron

G(W;) = % Xry;(T) Xi(a; (T) — wyj)?

i€V, jeV, TeAT.

Adaptive dynamics (9) is a gradient descent on a
lower-bounded objective function, and so, assuming that the
vectors of the training set form clusters in the n-dimensional
space whose size corresponds to the cardinality of V,, the
(initially randomly located) weight vectors will converge
towards the centers of these clusters during adaptive
dynamics.

Let us define the following categories of normal vectors:

Ce = {R € W) <o W)} Q={xeRx|=1} (14)

k€V,, jeV,—{k} and ¢ is a non-Euclidean metric, i.e.
the angle between the vectors.

The network function will thus assign, during lateral
inhibition, a vector of the canonical basis of an m-dimensional
space with a one on the k-th position to an arbitrary normal
network input, if and only if the network input lies in the k-th
category (14). The function of the network of the competitive
model can thus be understood as a classification with respect
to the categories specified above.

If we set |V,| = m?, then we can interpret the neurons in
Vsas elements of a square m X m grid. Let us define the
square neighborhood of the r-th order of the 4-th element of
the grid as the set containing all grid elements which lie at a
distance of less than or equal to order r, ie. a(k,7) =
{j e V1lp(k,j) <7}, where p is the metric defined on the
grid as the neighborhood of elements of the appropriate order,
and let us adjust the adaptive dynamics (12) for the k-th gain
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with the maximum potential gain inhibits (by negative links)
other neurons, is called lateral inhibition. Lateral inhibition,
which designates a corresponding state of the population of V,
based on the presented training template, replaces the missing
template association in the training set — in other words, it
replaces the statement of a teacher, and we thus speak of
teacher-less learning.

Lateral inhibition in each adaptation step will ensure the
adaptation of only the weight vector corresponding to the k-th
gain neuron, i.e. of the weight vector as per the
above-specified non-Euclidian metric of the closest presented
training set template, to which it will advance on the surface of
an n-dimensional ball of unit radius by an adaptation step
proportional to the plasticity of the synapse:

Wi (T) =wie(T — D + a(@(T) —w (T - 1))  (12)

and the gain neuron thus won the competition for the presented
template of the training set. The normality of the adapted
weight vector will be ensured by its subsequent normalization.

The objective function (13) will reach its minimum if and
only if the weight vector is on the position with a minimal sum
of distances from all vectors of the training set which excite
the appropriate neuron, i.e. in the center of the cluster of the
specified vectors:

- 20D 5y, (1) (a(T) — wy) (42

6Wi)' -
neuron:
w;(T) = wi(T = 1) + a;(T)(@(T) —w;(T = 1)) (15)

j € o(k,r) and the plasticity drops globally with the time of
the adaptive dynamics and locally with the order of the
distance of the appropriate neuron from the gain neuron in the
population grid of V5.

The adjustment of the adaptive dynamics specified above
generalize lateral inhibition by the extension of the excitation
of the gain neuron to its neighborhood, which links the
above-specified metric ¢ with the above-specified metric p.
If the vectors of the training set are randomly distributed in the
n-dimensional space in accordance with some distribution
function, then after the adaptation of the network the weight
vectors will be randomly distributed in the same area in
accordance with the same distribution function.

If we present a training set on an adapted network in active
mode, then the map of the frequency of excitations of neurons
in V,, the so-called Kohonen’s map [5-6] will provide a
mapping of the clusters of vectors of the training set in an
n-dimensional space. Such a generalized competitive model,
under assumption of a sufficiently large cardinality of V,,
performs the cluster analysis of the training set, i.e. determines
the number of clusters and their distribution in the
n-dimensional space.

Let us adjust the topology of the already adapted
competitive model by adding a population set V3, connected
by edges to the population V, so that there is an edge from
each neuron in V, to each neuron in V3 (e(E3) = V, X V3). Let
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the new output population V3 have the same cardinality as the
input population Vi, and thus the population V, becomes a
hidden population.

Let us set the weights of edges Ej as follows: wjqy = wyj,
i€V, jeV,, q(i) € Vg,where q(i) is the image of thei-th
neuron of population V; in population V3. The output
populationV; together with the weighted edges E; thus forms
an image of the output population V; together with the
weighted edges E; mirrored over the hidden population V,, a
phenomenon which we call counter propagation [7-8] of the
synaptic weights of edges E; to edges Ej; in the direction of the
orientation of edges. Let us select the activation functions of
neurons in V; identically to the activation functions of neurons
in V;. Then, during active dynamics after the stabilization of
the state of the population of V,, the excitation of the k-th gain
neuron will lead to the following values of potentials of
neurons in Vj:

X)) = Z YiVia@) = Wka()) = Wik
j

i€V, jEV,, then stimulusX € C; implies the following
network function: F(%) = W,.

The function of the network in the competitive model with
forward propagation of weights will thus assign a prototype
(the closest weight vector) to each normal network input.
Prototypes lie in the centers of the appropriate clusters and
thus represent these clusters — they are their typical
representatives.

4. Simulated Annealing

Let’s the cost function argument (2) expresses the
macroscopic state of a thermodynamic system with energy
equal to the function value. Then we can express its
thermodynamic probability as the number of micro-states
corresponding to it:

P(E) = |{# e R*| (@) = E}| (16)

P

A

If we immerse this system with various macro-states with
energies E; in a thermal reservoir, then the Boltzmann
equation for the unit size of the Boltzmann constant together
with the Taylor expansion of a differentiable function, allows
us to express the entropy of the reservoir after the
temperatures equilibration for E = E, + E; = const and
E > E; as follows:

ds(E
S(E) = S(E) —%Ei =InP(E — E) (17)
and then, by wusing the definition of temperature

dS(E) /dE = 1/T we can express the thermodynamic

probability of a macro-state of the thermal reservoir as a

function of the energy of the macro-state of the inserted

system, i.e. by the following Boltzmann factor (T > 0):

Ej

P(E—E)=ce T (18)

The simulated annealing algorithm is based on the

perturbation of an optimum candidate and a following

decision on its replacement by a perturbation in each iteration
of the algorithm based on the Metropolis criterion [9]:

P(E;
p(% - %)= PEE]L; = e_A7E AE >0
p(% - %)=1 AE <0

which expresses the probability of the system transferring
from one macro-state to another, where AE = E; — E;and
AE /T expresses the increase of entropy, i.e. in accordance
with the second law of thermodynamics an impossible event is
artificially redefined as a certain event in the specified
criterion.

The sequence of accepted perturbations, i.e. acceptable
solutions to the optimization task, forms a Markov chain with
memory of order one, i.e. the occurrence of the given solution
is only conditioned by the occurrence of the previous solution.
The perturbations which lie outside of the area of admissible
solutions are automatically rejected.

AE

Fig 2. Dependence of Probability on Increase of Energy.
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Fig 3. Dependence of Probability on Temperature.

From p(AE) (Fig. 2), itis clear that a significantly "worse"
solution is accepted with respect to the previous solution at a
much lower probability than a slightly "worse" solution. p(T)
(Fig. 3) may be used to control the probability of the
acceptance of the solution during the iteration cycle. We
initiate the iteration cycle with a sufficiently high temperature
to ensure that almost every proposed solution is accepted for a
certain period of time, which will allow an initial

_iter
T:Toe T T =

where T, resp. T, are the initial resp. final temperatures
and N is the number of iterations of the algorithm.

High temperature

rature

Low temp

Local minimum

Global minimum

Fig 4. Freezing of Solution.

5. Experiment 1

The goal of this experiment is the identification of type
daily diagrams of hourly smart grid consumption of electric
energy on a workday, i.e. Wednesday, and on a non-work day,

" In(Too/To)

approximation of the solution to "escape" areas with shallow
local minima. Later on, we reduce the temperature so that
almost no "worse" solution is accepted, i.e. during the iteration
cycle we cool down the system representing the optimization
task from a sufficiently high temperature to a sufficiently low
temperature until a solution is "frozen" in a sufficiently deep
local minimum (Fig. 4). The temperature drop may be
modeled e.g. as an exponentially decreasing function:

iter

T = limjpr 00 Toe = =0 (19)
i.e. on Saturday, based on the recorded annual history of hour
electric energy consumption of smart grid.

To allow the measuring of the efficiency of the utilized
cluster analysis method, the annual history of hourly
consumption of electric energy has been artificially modeled
so that a typical daily diagram may be compared to a certain
standard. The default standards of daily diagrams of hourly
consumptions were the characteristic hourly developments of
the consumption of the above-listed two days, where each
hourly consumption of each of these was randomly modified
by a random number generator with a normal probability
distribution, as many times as was necessary to fill the annual
history of hourly consumption.

Although individual daily diagrams of the annual history
(Fig. 6,8) are mutually relatively different, the resulting type
daily diagrams are very similar to the appropriate standards
(Fig. 7,9). This documents the high efficiency of the utilized
cluster analysis method. The experiment was processed in the
computer program Artlnt © 2010 (Fig. 5).
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Fig 5. Example of Kohonen's Map from Program Artlnt.
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Fig 9. Type Daily Diagram and Standard of Saturday.
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Fig 10. Smart Grid with Distributed Generation.

6. Experiment 2

The scenario of the following computational experiment is
as follows: Let us assume a fictitious town supplied from
smart grid (Fig. 10) [10]. The town, located near the foothills
of a mountain range, is near a small river flowing from a lake,
with a sufficient slant to build two hydro-electric plants. The
vicinity of the mountains provides stable winds which are of

sufficient power to build a park with wind power plants. Next
to the town, there is a cogeneration plant which supplies the
town with heat and power. Due to the highly developed
agricultural production in the inland areas nearby, a biomass
power plant has been built near the town. Due to the dominant
cloudy weather in the considered period, the photovoltaic
power cells located in the town do not provide sufficient
output, and so these will not be included in the experiment. To
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retain the reliability of the delivery of power, the town is
connected to two high-voltage power lines from different
power suppliers.

The objective of the experiment is a proposal for an
ordering of sources for a typical autumn Saturday resp.
Wednesday, for which predictions of the hourly consumptions
are available. In the specified experiment, the town is supplied

Application of Artificial Intelligence to Minimize Operating Costs of Smart Grid Energy Sources

by electrical power from thirty two rotary (synchronous
generator) and eight non-rotary (transformer) machines, i.e. a
total of forty sources and its cost characteristics and technical
limitations are specified in Tab. 1, where HC=HC1+HC2*P is
the consumption of the source itself based on the produced
output. The experiment was processed in the computer
program UniCom © 2010 (Fig. 11).

Tab 1. Parameters of Sources.

Prin Pnax HCI1 HC2 A B C D TAU
UNIT NR
kW] kW] kW] [-] [CZK] [CZK/MW] [CZK/MW?| [CZK] [-]

Waterl 1 600 980 5 0.065 12046 142.0 0.029 48429 6.257
Waterl 2 600 980 5 0.065 12046 142.0 0.029 48429 6257
Water2 1 390 440 5 0.065 14667 161.2 0.030 53826 5.948
Water2 2 390 440 5 0.065 14667 160.7 0.030 53826 5.948
Water2 3 390 440 5 0.067 14667 161.4 0.030 53826 5.948
Water2 4 390 440 5 0.068 14667 162.4 0.030 53826 5.948
Windl 1 120 200 10 0.078 15104 170.7 0.383 220797 6.633
Windl 2 120 200 10 0.078 15104 170.7 0.380 220797 6.633
Windl 3 120 200 10 0.078 15104 170.7 0.387 220797 6.633
Windl 4 120 200 10 0.078 15104 170.7 0.390 220797 6.633
Windl 5 120 200 10 0.078 15104 170.7 0.393 220797 6.633
Wind2 1 140 210 10 0.114 16480 188.3 0.448 352258 7.164
Wind2 2 140 210 10 0.114 16659 188.3 0.459 352258 7.164
Wind2 3 140 210 10 0.114 16480 1883 0.451 352258 7.164
Wind2 4 140 210 10 0.114 16659 188.3 0.462 352258 7.164
Wind2 5 140 210 10 0.114 16480 188.3 0.455 352258 7.164
Cogenerl 1 300 500 15 0.054 15902 198.8 0.152 278466 5.788
Cogener2 1 130 200 15 0.088 15815 176.8 0.437 230474 7.948
Cogener2 2 130 200 15 0.088 15815 176.8 0.431 230474 7.948
Cogener2 3 130 200 15 0.088 15815 176.8 0.434 230474 7.948
Cogener2 4 130 200 15 0.088 15815 176.8 0.427 230474 7.948
Biomassl 1 100 150 5 0.131 3483 199.5 0.884 167598 9.224
Biomassl 2 100 150 5 0.131 9534 200.7 0.853 155921 9.076
Biomassl 3 100 150 5 0.120 9273 224.0 0.701 153513 9.044
Biomass2 1 100 150 5 0.132 7948 204.4 0.939 72779 7.447
Biomass2 2 100 150 5 0.132 7948 204.4 0.943 72779 7.447
Biomass2 3 100 150 5 0.132 7948 204.4 0.947 72779 7.447
Biomass2 4 100 150 5 0.132 7948 204.4 0.950 72779 7.447
Biomass3 1 100 150 5 0.173 10505 2823 1.101 128197 8.669
Biomass3 2 100 150 5 0.173 10505 2823 1.051 128197 8.669
Biomass3 3 100 150 5 0.173 10505 2823 1.001 128197 8.669
Biomass3 4 100 150 5 0.173 10505 2823 0.951 128197 8.669
Networkl 1 100 200 1 0.084 20903 338.8 1.554 50000 5
Networkl 2 100 200 1 0.084 20903 338.8 1.550 50000 5
Networkl 3 100 200 1 0.084 20903 338.8 1.545 50000 5
Networkl 4 100 200 1 0.084 20903 338.8 1.541 50000 5
Network2 1 100 200 1 0.071 24409 3872 1.574 50000 5
Network2 2 100 200 1 0.071 24409 3872 1.569 50000 5
Network2 3 100 200 1 0.071 24409 3872 1.563 50000 5
Network2 4 100 200 1 0.071 24409 3872 1.580 50000 5




r

SuppLy =z, b
Waverl 1 97
Waverl 2 s
Water2 1 432
Waver2 2 qae
Water2 3 440
Wazer2 4 440
Windl 1 1s¢
Windl 2 158
Wirdl 3 186
Windl 4 200
Windl s 19
Wind2 1 178
Wind2 2 0
Wind2 $ 17
Wind2 4 0
Wird2 s 1
Cogenerl 1 488
Cogenex2 1 1
Cogenex2 2 1e2
Cogenex2 3 156
Cogener2 4 17
Biomassl 1 0
Biomassl 2 102
Biomassl 3 0
Biomass2 1 (]
Biomass=2 2 o
Biomass2 3 0
Biomass2 4 (]
Biomass3 1 0
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Fig 13. Unit Commitment of Saturday.

7. Conclusion

By comparing Fig. 7 to Fig. 12, it is clear that the
Wednesday consumption is covered in a similar fashion, but
due to the increased volumes, i.e. a larger area below its
progression, the cluster of outputs supplied by the first and
second biomass power plants covering the mid-day and
evening peaks is larger. Three transformers of one of the
distribution companies, specifically the one with the lower
price of energy, were turned on during the midday peak — one
of which was turned off temporarily between the peak hours.
The third biomass power plant was not used at all due to its
higher start-up costs and relatively high operating costs.
Referential resp. optimal costs for the coverage of the
Wednesday energy consumption then amount to 69 216 resp.
45 006 CZK.

By comparing Fig. 9 to Fig. 13, it is clear that the power
consumption on Saturday is primarily covered by sources with
more or less lower production costs, such as both
hydro-electric plants and the first wind-power park together

with cogeneration units, which contribute by supplying the
town with heat. The mid-day consumption peak corresponds
well with the cluster of outputs supplied by the biomass power
plant and the start-up of one transformer, which together with
one source of the specified cluster also covers the evening
consumption peak. Referential resp. optimal costs for the
coverage of the Saturday energy consumption then amount to
65 254 resp. 38 446 CZK.

In practice, unit commitment optimization problem was
usually solved by Lagrange multipliers method, but it does not
work correct with bivalent independent variables from
objective function, i.e. with state of source. Therefore,
heuristic methods seem more appropriate to solve our
optimization problem.
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