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Abstract 
Coulomb's law determines the static force, which acts between two fixed charges. 

However, this law does not give the answer, how this force will change, if charges will 

accomplish relative motion. Answer to this question can be obtained from the laws of 

induction. In the article it is shown that also the scalar potential and the electric field of 

charge at the observation point depend on relative motion of charge relative to this point. 

1. Introduction 

Coulomb law determines the static force, which acts between two fixed charges [1] 
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where 1F
�

 is force, which acts on the charge 1q , 12e
�

 is unit vector, directed from the charge

2q  toward 1q , 12r is distance between the charges. 

The scalar potential of the charge follows from this law 
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But the field strength, created by charge, it is determined from the relationship 

E grad ϕ= −                                           (1.3) 

However, Coulomb law does not give answer to a question about how to change scalar 

potential and the tension of the electric field of charge during its motion answer to this 

question can be obtained from the laws of induction and Ampere law. 

2. Laws of the Magneto Electric Induction 

The important task of electrodynamics is the presence of laws governing the 

appearance of electrical pour on, and, therefore, also the forces of those acting on the 

charge, at the particular point spaces, since. Only electric fields, generated other one or 

method or another, exert power influences on the charge.  Such fields can be obtained, 

changing the arrangement of other charges around this point of space or accelerating 

these charges. If around the point in question is some static configuration of charges, 

then the tension of electric field will be at the particular point determined by the 

relationship of , where  the scalar potential at the assigned point, determined by the 

assigned configuration of charges. If we change the arrangement of charges, then this  
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new configuration will correspond other values of scalar 

potential, and, therefore, also other values of the tension of 

electric field. But, making this, it is necessary to move 

charges in the space, and this displacement in the required 

order is cmbined with their acceleration and subsequent 

retarding. Acceleration or retarding of charges also can lead 

to the appearance in the surrounding space of induction 

electrical pour on. Can arise another stationary situation, 

when after their acceleration charges move in the 

environment of the considered point with the constant 

velocity along circular or other locked trajectories. In this 

case due to the presence of the three-dimensional velocity 

gradients in the flows of the moving charges configurative 

electric fields can appear. 

In the electrodynamics the fundamental law of induction is 

Faraday law. In the contemporary electrodynamics it is 

written as follows: 

B
Ф H B

E dl ds ds
t t t

µ∂ ∂ ∂= − = − = −
∂ ∂ ∂∫ ∫ ∫

� �
�� � �

� ,         (2.1) 

where B Hµ=
� �

is magnetic induction vector, BФ H dsµ= ∫
� �

 

is flow of magnetic induction, and 0µ µµ= ɶ is magnetic 

permeability of medium. It follows from this law that the 

circulation integral of the vector of electric field is equal to a 

change in the flow of magnetic induction through the area, 

which this outline covers. It is immediately necessary to 

emphasize the circumstance that the law in question presents 

the processes of mutual induction, since. For obtaining the 

circulation integral of the vector E
�

 we take the strange 

magnetic field, formed by strange source. From relationship 

(2.1) obtain the Maxwell first equation 

B
rot E

t

∂= −
∂

�
�

.                             (2.2) 

Let us immediately point out to the terminological error. 

Faraday law should be called not the law of electromagnetic, 

as is customary in the existing literature, but by the law of 

magnetoelectric induction, since. a change in the magnetic 

pour on it leads to the appearance of electrical pour on, but 

not vice versa. 

Let us introduce the vector potential of the magnetic field

HA
�

, which satisfies the equality 

H BA dl Фµ =∫
��

� , 

where the outline of the integration coincides with the outline 

of integration in relationship (2.1), and the vector of  is 

determined in all sections of this outline, then 

H
A

E
t

µ ∂
= −

∂

�
�

                              (2.3) 

introduced thus vector
H

A
�

 determines the local connection 

between it and by electric field, and also between the 

gradients this vector and the magnetic field.  If it will be 

possible to determine the vector
H

A
�

, its time derivative at any 

point of space, and also its gradients, then will succeed in 

determining the vector E
�

, and the vector H
�

. It is not difficult 

to show that introduced thus vector
H

A
�

, is connected with the 

magnetic field with the following relationship: 

Hrot A H=
� �

.                           (2.4) 

If the discussion deals with the motion in the field of the 

three-dimensional changing vector potential, then for finding 

the induced electrical pour on should be used total derivative 

[2-8]. 

H
dA

E
dt

µ′ = −
�

�
                          (2.5) 

prime near the vector E
�

 means that we determine this field in 

the moving coordinate system. This means that the vector 

potential can have not only local, but also convection 

derivative, i.e., it can change both due to the change in the 

time and due to the motion in the three-dimensional changing 

field of this potential. In this case relationship (2.5) can be 

rewritten as follows: 

( )H

H

A
E v A

t
µ µ∂′ = − − ∇

∂

�
�� �

, 

where v
�

 is speed of the prime system. Consequently, the 

force, which acts on the charge in the moving system, in the 

absence the dependence of vector potential on the time, will 

be written down 

( ),1v H
F e v Aµ′ = − ∇

�� �
 . 

This force depends only on the gradients of vector 

potential and charge rate. 

The charge, which moves in the field of the vector 

potential
HA
�

 with the speed v
�

, possesses potential energy [1] 

( )HW e vAµ= −
��

. 

Therefore must exist one additional force, which acts on 

the charge in the moving coordinate system, namely: 

( ),2v HF grad W e grad vAµ′ = − =
�� �

. 

Thus, the value ( )He vAµ
�

 plays the same role, as the scalar 

potentialϕ , whose gradient also gives force. Consequently, 

the composite force, which acts on the charge, which moves 

in the field of vector potential, can have three components 

and will be written down as 

( ) ( )H
H H

A
F e e v A e grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

.       (2.6) 
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The first of the components of this force acts on the fixed 

charge, when vector potential changes in the time and has 

local time derivative. Second component is connected with 

the motion of charge in the three-dimensional changing field 

of this potential. Entirely different nature in force, which is 

determined by last term of relationship (2.6).  It is connected 

with the fact that the charge, which moves in the field of 

vector potential, it possesses potential energy, whose gradient 

gives force. From relationship (2.6) follows 

( ) ( )H

H H

A
E v A grad vA

t
µ µ µ∂′ = − − ∇ +

∂

�
� �� � �

.          (2.7) 

This is a complete law of mutual induction. It defines all 

electric fields, which can appear at the assigned point of 

space, this point can be both the fixed and that moving. This 

united law includes and Faraday law and that part of the 

Lorentz force, which is connected with the motion of charge 

in the magnetic field, and without any exceptions gives 

answer to all questions, which are concerned mutual 

magnetoelectric induction. It is significant, that, if we take 

rotor from both parts of equality (2.7), attempting to obtain 

the Maxwell first equation, then it will be immediately lost 

the essential part of the information, since rotor from the 

gradient is identically equal to zero. 

If we isolate those forces, which are connected with the 

motion of charge in the three-dimensional changing field of 

vector potential, and to consider that 

( ) ( )H H Hgrad vA v A v rot Aµ µ µ  − ∇ = × 

� � �� � �
, 

that from (2.6) we will obtain 

v HF e v rot Aµ  ′ = × 

�� �
,                         (2.8) 

and, taking into account (2.4), let us write down 

vF e v Hµ  ′ = × 
� ��

,                              (2.9) 

or 

vE v Hµ  ′ = × 
� ��

,                             (2.10) 

and it is final 

H

v

A
F eE eE e e v H

t
µ∂
 ′ ′= + = − + × ∂

�
� � � ��

.          (2.11) 

Can seem that relationship (2.11) presents Lorentz force; 

however, this not thus. In this relationship and field E
�

, and 

field
vE ′
�

 they are induced. The first field is connected with the 

presence of the local derivative of vector potential on the 

time, the second is obliged to the presence of the convective 

derivative of this potential.  In order to obtain the total force, 

which acts on the charge, necessary to the right side of 

relationship (2.11) to add the term e grad ϕ−  

F e grad eE e v Hϕ µ∑
 ′ = − + + × 

� � ��
, 

whereϕ  is scalar potential at the observation point. In this 

case relationship (2.7) can be rewritten as follows: 

( ) ( )H

H H

A
E v A grad vA grad

t
µ µ µ ϕ∂′ = − − ∇ + −

∂

�
� �� � �

,  (2.12) 

or, after writing down the first two members of the right side 

of relationship (2.12) as the derivative of vector potential on 

the time, and also, after introducing under the sign of 

gradient two last terms, we will obtain 

( )( )H
dA

E grad vA
dt

µ µ ϕ′ = − + −
�

�� �
.            (2.13) 

If both parts of relationship (2.12) are multiplied by the 

magnitude of the charge, then will come out the total force, 

which acts on the charge. From Lorentz force it will differ in 

terms of the force H
A

e
t

µ ∂
−

∂

�

. From relationship (2.13) it is 

evident that the value ( )vAµ ϕ−
��

 plays the role of the 

generalized scalar potential. Let us examine, what fields 

determine the first member of the right side of relationship 

(2.13). 

The Ampere law, expressed in the vector form, determines 

magnetic field at the point , ,x y z  [9] 

3

1

4

Idl r
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rπ
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�
, 

where I  is current in the element dl
�

, r
�

 is vector, directed 

from dl
�

to the point , ,x y z . 

It is possible to show that 

3

[ ] 1dlr
grad dl

rr

 = × 
 

��
�

, 

and, besides the fact that 

1 1dl
grad dl rot rot dl

r r r

  × = −  
   

�
� �

. 

but the rotor dl
�

 is equal to zero and therefore is final 

4 H

dl
H rot I rot A

rπ
 

= = 
 

∫
�

��

, 

where 

4H

dl
A I

rπ
 

=  
 

∫
�

�

.                             (2.14) 

The remarkable property of this expression is that that the 

vector potential depends from the distance to the observation 
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point as 
1

r
. Specifically, this property makes it possible to 

obtain emission laws. 

Since I gv= , where g  linear charge, from relationship 

(2.14) we obtain: 

4H

gv dl
A

rπ= ∫
�

�
. 

for the single charge of e  this relationship takes the form: 

4
H

ev
A

rπ
=
�

�
.                             (2.15) 

Therefore the first member of the right side of relationship 

(2.13) is different from zero when the moving charge it has 

an acceleration. 

However the member of ( )vAµ
��

 in the right side of 

relationship (2.13) even with the constant velocity of charge 

has the specific value. 

Let us determine the generalized (summary) potential of 

( )vAµ ϕ−
��

. Taking into account relationship (1.3) from (2.15) 

we obtain 

( )
2 2

0 0 0
4 4 4 4

ev eve e
vA

r r r c r

µϕ µ ϕ
π πε π ε πε

⊥ ⊥
∑ = − = − = −

��
.(2.16) 

In this relationship v⊥  is speed normal to the vector, which 

connects charges, and is also taken into account that that 

2

0

1
c µε= . 

In the case of relative motion of charges relationship (2.16) 

takes the form: 

( )
2

2
1

v
vA

c
ϕ µ ϕ ϕ ⊥
∑

 
= − = − + 

 

��
.           (2.17) 

Thus, the scalar potential of the charge, which 

accomplishes motion relative to observation point, depends 

on its speed. 

On speed depends the created by it electric field 

2

2
0

1
4

ve
E grad

r c
ϕ πε

⊥
∑

 
= − = + 

 
. 

This law, obtained from the law of the induction Faraday 

and Ampere law, he indicates that the field of the moving 

charge is differed from the field of fixed. However, this law 

is subject to refinement taking into account the law of 

electromagnetic induction. 

3. Laws of the Electromagnetic 

Induction 

Faraday law shows, how a change in the magnetic pour on 

it leads to the appearance of electrical pour on. However, 

does arise the question about that, it does bring a change in 

the electrical pour on to the appearance of any others pour on 

and, in particular, magnetic? Maxwell gave answer to this 

question, after introducing bias current into its second 

equation. In the case of the absence of conduction currents 

the second equation of Maxwell appears as follows: 

E D
rot H

t t
ε ∂ ∂= =

∂ ∂

� �
�

, 

where D Eε=
� �

 is electrical induction. 

From this relationship it is not difficult to switch over to 

the expression 

EH dl
t

∂Φ
=

∂∫
��

� ,                   (3.1) 

where E D dsΦ = ∫
� �

 the flow of electrical induction. 

However for the complete description of the processes of 

the mutual electrical induction of relationship (3.1) is 

insufficient. As in the case Faraday law, should be considered 

the circumstance that the flow of electrical induction can 

change not only due to the local derivative of electric field on 

the time, but also because the outline, along which is 

produced the integration, it can move in the three-

dimensional changing electric field. This means that in 

relationship (3.1), as in the case Faraday law, should be 

replaced the partial derivative by the complete. Designating 

by the primes of field and circuit elements in moving inertial 

system [IS], we will obtain: 

E
d

H dl
dt

Φ′ ′ =∫
��

� , 

and further 

D
H dl ds D v dl v divD ds

t

∂
 ′ ′ ′ ′ ′= + × + ∂∫ ∫ ∫ ∫

�
� �� � �� � � �

� � .       (3.2) 

For the electrically neutral medium 0divE =
�

; therefore the 

last member of right side in this expression will be absent. 

For this case relationship (3.2) will take the form: 

D
H dl ds D v dl

t

∂
 ′ ′ ′ ′= + × ∂∫ ∫ ∫

�
� �� �� �

� � .          (3.3) 

4. Dynamic Potentials and the Field 

of the Moving Charges 

If the law of induction (2.1) was written down in the total 

derivatives, then we will obtain 

B
E dl ds v B dl

t

∂
 ′ ′ ′= − + × ∂∫ ∫ ∫

�
� �� �

� � . 

Together with law (3.3) it presents two symmetrical laws 
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of induction [2-5] 

B
E dl ds v B dl

t

D
H dl ds v D dl

t

∂
 ′ ′ ′= − + × ∂

∂
 ′ ′ ′= − × ∂

∫ ∫ ∫

∫ ∫ ∫

�
� �� �

�
� �� �

� �

� �

 ,               (4.1) 

or 

B
rotE rot v B

t

D
rotH rot v D

dt

∂
 ′ = − + × ∂

∂
 ′ = − × 

�
� ��

�
� ��

.                    (4.2) 

For the constants fields on these relationships they take the 

form: 

E v B

H v D

 ′ = × 

 ′ = − × 

� ��

� �� .                                (4.3) 

In relationships (4.1-4.3), which assume the validity of the 

Galileoconversions, prime and not prime values present 

fields and elements in moving and fixed ISrespectively. It 

must be noted, that conversions (4.3) earlier could be 

obtained only from the conversions of Lorenz. 

The relationships (4.1-4.3), which present the laws of 

induction, do not give information about how arose fields in 

initial fixed IS. They describe only laws governing the 

propagation and conversion pour on in the case of motion 

with respect to the already existing fields. 

The relationship (4.3) attest to the fact that in the case of 

relative motion of frame of references, between the fields E
�

 

and H
�

 there is a cross coupling, i.e., motion in the fields of 

H
�

 leads to the appearance pour on E
�

 and vice versa. From 

these relationships escape the additional consequences, 

which were for the first time examined in the work [2]. 

The electric field
2

g
E

rπε= outside the charged long rod 

with a linear density g decreases as
1

r
, where r is distance 

from the central axis of the rod to the observation point. 

If we in parallel to the axis of rod in the field E  begin to 

move with the speed v∆  another IS, then in it will appear the 

additional magnetic field H E vε∆ = ∆ . If we now with 

respect to already moving IS begin to move third frame of 

reference with the speed v∆ , then already due to the motion 

in the field H∆  will appear additive to the electric field

( )2
E E vµε∆ = ∆ . This process can be continued and further, 

as a result of which can be obtained the number, which gives 

the value of the electric field ( )vE r′  in moving IS with 

reaching of the speed v n v= ∆ , when 0v∆ → , and n → ∞ . 

In the final analysis in moving IS the value of dynamic 

electric field will prove to be more than in the initial and to 

be determined by the relationship: 

( ),
2

v
gch vcE r v Ech

r cπε

⊥

⊥
⊥′ = = . 

If speech goes about the electric field of the single charge 

e , then its electric field will be determined by the 

relationship: 

( )
2

,
4

v
ech

cE r v
rπε

⊥

⊥′ = , 

where v⊥ is normal component of charge rate to the vector, 

which connects the moving charge and observation point. 

Expression for the scalar potential, created by the moving 

charge, for this case will be written down as follows: 

( , ) ( )
4

v
ech vcr v r ch

r c
ϕ ϕπε

⊥

⊥
⊥′ = =                       (4.4) 

where ( )rϕ is scalar potential of fixed charge. The potential

( , )r vϕ ⊥′  can be named scalar- vector, since. it depends not 

only on the absolute value of charge, but also on speed and 

direction of its motion with respect to the observation point. 

Maximum value this potential has in the direction normal to 

the motion of charge itself. Moreover, if charge rate changes, 

which is connected with its acceleration, then can be 

calculated the electric fields, induced by the accelerated 

charge. 

During the motion in the magnetic field, using the already 

examined method, we obtain: 

( )
v

H v Hch
c
⊥

⊥′ = . 

where v⊥ is speed normal to the direction of the magnetic 

field. 

If we apply the obtained results to the electromagnetic 

wave and to designate components fields on parallel speeds 

IS as E↑  and H↑ , and E⊥ and H⊥ as components normal to 

it, then with the conversion fields on components, parallel to 

speed will not change, but components, normal to the 

direction of speed are converted according to the rule  

,

1
,

v v v
E E ch v B sh

c c c

v v
B B ch v E sh

c vc c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ = + ×

′ = − ×

� � ��

� � ��
            (4.5) 

where c  is speed of light. 

Conversions fields (4.5) they were for the first time 

obtained in the work [2]. 

However, the iteration technique, utilized for obtaining the 

given relationships, it is not possible to consider strict, since 

its convergence is not explained 

Let us give a stricter conclusion in the matrix form [10]. 

Let us examine the totality IS of such, that IS K1moves 
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with the speed v∆  relative to IS K, ISK2 moves with the same 

speed v∆  relative to K1 , etc. If the module of the speed v∆  

is small (in comparison with the speed of light c), then for the 

transverse components fields on in ISK1, K2,…. we have: 

2

1 1

2

2 1 1 2 1 1

/

/

E E v B B B v E c

E E v B B B v E c

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

= + ∆ × = − ∆ ×

= + ∆ × = − ∆ ×

� � � � � �� �

� � � � � �� � .    (4.6) 

Upon transfer to each following IS of field are obtained 

increases in E∆
�

 and B∆
�

 

2, /E v B B v E c⊥ ⊥∆ = ∆ × ∆ = −∆ ×
� � � �� �

,               (4.7) 

where of the field E⊥

�
 and B⊥

�
relate to current IS. Directing 

Cartesian axis x along v∆� , let us rewrite (4.7) in the 

components of the vector 

2, , /y z y y zE B v E B v B E v c∆ = − ∆ ∆ = ∆ ∆ = ∆ .     (4.8) 

Relationship (4.8) can be represented in the matrix form 

2

2

0 0 0 1

0 0 1 0

0 1/ 0 0

1/ 0 0 0

y

z

y

z

E

E
U AU v U

Bc

Bc

 −  
   
   ∆ = ∆ =   
   

  −   

. 

If one assumes that the speed of system is summarized for 

the classical law of addition of velocities, i.e. the speed of 

final IS
N

K K′ =  relative to the initial system K is v N v= ∆ , 

then we will obtain the matrix system of the differential 

equations of 

( )
( )

dU v
AU v

dv
= ,                              (4.9) 

with the matrix of the system v independent of the speed A . 

The solution of system is expressed as the matrix exponential 

curve exp( )vA : 

( ) exp( ) , (0)U U v vA U U U′ ≡ = = ,            (4.10) 

here U  is matrix column fields on in the system K , and U ′  

is matrix column fields on in the system K ′ . Substituting 

(4.10) into system (4.9), we are convinced, that U ′  is 

actually the solution of system (4.9): 

[ ]exp( )( )
exp( ) ( )

d vAdU v
U A vA U AU v

dv dv
= = = . 

It remains to find this exponential curve by its expansion 

in the series: 

2 2 3 3 4 41 1 1
exp( ) ...

2! 3! 4!
va E vA v A v A v A= + + + + +  

where E  is unit matrix with the size 4 4× . For this it is 

convenient to write down the matrix A  in the unit type form  

2

0 0 1 0 0
, , 0 .

/ 0 1 0 0 0
A

c

α
α

α
     −

= = =          −     
 

then 

2 2

2

2

/ 0

0 /

c
A

c

α
α

 −
=   − 

,            

3 2

3

3 4

0 /

/ 0

c
A

c

α
α

 
=   − 

, 

4 4

4

4 4

/ 0

0 /

c
A

c

α
α

 
=   
 

,             

5 4

5

5 6

0 /

/ 0

c
A

c

α
α
 −

=   
 

 

And the elements of matrix exponential curve take the 

form 

[ ] [ ]
2 4

2 411 22
exp( ) exp( ) ....,

2! 4!
= = − + −v v

vA vA I
c c

 

[ ] [ ]
3 5

2

3 521 12
exp( ) exp( ) ..... ,

3! 5!

v v v
vA c vA I

c c c c

α  
= − = − + − 

 
 

where I is the unit matrix 2 2× . It is not difficult to see that 
2 4 6 8 .... Iα α α α− = = − = = = , therefore we finally obtain 

( )

( )
( )

/ /
exp( )

/ / /

/ 0 0 /

0 / / 0

0 / / / 0

/ / 0 0 /

 −
 = =
 
 

 −
 
 
 
 
  − 

Ich v c c sh v c
vA

sh v c c Ich v c

ch v c csh v c

ch v c csh v c

ch v c c ch v c

sh v c c ch v c

α
α

. 

Now we return to (4.10) and substituting there exp( )vA , 

we find 

( ) ( )
/ / , / / ,

/ / / , / / /

y y z z z y

y y z z z y

E E ch v c cB sh v c E E ch v c cB sh v c

B B ch v c E c sh v c B B ch v c E c sh v c

′ ′= − = +

′ ′= + = −
, 

or in the vector record 

,

1
,

v v v
E E ch v B sh

c c c

v v
B B ch v E sh

c vc c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ = + ×

′ = − ×

� � ��

� � ��
              (4.11) 

This is conversions (4.5). 

If(4.4) is expanded in a series, we obtain 

2

2

1
( , ) ( ) ( ) 1

4 2

v
ech v vcr v r ch r

r c c
ϕ ϕ ϕπε

⊥

⊥
⊥

 ′ = = = + 
 

. 

As can be seen, it differs from the ratio (2.17) is only 

factor 
1

2
. 
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5. Conclusion 

Coulomb law determines the static force, which acts 

between two fixed charges. However, this law does not give 

the answer, how this force will change, if charges will 

accomplish relative motion. Answer to this question can be 

obtained from the laws of induction. In the article it is shown 

that also the scalar potential and the electric field of charge at 

the observation point depend on relative motion of charge 

relative to this point. 

References 

[1] R. Feynman, R. Leighton, M. Sends, Feynman lectures on 
physics, –М..Mir, Vol. 6(1977). 

[2] F. F. Mende, On refinement of equations of electromagnetic 
induction,– Kharkov, deposited in VINITI, No 774 – B88 
Dep.,1988. 

[3] F. F. Mende, Are there errors in modern physics. Kharkov, 
Constant,2003. 

[4] F. F. Mende. On refinement of certain laws of classical 
electrodynamics, arXiv, physics/0402084. 

[5] F. F. Mende. Conception of the scalar-vector potential in 
contemporary electrodynamics, arXiv.org/abs/physics/0506083. 

[6] F. F. Mende, Great misconceptions and errors physicists XIX-
XX centuries. Revolution in modern physics, Kharkоv NTMT, 
2010. 

[7] F. F. Mende New electrodynamics. Revolution in the modern 
physics. Kharkov, NTMT, 2012. 

[8] F. F.  Mende, New approaches in contemporary classical 
electrodynamics. Part II, Engineering Physics, №2, 2013, p. 3-
17. 

[9] S.Ramo, John. Winner. Fields and Waves in modern 
electronics. OGIZ: 1948. 

[10] F. F. Mende. The Classical Conversions of Electromagnetic 
Fields on Their Consequences. AASCIT Journal of Physics. 
Vol. 1, No. 1, 2015, pp. 11-18. 

 

 


