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Abstract 
The equation of induction and Maxwell's equations play very important role in the 

electrodynamics. However, is absent the complete system of equations, which is capable 

of solving entire spectrum of electrodynamic processes in the material media. In the article 

it is shown that Maxwell's equations can be represented in the symmetrical form, which 

solve stated problem. Is introduced the new concept of kinetic capacity, which describes 

the energy processes, connected with the precessional motion of the magnetic moments of 

atoms in the magnetized media. The concepts of the electrokinetic and magnetopotential 

waves, which describe wave processes in the nonmagnetic and magnetized material media, 

are introduced. It is shown that the equations of electrodynamics can be recorded in a 

plural manner with the use of different potentials and currents. 

1. Introduction 

The laws of classical electrodynamics they reflect experimental facts they are 

phenomenological. the fundamental equations of contemporary classical electrodynamics 

are Maxwell's equations. They are written as follows for the vacuum: 
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where E
�

, H
�

are tension of electrical and magnetic field, 0D Eε=
� �

, 0B Hµ=
� �

are 

electrical and magnetic induction, 
0

µ , 
0

ε are magnetic and dielectric constant of vacuum. 

From Maxwell's equations follow the wave equations  
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these equations show that in the vacuum can be extended the 

plane electromagnetic waves, the velocity of propagation of 

which is equal to the speed of light  

0 0

1
c

µ ε
=                      (1.7) 

For the material media Maxwell's equation they take the 

following form: 

0

H B
rot E

t t
µµ ∂ ∂= − = −

∂ ∂

� �
�

ɶ ,              (1.8) 

0

E D
rot H nev nev

t t
εε ∂ ∂= + = +

∂ ∂

� �
� � �

ɶ ,           (1.9) 

div D ne=
�

,                   (1.10) 

0div B =
�

,                     (1.11) 

where µɶ , εɶ  are the relative magnetic and dielectric 

constants of the medium and n , e , v
�

 are density, value and 

charge rate. 

Equations (1.8) and (1.9) indicate that Maxwell's equations 

for the material media are asymmetrical.  

2. Plasmo-Like Media 

Let us write down Maxwell's equations for the plasmo-like 

media, in which the ohmic losses can be disregarded. To such 

media in the first approximation, can be related the 

superconductors, free electrons or ions in the vacuum 

(subsequently conductors). In this case the equation of motion 

of electron takes the form: 

dv
m eE

dt
=
�

�
,                  (2.1) 

where  m  is mass electron, e  is  electron charge, E
�

is the 

tension of electric field, v
�

 is speed of the motion of charge. 

In the work [1] it is shown that this equation can be used 

also for describing the electron motion in the hot plasma. 

Using an expression for the current density 

,j nev=
� �

                      (2.2) 

from (2.1) we obtain the current density of the conductivity 

2

L

ne
j E dt

m
= ∫

��
.                  (2.3) 

in relationship (2.2) and (2.3) the value of n  represents 

electron density. After introducing the designation  

2k

m
L

ne
= ,                        (2.4) 

we find 

1
L

k

j E dt
L

= ∫
��

                    (2.5) 

In this case the value 
k

L  presents the specific kinetic 

inductance of charge carriers [2]. Its existence connected with 

the fact that charge, having a mass, possesses inertia properties. 

Pour on 0 sinE E tω=
� �

 relationship (2.5) it will be written 

down for the case of harmonics: 

0

1
cos

L

k

j E t
L

ωω= −
��

,              (2.6) 

from relationship (2.5) and (2.6) is evident that 
Lj
�

 presents 

inductive current, since. its phase is late with respect to the 

tension of electric field to the angle 
2

π
. 

If charges are located in the vacuum, then during the 

presence of summed current it is necessary to consider bias 

current 

0 0 0 cos
E

j E t
tε

∂ε ε ω∂= =
�

��
. 

is evident that this current bears capacitive nature, since. its 

phase anticipates the phase of the tension of electrical to the 

angle 
2

π
. Thus, summary current density will be written 

down [3-6]: 

0

1

k

E
j E dt

t L

∂ε ∂∑ = + ∫
�

��
, 

or 

0 0

1
cos

k

j E t
L

ωε ωωΣ

 
= − 
 

��
.         (2.7) 

In relationship (2.7) the value, which stands in the brackets, 

presents summary susceptance of this medium σ Σ  and it 

consists it, in turn, of the capacitive 
C

σ  and by the inductive 

L
σ of the conductivity  

0

1
C L

k
L

σ σ σ ωε ωΣ = + = − . 

Relationship (2.7) can be rewritten in other designations: 

2

0

0 02
1 cosj E t

ωωε ω
ωΣ

 
= − 

 

��
, 

where 0

0

1

k
L

ω ε=  is plasma frequency. 



 AASCIT Journal of Physics 2015; 1(3): 171-179  173 

 

Value 

2

0

0 02 2

1
*( ) 1

k
L

ωε ω ε ε
ω ω

 
= − = − 

 
 

it is accepted to call the dielectric constant of dielectric 

depending on the frequency. Into it enter two not depending on 

the frequency of the parameter: the dielectric constant of 

vacuum and the kinetic inductance of charges.  

Current density for the medium in question to be 

determined by three components, which depend on the electric 

field: 

0

1

k

E
j E E dt

t L

∂σ ε ∂∑ = + + ∫
�

� ��
, 

where σ  is conductivity. 

Maxwell's equations for this case take the form: 

0

0

,

1
,

k

H
rot E

t

E
rot H E E dt

t L

∂µ ∂
∂σ ε ∂

= −

= + + ∫

�
�

�
� � �

       (2.8) 

The system of equations (2.8) completely describes all 

properties of the medium examined. The equations of this 

system are not symmetrical. In the case of the absence of 

ohmic losses from (2.8) follows the equation [7] 

2

0
0 0 2

0
k

H
rot rot H H

Lt

µ∂µ ε
∂

+ + =
�

� �

.     (2.9) 

For the case pour on, time-independent, equation (2.9) 

passes into the London equation 

0 0
k

rot rot H H
L

µ
+ =
� �

 , 

where 
2

0

L

k
L

λ µ= is London depth of penetration. 

Thus, it is possible to conclude that the equations of London 

being a special case of equation (2.9), and do not consider bias 

currents on medium.  Therefore they do not give the 

possibility to obtain the wave equations, which describe the 

processes of the propagation of electromagnetic waves in the 

superconductors. 

3. Dielectrics 

Let us examine the simplest case, when oscillating 

processes in atoms or molecules of dielectric obey the law of 

mechanical oscillator [5]. 

2
,

m

e
r E

m m

β ω − = 
 

��
                   (3.1) 

where 
m

r
�

 is deviation of charges from the position of 

equilibrium, β  is coefficient of elasticity, which 

characterizes the elastic electrical binding forces of charges in 

the atoms and the molecules. Introducing the resonance 

frequency of the bound charges  

0 m

βω = , 

we obtain from (3.1): 

2 2
.

( )m
o

e E
r

m ω ω
= −

−
              (3.2) 

Is evident that in relationship (3.2) as the parameter is 

present the natural vibration frequency, into which enters the 

mass of charge. This speaks, that the inertia properties of the 

being varied charges will influence oscillating processes in the 

atoms and the molecules. 

Since the general current density on medium consists of the 

bias current and conduction current 

0

E
rotH j nev

t
ε

∑

∂= = +
∂

�
� � �

, 

that, finding the speed of charge carriers in the dielectric as the 

derivative of their displacement through the coordinate 

2 2( )

m

o

r e E
v

t tm ω ω
∂ ∂= = −
∂ ∂−

�
�

, 

from relationship (3.2) we find 

2 2

0
0

1

( )
kd

E E
rotH j

t tL
ε

ω ω∑

∂ ∂= = −
∂ ∂−

� �
� �

.    (3.3) 

But the value 

2

m
L

kd ne
=  

presents the kinetic inductance of the charges, entering the 

constitution of atom or molecules of dielectrics, when to 

consider charges free. Therefore the relationship (3.3) it is 

possible to rewrite 

2 20
0 0

1
1

( )
kd

E
rotH j

tL
ε

ε ω ω∑

  ∂= = −   ∂− 

�
� �

.  (3.4) 

Since the value 

2

0

1
pd

kdL
ω

ε
=  

it represents the plasma frequency of charges in atoms and 

molecules of dielectric, the relationship (3.4) takes the form: 
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Value 
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( )

pdω
ε ω ε

ω ω
∗
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           (3.6) 

it is accepted to call the dielectric constant of dielectric 

depending on the frequency.  

Maxwell's equations for this case take the form: 

0

2

2 20
0

1
( )

pd

H
rotE

t

E
rotH

t

µ

ω
ε

ω ω

∂= −
∂

 ∂= − 
∂ −

 

�
�

�
�            (3.7) 

from where we immediately find the wave equation: 

2 2
2

2 20 0 2
0

1
pd E

E
t

ω
µ ε

ω ω
 ∂∇ = − 
 − ∂ 

�
�

. 

The Maxwell's equations (3.7) for the dielectrics are also 

asymmetrical.  

4. Symmetrization of the Equations of 

the Induction 

Maksvell in his famous treatise [1] during writing of the 

equations of electrodynamics used the substantive (total) 

derivative, which includes not only local time derivatives, but 

also contains convective component. Convective component 

considers the possibility of moving the frame of reference, in 

which are determined the fields with respect to the fixed frame 

of reference, in which the fields are assigned. Since during 

writing Maxwell's equations considered the rotary motion of 

frame of reference, he used a quaternion record of 

four-dimensional algebra above the real numbers. Hertz is 

later and Heaviside they excluded from the equations of 

induction convective component and wrote down them in 

particular derived [2]. In this form we use now these equations, 

calling their Maxwell's equations.  Maxwell's equations do 

not give the possibility to write down fields in the moving 

coordinate systems, if fields in the fixed system are known. In 

general form this give the possibility to make Lorenz, however, 

these conversions from the classical electrodynamics they do 

not follow. Question arises, can the principles of classical 

electrodynamics give correct results regarding pour on in the 

moving coordinate systems at least in some approximation, 

and if yes, then as the equations of electromagnetic induction 

must appear in this case. 

Writing Lorentz force 

F e E e V B ′ = + × 
� � � �

                   (4.1) 

we will note fields and forces, which appear in the moving 

frame of reference, by prime. 

Indication of how can be recorded fields in the moving 

coordinate system, if they are known in the fixed, there are 

already in the Faraday law, if we use ourselves the 

substantional derivative. For the study of this problem let us 

rewrite Faraday law in the precise form: 

B
d

E d l
d t

Φ′ ′ = −∫
��

�                 (4.2) 

The refinement of law, is more accurate than its record, it 

concerns only that circumstance that if we determine contour 

integral in the moving (prime) coordinate system, then near 

E
�

, dl
�

 must stand primes. But if circulation is determined in 

the fixed coordinate system, then primes near E
�

, dl
�

 be 

absent, but in this case to the right in expression (4.2) must 

stand particular time derivative. Usually this circumstance in 

the literature on this question is not specified. 

The substantional derivative in relationship (4.2) indicates 

the independence of the eventual result of appearance emf. in 

the outline from the method of changing the flow, i.e., flow 

can change both due to the local time derivative of the 

induction of and because the system, in which is measured 

E d l′ ′∫
��

� , it moves in the three-dimensional changing field B
�

. 

In relationship (4.2) the flow is determined from the following 

relationship  

B
B d S ′Φ = ∫
��

,              (4.3) 

where the magnetic induction B Hµ=
��

 is determined in the 

fixed coordinate system, and the element d S ′
�

 is determined 

in the moving system. Taking into account (4.3), from (4.2) we 

obtain 

d
E d l B d S

d t
′ ′ ′= −∫ ∫
� �� �

� ,          (4.4) 

and further, since 
d

V grad
d t t

∂
∂= +

�
, let us write down 

B
E d l d S B V d l V div B d S

t

∂
∂

 ′ ′ ′ ′= − − × − ∫ ∫ ∫ ∫
�

� �� �� � � � �

� (4.5) 

Let us immediately note that entire following presentation 

will be conducted under the assumption the validity of the  

Galileo conversions, i.e. d l d l′ =
� �

 и d S d S′ =
� �

. From (1.5) 

follows the well known result  

E E V B ′ = + × 
� � � �

,               (4.6) 

from which follows that during the motion in the magnetic 

field the additional electric field, determined by last term of 

relationship appears (4.6). Let us note that this relationship we 

obtained not of the conversions of Lorenz, but altogether 

having only refined Faraday law. Thus, Lorentz force is the 
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consequence of this precise law. 

From relationship (4.6) it follows that during the motion in 

the magnetic field to the charge acts the force perpendicular to 

direction of motion. However, physical nature of this force 

nowhere is examined. It should be noted that Lorentz force 

contradicts the existing laws of mechanics, since. in the 

mechanics is not known such force, which with the uniform 

and rectilinear motion of body is directed normal to direction 

of its motion.  

For explaining physical nature of the appearance of last 

term in relationship (4.6) let us write down B
�

 and E
�

 

through the magnetic vector potential BA
�

: 

, B

B

A
B rot A E

t

∂
∂= = −
�

�� �
.            (4.7) 

Then relationship (4.6)) can be rewritten 

B

B

A
E V rot A

t

∂
∂

 ′ = − + × 

�
�� �

,            (4.8) 

and further 

( ) ( )B

B B

A
E V A grad V A

t

∂
∂

′ = − − ∇ +
�

� �� � �
.       (4.9) 

The first two members of the right side of equality (1.9) can 

be gathered into the total derivative of vector potential on the 

time, namely: 

( )B

B

d A
E grad V A

d t
′ = − +

�
�� �

           (4.10) 

From relationship (4.9) it is evident that the field strength, 

and consequently also the force, which acts on the charge, 

consists of three parts. 

The first of them is obliged by the local derivative of 

magnetic vector potential on the time. The sense of second 

term of the right side of relationship (4.9) is also intelligible. It 

is connected with a change in the vector potential, but already 

because charge moves in the three-dimensional changing field 

of this potential. Other nature of last term of the right side of 

relationship (4.9). It is connected with the presence of 

potential forces, since. potential energy of the charge, which 

moves in the potential field 
B

A
�

 with the speed V
�

, is equal 

( )e V A
��

B
. The value ( )B

e grad V A
��

gives force, exactly as 

gives force the gradient of scalar potential. 

The relationship (4.9) gives the possibility to physically 

explain all composing tensions electric fields, which appears 

in the fixed and that moving the coordinate systems. If the 

discussion deals with the appearance of electrical pour on out 

of the long solenoid, where there are no magnetic pour on, 

then in this case first term of the right side of equality works 

(4.9). In the case of unipolar generator in the formation of the 

force, which acts on the charge, two last addend right sides of 

equality (4.9) participate, introducing identical contributions. 

Thus, to speak about the unipolar generator as about “an 

exception to the rule of flow” is impossible [4], since flow rule, 

as we see, this is the totality of all three components. Taking 

rotor from both parts of equality (1.10) and taking into account 

that rot grad ≡ 0, we obtain 

d B
rot E

d t
′ = −

�
�

.                (4.11) 

If there is no motion, then relationship (4.11) is converted 

into the Maxwell first equation. Certainly, on its 

informativeness relationship (4.11) strongly is inferior to 

relationship (4.2), since. in connection with the fact that rot 

grad ≡ 0, in it there is no information about the potential forces, 

designated through ( )B
e grad V A

��
. Therefore, if us interest 

all components of electrical pour on, that act on the charge 

both in the fixed and in that moving the coordinate systems, 

we must use relationship (4.2). 

Consequently, we must conclude that the moving or fixed 

charge interacts not with the magnetic field, but with the field 

of magnetic vector potential, and only knowledge of this 

potential and its evolution they give the possibility to calculate 

all force components, which act on the charges. However, 

magnetic field appears altogether only of the gradient of such 

vectorial field. 

From the aforesaid it follows that the record of Lorentz 

force in the terms of the magnetic vector potential: 

[ ] ( ) ( )B B BF eE e V rotA eE е V A еgrad V A′ = + × = − ∇ +
� � �� � � � � �

(4.12) 

is more preferable, since. the possibility to understand the 

complete structure of this force gives. 

Faraday law (4.2) is called the law of electromagnetic 

induction in connection with the fact that it it shows how a 

change in the magnetic pour on it leads to the appearance of 

electrical pour on. However, in the classical electrodynamics 

there is no law of magnetoelectric induction, which would 

show, how a change in the electrical pour on, or motion in 

them, it leads to the appearance of magnetic pour on. The 

development of classical electrodynamics followed along 

another way. Was first recorded the Ampere law  

H d l I=∫
��

� ,                  (4.13) 

where I is current, which crosses the area, included by the 

outline of integration. In the differential form relationship 

(4.13) takes the form: 

rot H jσ=
� �

 .                (4.14) 

where jσ
�

is current density of conductivity. 

Maxwell supplemented relationship (4.14) with bias current 

D
rot H j

tσ
∂
∂= +
�

� �
.              (4.15) 

But by analogy with the law of electromagnetic induction 
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(4.2) must exist the law of the magnetoelectric induction  

D
d

H d l
d t

Φ′ ′ =∫
��

� ,                  (4.16) 

where 
D

D d S ′Φ = ∫
�

is  the flow of electrical induction. 

[ ]
D

H d l d S D V d l V div D d S
t

∂
∂

′ ′ ′ ′= + × +∫ ∫ ∫ ∫
�

� ��� � � � � �

� � . (4.17) 

In contrast to the magnetic fields, when div 0B =
�

, for the 

electric fields div D ρ=
�

 and last term in the right side of 

relationship (4.17) it gives the conduction current I, and from 

relationship (4.16) the Ampere law immediately follows. 

From relationship (4.17) follows also the equality: 

[ ]H D V= ×
� � �

                    (4.18) 

which earlier could be obtained only from the  Lorenz 

conversions. 

As shown in the work [4], from relationship (4.18) follows 

and Bio-Savara law, if for enumerating the magnetic pour on 

to take the electric fields of the moving charges. In this case 

the last member of the right side of relationship (4.17) can be 

simply omitted, and the laws of induction acquire the 

completely symmetrical form of 

[ ] ,

[ ] .

B
E d l d S B V d l

t

D
H d l d S D V d l

t

∂
∂

∂
∂

′ ′ ′= − − ×

′ ′ ′= + ×

∫ ∫ ∫

∫ ∫ ∫

�
� �� � �

�
� �� � �

� �

� �

     (4.19) 

5. Symmetrization of Maxwell's 

Equations 

So that Maxwell's equations would become symmetrical, 

the first equation must take following form [12]: 

1
H

k

H
rotE H Hdt

t C
σ µ ∂= − − − ∫∂

�
� � �

,       (5.1) 

where Hσ  is conductivity of magnetic currents. 

In comparison with traditional writing of the first equation 

of Maxwell in the right side of the equation to be contained 

two additive terms. The first member of right side describes 

ohmic losses in the magnetic materials during the imposition 

on them of variable magnetic pour on.  Let us examine the 

physical sense of the last member of the right side of equation 

(5.1), who earlier in the Maxwell first equation did not be 

present.  

At the same time to us it is known that the atom, which 

possesses the magnetic moment m
�

 , placed into the magnetic 

field, and which accomplishes in it precessional motion, has 

potential energy 
m

U mHµ= −
��

. Therefore potential energy 

can be accumulated not only in the electric fields, but also in 

the precessional motion of magnetic moments, which does not 

possess inertia. Similar case is located also in the mechanics, 

when the gyroscope, which precesses in the field of external 

gravitational forces, accumulates potential energy. Regarding 

mechanical precessional motion is also noninertial and 

immediately ceases after the removal of external forces. The 

same situation occurs also for the case of the precessing 

magnetic moment. Its precession is noninertial and ceases at 

the moment of removing the magnetic field. 

Therefore it is possible to expect that with the description of 

the precessional motion of magnetic moment in the external 

magnetic field in the right side of relationship (5.3) can appear 

a term of the same type as in relationship   

0

1

k

E
rotH E E dt

t L

∂σ ε ∂= + + ∫
�

� � �

 

It will only stand 
k

L , instead of the kinetic capacity, which 

characterizes that potential energy, which has the precessing 

magnetic moment in the magnetic field: 

Resonance processes in the plasma and the dielectrics are 

characterized by the fact that in the process of fluctuations 

occurs the alternating conversion of electrostatic energy into 

the kinetic kinetic energy of charges and vice versa. This 

process can be named electrokinetic and all devices: lasers, 

masers, filters, etc, which use this process, can be named 

electrokinetic. At the same time there is another type of 

resonance - magnetic. If we use ourselves the existing ideas 

about the dependence of magnetic permeability on the 

frequency, then it is not difficult to show that this dependence 

is connected with the presence of magnetic resonance. In order 

to show this, let us examine the concrete example of 

ferromagnetic resonance. If we magnetize ferrite, after 

applying the stationary field 
0

H  in parallel to the axis z , the 

like to relation to the external variable field medium will come 

out as anisotropic magnetic material with the complex 

permeability in the form of tensor [13] 

*( ) 0

*( ) 0

0 0

T

T

L

i

i

µ ω α

µ α µ ω
µ

 −
 

=  
 
 
 

 , 

where 

0 0

2 2 2 2

0 0

*( ) 1 , , 1,
( ) ( )

T L

M Mγ ω γ
µ ω α µ

µ ω µ ω
Ω

= − = =
− Ω − Ω

 

moreover 

Ω= |γ| 
0

H
                 (5.2) 

is natural frequency of precession and 

0 0 0
( 1)М Hµ µ= −             (5.3) 

is a magnetization of medium. Taking into account (5.2) and 
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(5.3) for *( )
T

µ ω , it is possible to write down 

2

2 2

( 1)
*( ) 1

T

µµ ω
ω
Ω −= −

− Ω
           (5.4) 

This value is conventionally designated as the depending on 

the frequency iagnitnoy permeability of magnetic material.  

if we consider that the electromagnetic wave is propagated 

along the axis x  and there are components pour on 
yH , z

H , 

then in this case the Maxwell first equation will be written 

down: 

0

yZ
T

HE
rot E

x t

∂∂ µ µ∂ ∂= =
��

�
. 

Taking into account (5.4), we will obtain 

2

0 2 2

( 1)
1

yH
rot E

t

∂µµ ∂ω
 Ω −= − − Ω 

�
�

. 

for the case of ω >>Ω we have 

2

0 2

( 1)
1

yH
rot E

t

∂µµ ∂ω
 Ω −= − 
 

�
�

 .          (5.5) 

assuming 
0 siny yH H tω=  and taking into account that in 

this case 

2y

y

H
H d t

t

∂
ω∂ = − ∫

�
�

, 

we obtain from (5.5) 

2

0 0 ( 1)
y

y

H
rot E H d t

t

∂
µ µ µ∂= + Ω − ∫

�
� �

, 

or 

0

1y

y

k

H
rot E H d t

t C

∂
µ ∂= + ∫

�
� �

             (5.6) 

for the case  ω <<  Ω we find 

0

y
H

rot E
t

∂
µ µ ∂=

�
�

. 

Value 

2

0

1

( 1)
kC

µ µ
=

Ω − , 

which is introduced in relationship (5.6), let us name kinetic 

capacity [12].  

Similarly can be described electron paramagnetic 

resonance. 

With which is connected existence of kinetic capacity, and 

its which physical sense? If the direction of magnetic moment 

does not coincide with the direction of external magnetic field, 

then the vector of this moment begins to precess around the 

vector of magnetic field with the frequency  Ω. The magnetic 

moment of m
�

 possesses in this case potential energy 

mU m B= − ⋅
��

. This energy similar to energy of the charged 

capacitor is potential, because precessional motion, although 

is mechanical, however, it not inertia and instantly it does 

cease during the removal of magnetic field. However, with the 

presence of magnetic field precessional motion continues until 

the accumulated potential energy is spent, and the vector of 

magnetic moment will not become parallel to the vector of 

magnetic field. 

Wave processes and the waves, which are determined by 

equation (5.6) they can be named magnetopotential. 

Idea of the Maxwell first equation by relationship (5.1) in 

combination with the second symmetrical Maxwell equation 

gives the possibility to present with the aid of these equations 

entire spectrum of electrodynamic processes in the material 

media. 

6. Plurality of the Forms of the Writing 

of the Electrodynamic Laws 

Magnetic and electric fields can be expressed through the 

vector potential of magnetic field and the vector potential of 

electric field [14]  

HH rot A=
��

                     (6.1) 

EE rot A=
��

                      (6.2) 

Consequently, Maxwell's equations can be written down 

with the aid of these potentials: 

H

E

A
rot A

t
µ ∂

= −
∂

�
�

                  (6.3) 

E

H

A
rot A

t
ε ∂

=
∂

�
�

                  (6.4) 

For each of these potentials it is possible to obtain wave 

equation, in particular 

2

2

E
E

A
rot rot A

t
εµ ∂

= −
∂

�
�

             (6.5) 

and to consider that in the space are extended not the magnetic 

and electric fields, but the field of electrical vector potential. 

In this case, as can easily be seen of the relationships (6.1 - 

6.4), magnetic and electric field they will be determined 

through this potential by the relationships: 

E

E

A
H

t

E rot A

ε ∂
=

∂
=

�
�

��
                   (6.6) 
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Spatial derivative Erot A
�

 and local time derivative EA

t

∂
∂

�

 

are connected with wave equation (6.5). 

Thus, the use only of one electrical vector potential makes it 

possible to completely solve the task about the propagation of 

electrical and magnetic pour on. Taking into account (6.6), 

Poynting's vector can be written down only through the vector 

EA
�

: 

E
E

A
P rot A

t
ε
 ∂

= × ∂ 

�
��

. 

Characteristic is the fact that with this method of 

examination necessary condition is the presence at the 

particular point of space both the time derivatives, and the 

gradients of one and the same potential. 

This task can be solved by another method, after writing 

down wave equation for the magnetic vector potential: 

2

2

H

H

A
rot rot A

t
εµ ∂

= −
∂

�
�

.              (6.7) 

In this case magnetic and electric fields will be determined 

by the relationships 

H

H

H rot A

A
E

t
µ

=

∂
= −

∂

��

�
�  . 

Poynting's vector in this case can be found from the 

following relationship: 

H

H

A
P rot A

t
µ
 ∂

= − × ∂ 

�
��

. 

Spatial derivative 
H

rot A
�

 and local time derivative of 

H
A

t

∂
∂

�

 are connected with wave equation (6.7). 

But it is possible to enter and differently, after introducing, 

for example, the electrical and magnetic currents 

E
j rot H=

��
, 

H
j rot E=

��
. 

The equations also can be recorded for these currents: 

E

H

j
rot j

t
µ ∂

= −
∂

�
�

, 

H

E

j
rot j

t
ε ∂

=
∂

�
�

. 

This system in its form and information concluded in it 

differs in no way from Maxwell's equations, and it is possible 

to consider that in the space the magnetic or electric currents 

are extended. And the solution of the problem of propagation 

with the aid of this method will again include complete 

information about the processes of propagation. 

The method of the introduction of new vector examined 

pour on it is possible to extend into both sides ad infinitum, 

introducing all new vectorial fields. Naturally in this case one 

should introduce and additional calibration, thus, there is an 

infinite set of possible writings of electrodynamic laws, but 

they all are equivalent according to the information concluded 

in them.  

7. Conclusion 

In the article it is shown that Maxwell's equations can be 

represented in the symmetrical form and such equations 

describe entire spectrum of electrodynamic processes in the 

material media. Is introduced the new concept of kinetic 

capacity, which describes the energy processes, connected 

with the precessional motion of the magnetic moments of 

atoms in the magnetized media. The concepts of the 

electrokinetic and magnetopotential waves, which describe 

wave processes in the nonmagnetic and magnetized material 

media, are introduced. It is shown that the equations of 

electrodynamics can be recorded in a plural manner with the 

use of different potentials and currents. 
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