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Abstract 
By all is well known this phenomenon as rainbow. To any specialist in the electrodynamics 

it is clear that the appearance of rainbow is connected with the dependence on the 

frequency of the phase speed of the electromagnetic waves, passing through the drops of 

rain. Since water is dielectric, with the explanation of this phenomenon J. Heaviside R. 

Vul assumed that this dispersion was connected with the frequency dispersion 

(dependence on the frequency) of the dielectric constant of water. Since then this point of 

view is ruling. However, this approach is physical and methodological error, that also is 

shown in this article. This error occurred because of the fact that during the record of 

current in the material media they were entangled integral and the derivative of the 

harmonic function, which take the identical form and are characterized by only signs. 

1. Introduction 

By all is well known this phenomenon as rainbow. To any specialist in the 

electrodynamics it is clear that the appearance of rainbow is connected with the 

dependence on the frequency of the phase speed of the electromagnetic waves, passing 

through the drops of rain. Since water is dielectric, with the explanation of this 

phenomenon J. Heaviside R. Vul assumed that this dispersion was connected with the 

frequency dispersion (dependence on the frequency) of the dielectric constant of water. 

Since then this point of view is ruling [1-6]. 

However very creator of the fundamental equations of electrodynamics Maxwell 

considered that these parameters on frequency do not depend, but they are fundamental 

constants. As the idea of the dispersion of dielectric and magnetic constant was born, and 

what way it was past, sufficiently colorfully characterizes quotation from the monograph 

of well well-known specialists in the field of physics of plasma [1]: “J. itself. Maxwell 

with the formulation of the equations of the electrodynamics of material media considered 

that the dielectric and magnetic constants are the constants (for this reason they long time 

they were considered as the constants). It is considerably later, already at the beginning of 

this century with the explanation of the optical dispersion phenomena (in particular the 

phenomenon of rainbow) J. Heaviside R. Vul showed that the dielectric and magnetic 

constants are the functions of frequency. But very recently, in the middle of the 50's, 

physics they came to the conclusion that these values depend not only on frequency, but 

also on the wave vector. On the essence, this was the radical breaking of the existing ideas. 

It was how a serious, is characterized the case, which occurred at the seminar L. D. Landau 

into 1954  during the report of A. I. Akhiezer on this theme of Landau suddenly 

exclaimed, after smashing the speaker: ” This is delirium, since the refractive index cannot 

be the function of refractive index”. Note that this said L. D. Landau - one of the 

outstanding physicists of our time” (end of the quotation). 
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It is incomprehensible from the given quotation, that 

precisely had in the form Landau. However, its subsequent 

publications speak, that it accepted this concept [2]. 

That rights there was Maxwell, who considered that the 

dielectric and magnetic constant of material media on 

frequency they do not depend.  However, in a number of 

fundamental works on electrodynamics [2-6] are committed 

conceptual, systematic and physical errors, as a result of 

which in physics they penetrated and solidly in it were 

fastened such metaphysical concepts as the frequency 

dispersion of the dielectric constant of material media and, in 

particular, plasma. The propagation of this concept to the 

dielectrics led to the fact that all began to consider that also the 

dielectric constant of dielectrics also depends on frequency. 

These physical errors penetrated in all spheres of physics and 

technology. They so solidly took root in the consciousness of 

specialists, that many, until now, cannot believe in the fact that 

the dielectric constant of plasma is equal to the dielectric 

constant of vacuum, but the dispersion of the dielectric 

constant of dielectrics is absent. There is the publications of 

such well-known scholars as the Drudes, Vull, Heaviside, 

Landau, Ginsburg, Akhiezer, Tamm [1-6], where it is 

indicated that the dielectric constant of plasma and dielectrics 

depends on frequency. This is a systematic and physical error. 

This systematic and physical error became possible for that 

reason, that without the proper understanding of physics of the 

proceeding processes occurred the substitution of physical 

concepts by mathematical symbols, which appropriated 

physical, but are more accurate metaphysical, designations, 

which do not correspond to their physical sense. But if we 

examine the purely mathematical point of view, then Landau, 

and following it and other authors entangled integral and 

derivative of harmonic function, since they forgot, that the 

derivative and integral in this case take the identical form, and 

they are characterized by only signs. 

2. Plasmo-Like Media 

By plasma media we will understand such, in which the 

charges can move without the losses. To such media in the first 

approximation, can be related the superconductors, free 

electrons or ions in the vacuum (subsequently conductors). In 

the absence magnetic field in the media indicated equation of 

motion for the electrons takes the form: 

dv
m eE

dt
=
�

�

,                       (2.1) 

where m  is the mass electron, e  is the electron charge, E
�

is the tension of electric field, v
�

 is the speed of the motion of 

charge. 

In the work [6] it is shown that this equation can be used 

also for describing the electron motion in the hot plasma. 

Therefore it can be disseminated also to this case. 

Using an expression for the current density 

,j nev=
�

�

                     (2.2) 

from (2.1) we obtain the current density of the conductivity 

2

L

ne
j E dt

m
= ∫

��

.               (2.3) 

In relationship (2.2) and (2.3) the value n  represents 

electron density. After introducing the designation 

2k

m
L

ne
= ,                    (2.4) 

we find 

1
L

k

j E dt
L

= ∫
��

.                 (2.5) 

In this case the value 
k

L  presents the specific kinetic 

inductance of charge carriers [7-11]. Its existence connected 

with the fact that charge, having a mass, possesses inertia 

properties. Field on 0 sinE E tω=
� �

 relationship (2.5) it will be 

written down for the case of harmonics: 

0

1
cos

L

k

j E t
L

ω
ω

= −
��

.           (2.6) 

For the mathematical description of electrodynamic 

processes the trigonometric functions will be here and 

throughout, instead of the complex quantities, used so that 

would be well visible the phase relationships between the 

vectors, which represent electric fields and current densities. 

From relationship (2.5) and (2.6) is evident that Lj
�

 

presents inductive current, since. its phase is late with respect 

to the tension of electric field to the angle 
2

π
. 

If charges are located in the vacuum, then during the 

presence of summed current it is necessary to consider bias 

current 

0 0 0 cos
E

j E t
t

ε
∂ε ε ω
∂

= =
�

��

. 

Is evident that this current bears capacitive nature, since its 

phase anticipates the phase of the tension of electrical field to 

the angle 
2

π
. Thus, summary current density will compose 

[8-10] 

0

1

k

E
j E dt

t L

∂ε
∂∑ = + ∫
�

��

, 

or 
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0 0

1
cos

k

j E t
L

ωε ω
ωΣ

 
= −  
 

��

.         (2.7) 

If electrons are located in the material medium, then should 

be considered the presence of the positively charged ions. 

However, with the examination of the properties of such 

media in the rapidly changing fields, in connection with the 

fact that the mass of ions is considerably more than the mass 

of electrons, their presence usually is not considered. 

In relationship (2.7) the value, which stands in the brackets, 

presents summary susceptance of this medium σΣ  and it 

consists it, in turn, of the the capacitive 
C

σ  and by the 

inductive 
L

σ  the conductivity 

0

1
C L

k
L

σ σ σ ωε
ωΣ = + = − . 

Relationship (2.7) can be rewritten and differently: 

2

0
0 02

1 cosj E t
ωωε ω
ωΣ

 
= − 

 

��

, 

where 
0

0

1

k
L

ω
ε

=  is plasma frequency. 

And large temptation here appears to name the value 

2

0
0 02 2

1
*( ) 1

k
L

ωε ω ε ε
ω ω

 
= − = − 

 
, 

by the depending on the frequency dielectric constant of 

plasma, that also is made in all existing works on physics of 

plasma. But this is incorrect, since. this mathematical symbol 

is the composite parameter, into which simultaneously enters 

the dielectric constant of vacuum and the specific kinetic 

inductance of charges. It is clear from the previous 

examination that the parameter *( )ε ω  gives the possibility 

in one coefficient to combine derivative and the integral of 

harmonic function, since they are characterized by only signs 

and thus impression is created, that the dielectric constant of 

plasma depends on frequency. It should be noted that a similar 

error is perfected by such well-known physicists as Akhiezer, 

Tamm, Ginsburg [3-5]. 

This happened still and because, beginning to examine this 

question, Landau introduced the determinations of dielectric 

constant only for the static fields on, but he did not introduce 

this determination for the variables fields on. Let us introduce 

this determination. 

If we examine any medium, including plasma, then current 

density (subsequently we will in abbreviated form speak 

simply current) it will be determined by three components, 

which depend on the electric field. The current of resistance 

losses there will be sinphase to electric field. The permittance 

current, determined by first-order derivative of electric field 

from the time, will anticipate the tension of electric field on 

the phase to 
2

π
. This current is called bias current.  The 

conduction current, determined by integral of the electric field 

from the time, will lag behind the electric field on the phase to 

2

π
. All three components of current indicated will enter into 

the second equation of Maxwell and others components of 

currents be it cannot. Moreover all these three components of 

currents will be present in any nonmagnetic regions, in which 

there are losses. Therefore it is completely natural, the 

dielectric constant of any medium to define as the coefficient, 

confronting that term, which is determined by the derivative of 

electric field by the time in the second equation of Maxwell. In 

this case one should consider that the dielectric constant 

cannot be negative value. This connected with the fact that 

through this parameter is determined energy of electrical 

fields on, which can be only positive. 

Without having introduced this clear determination of 

dielectric constant, Landau begins the examination of the 

behavior of plasma in the ac fields. In this case is not separated 

separately the bias current and conduction current, one of 

which is defined by derivative, but by another integral, is 

written as united bias current. It makes this error for that 

reason, that in the case of harmonic oscillations the form of the 

function, which determine and derivative and integral, is 

identical, and they are characterized by only sign. Performing 

this operation, Landau does not understand, that in the case of 

harmonic electrical fields on in the plasma there exist two 

different currents, one of which is bias current, and it is 

determined by the dielectric constant of vacuum and 

derivative of electric field. Another current is conduction 

current and is determined by integral of the electric field. 

These two currents are antiphase. But since both currents 

depend on frequency, moreover one of them depends on 

frequency linearly, and another it is inversely proportional to 

frequency, between them competition occurs. The conduction 

current predominates with the low frequencies, the bias 

current, on the contrary, predominates with the high. However, 

in the case of the equality of these currents, which occurs at 

the plasma frequency, occurs current resonance. 

Let us emphasize that from a mathematical point of view to 

reach in the manner that it entered to Landau, it is possible, but 

in this case is lost the integration constant, which is necessary 

to account for initial conditions during the solution of the 

equation, which determines current density in the material 

medium. 

The obviousness of the committed error is visible based on 

other example. 

Relationship (2.7) can be rewritten and differently: 

2

2

0

0

1

cosj E t
L

ω
ω

ω
ωΣ

 
− 

 = −
��  

and to introduce another mathematical symbol 
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22
0

2

0

*( )
1

1

k k

k

L L
L

L
ω

ω εω
ω

= =
− 

− 
 

. 

In this case also appears temptation to name this bending 

coefficient on the frequency kinetic inductance. 

Thus, it is possible to write down: 

0*( ) cosj E tωε ω ωΣ =
��

, 

or 

0

1
cos

*( )
j E t

L
ω

ω ωΣ = −
��

 . 

But this altogether only the symbolic mathematical record 

of one and the same relationship (2.7). Both equations are 

equivalent. But view neither *( )ε ω nor *( )L ω  by 

dielectric constant or inductance are from a physical point. 

The physical sense of their names consists of the following: 

*( ) X
σε ω
ω

=  , 

i.e. *( )ε ω  presents summary susceptance of medium, 

divided into the frequency, and 

1
*( )

X

k
L ω

ωσ
=  

it represents the reciprocal value of the work of frequency and 

susceptance of medium. 

As it is necessary to enter, if at our disposal are values  

*( )ε ω  and *( )L ω , and we should calculate total specific 

energy? Natural to substitute these values in the formulas, 

which determine energy of electrical fields 

2

0 0

1

2
EW Eε=  

and kinetic energy of charge carriers 

2

0

1

2
j k

W L j= ,                      (2.8) 

is cannot simply because these parameters are neither 

dielectric constant nor inductance. It is not difficult to show 

that in this case the total specific energy can be obtained from 

the relationship 

( ) 2

0

*( )1

2

d
W E

d

ωε ω
ω∑ = ⋅ ,              (2.9) 

from where we obtain 

2 2 2 2

0 0 0 0 0 02

1 1 1 1 1

2 2 2 2 k
k

W E E E L j
L

ε ε
ωΣ = + = + . 

We will obtain the same result, after using the formula 

2

0

1

*( )1

2

k

d
L

W E
d

ω ω
ω

 
 
  =

. 

The given relationships show that the specific energy 

consists of potential energy of electrical fields on and to 

kinetic energy of charge carriers. 

With the examination of any media by our final task appears 

the presence of wave equation. In this case this problem is 

already practically solved. Maxwell's equations for this case 

take the form: 

0

0

,

1
,

k

H
rot E

t

E
rot H E dt

t L

∂µ
∂

∂ε
∂

= −

= + ∫

�

�

�

� �

             (2.10) 

where 0ε , 0µ  are dielectric and magnetic constant of 

vacuum. 

The system of equations (2.10) completely describes all 

properties of nondissipative conductors. From it we obtain 

2

0

0 0 2
0

k

H
rot rot H H

Lt

µ∂µ ε
∂

+ + =
�

� �

           (2.11) 

For the case fields on, time-independent, equation (2.11) 

passes into the equation of London 

0 0

k

rot rot H H
L

µ
+ =
� �

, 

where 
2

0

L

k
L

λ
µ

=  is London depth of penetration. 

Thus, it is possible to conclude that the equations of London 

being a special case of equation (2.11), and do not consider 

bias currents on medium. Therefore they do not give the 

possibility to obtain the wave equations, which describe the 

processes of the propagation of electromagnetic waves in the 

superconductors. 

Fields on wave equation in this case it appears as follows 

for the electrical: 

2

0

0 0 2
0

k

E
rot rot E E

Lt

µ∂µ ε
∂

+ + =
�

� �

. 

For constant electrical fields on it is possible to write down 

0 0

k

rot rot E E
L

µ
+ =
� �

. 

Consequently, dc fields penetrate the superconductor in the 

same manner as for magnetic, diminishing exponentially. 

However, the density of current in this case grows according 

to the linear law 
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1
L

k

j E dt
L

= ∫
��

. 

The carried out examination showed that the dielectric 

constant of this medium was equal to the dielectric constant of 

vacuum and this permeability on frequency does not depend. 

The accumulation of potential energy is obliged to this 

parameter. Furthermore, this medium is characterized still and 

the kinetic inductance of charge carriers and this parameter 

determines the kinetic energy, accumulated on medium. 

Thus, are obtained all necessary given, which characterize 

the process of the propagation of electromagnetic waves in 

conducting media examined. However, in contrast to the 

conventional procedure [2-4] with this examination nowhere 

was introduced polarization vector, but as the basis of 

examination assumed equation of motion and in this case in 

the second equation of Maxwell are extracted all components 

of current densities explicitly. 

In radio engineering exists the simple method of the idea of 

radio-technical elements with the aid of the equivalent 

diagrams. This method is very visual and gives the possibility 

to present in the form such diagrams elements both with that 

concentrated and with the distributed parameters.  The use of 

this method will make it possible better to understand, why 

were committed such significant physical errors during the 

introduction of the concept of that depending on the frequency 

dielectric constant. 

In order to show that the single volume of conductor or 

plasma according to its electrodynamic characteristics is 

equivalent to parallel resonant circuit with the lumped 

parameters, let us examine parallel resonant circuit. The 

connection between the voltage U , applied to the outline, 

and the summed current IΣ , which flows through this chain, 

takes the form 

1
C L

dU
I I I C U dt

dt L
Σ = + = + ∫ , 

where C

dU
I C

dt
=  is current, which flows through the 

capacity, and 
1

LI U dt
L

= ∫  is current, which flows through 

the inductance. 

For the case of the harmonic stress of 
0

sinU U tω=  we 

obtain 

0

1
cosI C U t

L
ω ω

ωΣ
 = − 
 

              (2.12) 

In relationship (2.12) the value, which stands in the brackets, 

presents summary susceptance σΣ  this medium  and it 

consists it, in turn, of the the capacitive 
C

σ  and by the 

inductive 
L

σ  the conductivity  

1
C L C

L
σ σ σ ω

ωΣ = + = − . 

In this case relationship (2.12) can be rewritten as follows: 

2

0

02
1 cosI C U t

ωω ω
ωΣ

 
= − 

 
, 

where 
2

0

1

LC
ω =  is the resonance frequency of parallel 

circuit. 

And here, just as in the case of conductors, appears 

temptation, to name the value 

2

0

2 2

1
*( ) 1C C C

L

ωω
ω ω

 
= − = − 

 
         (2.13) 

by the depending on the frequency capacity. Conducting this 

symbol it is permissible from a mathematical point of view; 

however, inadmissible is awarding to it the proposed name, 

since. this parameter of no relation to the true capacity has and 

includes in itself simultaneously and capacity and the 

inductance of outline, which do not depend on frequency. 

Is accurate another point of view. Relationship (2.12) can be 

rewritten and differently: 

2

2

0

0

1

cosI U t
L

ω
ω

ω
ωΣ

 
− 

 = −
, 

and to consider that the chain in question not at all has 

capacities, and consists only of the inductance depending on 

the frequency 

22

2

0

*( )
1

1

L L
L

LC
ω

ωω
ω

= =
− 

− 
 

           (2.14) 

But, just as *( )C ω , the value of *( )L ω  cannot be called 

inductance, since this is the also composite parameter, which 

includes simultaneously capacity and inductance, which do 

not depend on frequency. 

Using expressions (2.13) and (2.14), let us write down: 

0
*( ) cosI C U tω ω ωΣ = ,         (2.15) 

or 

0

1
cos

*( )
I U t

L
ω

ω ωΣ = − .          (2.16) 

The relationship (2.15) and (2.16) are equivalent, and 

separately mathematically completely is characterized the 

chain examined. But view neither *( )C ω nor *( )L ω  by 

capacity and inductance are from a physical point, although 

they have the same dimensionality. The physical sense of their 

names consists of the following: 

*( ) XC
σω
ω

= , 
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i.e. *( )C ω  presents the relation of susceptance of this chain 

and frequency, and 

1
*( )

X

L ω
ωσ

= , 

it is the reciprocal value of the work of summary susceptance 

and frequency. 

Accumulated in the capacity and the inductance energy, is 

determined from the relationships 

2

0

1

2
CW CU=                    (2.17) 

2

0

1

2
LW LI= .                    (2.18) 

How one should enter for enumerating the energy, which 

was accumulated in the outline, if at our disposal are *( )C ω  

and *( )L ω ? Certainly, to put these relationships in formulas 

(2.17) and (2.18) cannot for that reason, that these values can 

be both the positive and negative, and the energy, accumulated 

in the capacity and the inductance, is always positive. But if 

we for these purposes use ourselves the parameters indicated, 

then it is not difficult to show that the summary energy, 

accumulated in the outline, is determined by the expressions: 

2

0

1

2

X
d

W U
d

σ
ωΣ = ,                 (2.19) 

or 

[ ] 2

0

*( )1

2

d C
W U

d

ω ω
ωΣ = ,              (2.20) 

or 

2

0

1

*( )1

2

d
L

W U
d

ω ω
ωΣ

 
 
 =

.              (2.21) 

If we paint equations (2.19) or (2.20) and (2.21), then we 

will obtain identical result, namely: 

2 2

0 0

1 1
,

2 2
W CU LIΣ = +  

where 
0

U  is amplitude of voltage  on the capacity, and 
0

I is 

amplitude of the current, which flows through the inductance. 

If we compare the relationships, obtained for the parallel 

resonant circuit and for the conductors, then it is possible to 

see that they are identical, if we make 
0 0

→E U , 
0 0

→j I , 

0
→ Cε  and →

k
L L . Thus, the single volume of conductor, 

with the uniform distribution of electrical fields on and current 

densities in it, it is equivalent to parallel resonant circuit with 

the lumped parameters indicated. In this case the capacity of 

this outline is numerically equal to the dielectric constant of 

vacuum, and inductance is equal to the specific kinetic 

inductance of charges. 

Now let us visualize this situation. In the audience, where 

are located specialists, who know radio engineering and of 

mathematics, comes instructor and he begins to prove, that 

there are in nature of no capacities and inductances, and there 

is only depending on the frequency capacity and that just she 

presents parallel resonant circuit. Or, on the contrary, that 

parallel resonant circuit this is the depending on the frequency 

inductance. View of mathematics will agree from this point. 

However, radio engineering they will calculate lecturer by 

man with the very limited knowledge. Specifically, in this 

position proved to be now those scientists and the specialists, 

who introduced into physics the frequency dispersion of 

dielectric constant. 

Thus, are obtained all necessary given, which characterize 

the process of the propagation of electromagnetic waves in the 

media examined, and it is also shown that in the quasi-static 

regime the electrodynamic processes in the conductors are 

similar to processes in the parallel resonant circuit with the 

lumped parameters. However, in contrast to the conventional 

procedure [2-5] with this examination nowhere was 

introduced polarization vector, but as the basis of examination 

assumed equation of motion and in this case in the second 

equation of Maxwell are extracted all components of current 

densities explicitly. 

Based on the example of work [2] let us examine a question 

about how similar problems, when the concept of polarization 

vector is introduced are solved for their solution. Paragraph 59 

of this work, where this question is examined, it begins with 

the words: “We pass now to the study of the most important 

question about the rapidly changing electric fields, whose 

frequencies are unconfined by the condition of smallness in 

comparison with the frequencies, characteristic for 

establishing the electrical and magnetic polarization of 

substance” (end of the quotation). These words mean that that 

region of the frequencies, where, in connection with the 

presence of the inertia properties of charge carriers, the 

polarization of substance will not reach its static values, is 

examined. With the further consideration of a question is done 

the conclusion that “in any variable field, including with the 

presence of dispersion, the polarization vector 
0= −

� � �

P D Eε  

(here and throughout all formulas cited they are written in the 

system  SI) preserves its physical sense of the electric 

moment of the unit volume of substance” (end of the 

quotation). Let us give the still one quotation: “It proves to be 

possible to establish (unimportantly - metals or dielectrics) 

maximum form of the function ( )ε ω with the high 

frequencies valid for any bodies. Specifically, the field 

frequency must be great in comparison with “the frequencies” 

of the motion of all (or, at least, majority) electrons in the 

atoms of this substance. With the observance of this condition 

it is possible with the calculation of the polarization of 

substance to consider electrons as free, disregarding their 

interaction with each other and with the atomic nuclei” (end of 

the quotation). 

Further, as this is done and in this work, is written the 

equation of motion of free electron in the ac field 
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=
�

�dv
m eE

dt
, 

from where its displacement is located 

2
= −

�

� eE
r

mω
. 

Then is indicated that the polarization 
�

P  is a dipole 

moment of unit volume and the obtained displacement is put 

into the polarization 

2

2
= = −

�

�

� ne E
P ner

mω
. 

In this case point charge is examined, and this operation 

indicates the introduction of electrical dipole moment for two 

point charges with the opposite signs, located at a distance 
�

r  

= −� �

e
p er , 

where the vector 
�

r is directed from the negative charge 

toward the positive charge. This step causes bewilderment, 

since the point electron is examined, and in order to speak 

about the electrical dipole moment, it is necessary to have in 

this medium for each electron another charge of opposite sign, 

referred from it to the distance 
�

r . In this case is examined the 

gas of free electrons, in which there are no charges of opposite 

signs. Further follows the standard procedure, when 

introduced thus illegal polarization vector is introduced into 

the dielectric constant 

2

0 0 02 2

0

1
1
 

= + = − = − 
 

�

� � � � �

k

ne E
D E P E E

m L
ε ε ε

ω ε ω
, 

and since plasma frequency is determined by the relationship 

2

0

1=p

k
L

ω
ε , 

the vector of the induction immediately is written  

2

0 2
1
 

= −  
 

� �

p
D E

ω
ε

ω
. 

With this approach it turns out that constant of 

proportionality 

2

0 2
( ) 1

 
= −  

 

pω
ε ω ε

ω
, 

between the electric field and the electrical induction, illegally 

named dielectric constant, depends on frequency. 

Precisely this approach led to the fact that all began to 

consider that the value, which stands in this relationship 

before the vector of electric field, is the dielectric constant 

depending on the frequency, and electrical induction also 

depends on frequency.  And this it is discussed in all, without 

the exception, fundamental works on the electrodynamics of 

material media [2-6]. 

But, as it was shown above this parameter it is not dielectric 

constant, but presents summary susceptance of medium, 

divided into the frequency. Thus, traditional approach to the 

solution of this problem from a physical point of view is 

erroneous, although formally this approach is permitted from 

a mathematical point of view, with this du not to consider 

initial conditions with the calculation of integral in the 

relationships, which determine conduction current. 

Further into §61 of work [2] is examined a question about 

the energy of electrical and magnetic field in the media, which 

possess by the so-called dispersion. In this case is done the 

conclusion that relationship for the energy of such fields 

( )2 2

0 0

1

2
= +W E Hε µ ,              (2.22) 

that making precise thermodynamic sense in the usual media, 

with the presence of dispersion so interpreted be cannot. These 

words mean that the knowledge of real electrical and magnetic 

fields on medium with the dispersion insufficiently for 

determining the difference in the internal energy per unit of 

volume of substance in the presence fields on in their absence. 

After such statements is given the formula, which gives 

correct result for enumerating the specific energy of electrical 

and magnetic fields on when the dispersion present 

( ) ( )2 2

0 0

( ) ( )1 1

2 2
= +

d d
W E H

d d

ωε ω ωµ ω
ω ω

        (2.23) 

But if we compare the first part of the expression in the right 

side of relationship (2.23) with relationship (2.9), then it is 

evident that they coincide. This means that in relationship 

(2.23) this term presents the total energy, which includes not 

only potential energy of electrical fields on, but also kinetic 

energy of the moving charges. On what base is recorded last 

term in the relationship (2.23) not at all clearly. 

Therefore conclusion about the impossibility of the 

interpretation of formula (2.22), as the internal energy of 

electrical and magnetic fields on in the media with the 

dispersion it is correct. However, this circumstance consists 

not in the fact that this interpretation in such media is 

generally impossible. It consists in the fact that for the 

definition of the value of specific energy as the 

thermodynamic parameter in this case is necessary to correctly 

calculate this energy, taking into account not only electric field, 

which accumulates potential energy, but also current of the 

conduction electrons, which accumulate the kinetic energy of 

charges (2.8). The conclusion, which now can be made, 

consists in the fact that, introducing into the custom some 

mathematical symbols, without understanding of their true 

physical sense, and, all the more, the awarding to these 

symbols of physical designations unusual to them, it is 

possible in the final analysis to lead to the significant errors, 

that also occurred in the work [2]. 
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3. Transverse Plasma Resonance 

Now let us show how the poor understanding of physics of 

processes in conducting media it led to the fact that proved to 

be unnoticed the interesting physical phenomenon transverse 

plasma resonance in the nonmagnetized plasma, which can 

have important technical appendices.  This phenomenon can 

have important technical appendices [13]. 

Is known that the plasma resonance is longitudinal. But 

longitudinal resonance cannot emit transverse electromagnetic 

waves. However, with the explosions of nuclear charges, as a 

result of which is formed very hot plasma, occurs 

electromagnetic radiation in the very wide frequency band, up 

to the long-wave radio-frequency band. Today are not known 

those of the physical mechanisms, which could explain the 

appearance of this emission.  On existence in the 

nonmagnetized plasma of any other resonances, except 

Langmuir, earlier known it was not, but it occurs that in the 

confined plasma the transverse resonance can exist, and the 

frequency of this resonance coincides with the frequency of 

Langmuir resonance, i.e., these resonance are degenerate. 

Specifically, this resonance can be the reason for radio-wave 

emission with the explosions of nuclear charges, since the 

cloud of explosion in the process of its development for a 

while remains limited.  For explaining the conditions for the 

excitation of this resonance let us examine the long line, which 

consists of two ideally conducting planes, as shown in Fig 1. 

 

Fig. 1. The two-wire circuit, which consists of two ideally conducting planes. 

Linear capacity and inductance of this line without taking 

into account edge effects they are determined by the 

relationships [8,9]: 

0 0

b
C

a
ε=    and  0 0

a
L

b
µ=  

Therefore with an increase in the length of line its total 

capacitance 0

b
C z

a
εΣ =  and summary inductance 

0

a
L z

b
µΣ =  increase proportional to its length. 

If we into the extended line place the plasma, charge 

carriers in which can move without the losses, and in the 

transverse direction pass through the plasma the current I , 

then charges, moving with the definite speed, will accumulate 

kinetic energy. Let us note that here are not examined 

technical questions, as and it is possible confined plasma 

between the planes of line how. In this case only fundamental 

questions, which are concerned transverse plasma resonance 

in the nonmagnetic plasma, are examined. 

Since the transverse current density in this line is 

determined by the relationship 

,
I

j nev
bz

= =  

that summary kinetic energy of the moving charges can be 

written down 

2 2

2 2

1 1

2 2k

m m a
W abzj I

bzne neΣ = = .        (3.1) 

Relationship (3.1) connects the kinetic energy, accumulated 

in the line, with the square of current; therefore the coefficient, 

which stands in the right side of this relationship before the 

square of current, is the summary kinetic inductance of line. 

2k

m a
L

bzneΣ = ⋅                       (3.2) 

Thus, the value 

2k

m
L

ne
=                      (3.3) 

presents the specific kinetic inductance of charges. This value 

was already previously introduced by another method (see 

relationship (2.4)). Relationship (3.3) is obtained for the case 

of the direct current, when current distribution is uniform. 

Subsequently for the larger clarity of the obtained results, 

together with their mathematical idea, we will use the method 

of equivalent diagrams. The section, the lines examined, long 

dz  can be represented in the form the equivalent diagram, 

shown in Fig. 2 (a). 
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Fig. 2. а is the equivalent the schematic of the section of the two-wire circuit: б is the equivalent the schematic of the section of the two-wire circuit, filled with no 

dissipative plasma; в is the equivalent the schematic of the section of the two-wire circuit, filled with dissipative plasma. 

From relationship (7.2) is evident that in contrast to CΣ  

and LΣ  the value of 
k

L Σ  with an increase in z  does not 

increase, but it decreases. Connected this with the fact that 

with an increase in z  a quantity of parallel-connected 

inductive elements grows. 

The equivalent the schematic of the section of the line, 

filled with nondissipative plasma, it is shown in Fig. 2 б . Line 

itself in this case will be equivalent to parallel circuit with the 

lumped parameters: 

0 ,

,k

bz
C

a

L a
L

bz

ε
=

=
 

in series with which is connected the inductance 

0

adz

b
µ . 

But if we calculate the resonance frequency of this outline, 

then it will seem that this frequency generally not on what 

sizes depends, actually: 

2
2

0 0

1 1

k

ne

CL L mρω
ε ε

= = = . 

Is obtained the very interesting result, which speaks, that 

the resonance frequency macroscopic of the resonator 

examined does not depend on its sizes. Impression can be 

created, that this is plasma resonance, since. the obtained 

value of resonance frequency exactly corresponds to the value 

of this resonance. But it is known that the plasma resonance 

characterizes longitudinal waves in the long line they, while 

occur transverse waves. In the case examined the value of the 

phase speed in the direction z  is equal to infinity and the 

wave vector 0k =
�

. 

This result corresponds to the solution of system of 

equations (2.10) for the line with the assigned configuration. 

In this case the wave number is determined by the 

relationship: 
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2
2

2

2 2
1

z
k

c

ρωω
ω

 
 = −
 
 

 ,                  (3.4) 

and the group and phase speeds 

2

2 2

2
1

g
v c

ρω

ω

 
 = −
 
 

,                    (3.5) 

2
2

2

2
1

F

c
v

ρω
ω

=
 
 −
 
 

,                     (3.6) 

where 

1/2

0 0

1
c

µ ε
 

=  
 

is speed of light in the vacuum. 

For the present instance the phase speed of electromagnetic 

wave is equal to infinity, which corresponds to transverse 

resonance at the plasma frequency. Consequently, at each 

moment of time fields on distribution and currents in this line 

uniform and it does not depend on the coordinate z , but 

current in the planes of line in the direction of  is absent. This, 

from one side, it means that the inductance LΣ  will not have 

effects on electrodynamic processes in this line, but instead of 

the conducting planes can be used any planes or devices, 

which limit plasma on top and from below. 

From relationships (3.4), (3.5) and (3.6) is evident that at 

the point of 
p

ω ω=  occurs the transverse resonance with the 

infinite quality. With the presence of losses in the resonator 

will occur the damping, and in the long line in this case  

0
z

k ≠ , and in the line will be extended the damped transverse 

wave, the direction of propagation of which will be normal to 

the direction of the motion of charges. It should be noted that 

the fact of existence of this resonance is not described by other 

authors. 

Before to pass to the more detailed study of this problem, let 

us pause at the energy processes, which occur in the line in the 

case of the absence of losses examined. 

The fields on the characteristic impedance of plasma, which 

gives the relation of the transverse components of electrical 

and magnetic, let us determine from the relationship 

1/ 2
2

0

0 2
1

y

x z

E
Z Z

H k

ρωµ ω
ω

−
 
 = = = −
 
 

, 

where 0
0

0

Z
µ
ε

=  is characteristic resistance of vacuum. 

The obtained value of Z  is characteristic for the 

transverse electrical waves in the waveguides. It is evident that 

when 
p

ω ω→ , then Z → ∞ , and 0
x

H → . When ω >
p

ω  

in the plasma there is electrical and magnetic component of 

field. The specific energy of these fields on it will be written 

down: 

2 2

, 0 0 0 0

1 1

2 2
E H y xW E Hε µ= +  

Thus, the energy, concluded in the magnetic field, in 
2

2
1

ρω
ω

 
 −
 
 

 of times is less than the energy, concluded in the 

electric field. Let us note that this examination, which is 

traditional in the electrodynamics, is not complete, since. in 

this case is not taken into account one additional form of 

energy, namely kinetic energy of charge carriers. Occurs that 

fields on besides the waves of electrical and magnetic, that 

carry electrical and magnetic energy, in the plasma there exists 

even and the third - kinetic wave, which carries kinetic energy 

of current carriers. The specific energy of this wave is written: 

2

2 2 2

0 0 0 02 2

1 1 1 1

2 2 2k k
k

W L j E E
L

ρω
ε

ω ω
= = ⋅ = . 

Consequently, the total specific energy of wave is written as 

2 2 2

0 0 0 0 0, ,

1 1 1

2 2 2
E H y xj k

W E H L jε µ= + +  . 

Thus, for finding the total energy, by the prisoner per unit of 

volume of plasma, calculation only fields on E  and H  it is 

insufficient. 

At the point  
p

ω ω=  are carried out the relationship: 

0H

E k

W

W W

=
=  

i.e. magnetic field in the plasma is absent, and plasma presents 

macroscopic electromechanical resonator with the infinite 

quality, 
p

ω resounding at the frequency. 

Since with the frequencies ω >
p

ω  the wave, which is 

extended in the plasma, it bears on itself three forms of the 

energy: electrical, magnetic and kinetic, then this wave can be 

named elektromagnetokinetic wave. Kinetic wave is the wave 

of the current density 
1

k

j E dt
L

= ∫
��

. This wave is moved 

with respect to the electrical wave the angle 
2

π
. 

Until now considered physically unrealizable case where 

there are no losses in the plasma, which corresponds to an 

infinite quality factor plasma resonator. If losses are located, 

moreover completely it does not have value, by what physical 

processes such losses are caused, then the quality of plasma 

resonator will be finite quantity. For this case of Maxwell's 

equation they will take the form: 
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0
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,

1
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p ef
k

H
rot E

t

E
rot H E E dt

t L

∂µ
∂

∂σ ε
∂

= −

= + + ∫
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� � �

         (3.7) 

The presence of losses is considered by the term 
.p ef

Eσ
�

, 

and, using near the conductivity of the index of ef , it is thus 

emphasized that us does not interest very mechanism of losses, 

but only very fact of their existence interests. The value of 

ef
σ determines the quality of plasma resonator.  For 

measuring 
ef

σ  should be selected the section of line by the 

length of 
0

z , whose value is considerably lower than the 

wavelength in the plasma. This section will be equivalent to 

outline with the lumped parameters: 

0

0 ,
bz

C
a

ε=                     (3.8) 

0

,
k

a
L L

bz
=                      (3.9) 

0

.
,

ef

bz
G

aρσ=                    (3.10) 

where G  is conductivity, connected in parallel of C  and 

L . 

Conductivity and quality in this outline enter into the 

relationship: 

1 C
G

Q Lρ
= , 

from where, taking into account (3.8 - 3.10), we obtain 

0

.

1
ef

k
Q Lρ

ρ

εσ =                   (3.11) 

Thus, measuring its own quality plasma of the resonator 

examined, it is possible to determine 
.p ef

σ . Using (3.2) and 

(3.11) we will obtain 

0

0
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,
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kk
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rot E
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�
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 .  (3.12) 

The equivalent the schematic of this line, filled with 

dissipative plasma, is represented in Fig. 2 в. 

Let us examine the solution of system of equations (3.12) at 

the point pω ω= , in this case, since 

0

1
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k

E
E dt

t L

∂ε
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+ =∫
�

�

, 

we obtain 

0
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,

1
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P k

H
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t

rot H E
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=
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These relationships determine wave processes at the point 

of resonance. 

If losses in the plasma, which fills line are small, and 

strange current source is connected to the line, then it is 

possible to assume: 

0

0

0,

1 1
,CT

p k k

rot E

E
E E dt j

Q L t L

ε ∂ε
∂

≅

+ + =∫

�

�

� � � ,     (3.13) 

where CTj
�

 is density of strange currents. 

After integrating (3.13) with respect to the time and after 

dividing both parts to 
0

ε , we will obtain 

2
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p

p

jE E
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Q t tt
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∂ ε ∂∂
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        (3.14) 

If we relationship (3.14) integrate over the surface of 

normal to the vector E
�

 and to introduce the electric flux 

,EФ EdS= ∫
��

 we will obtain: 

2
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1 CTE E

E

p

p
p

IФ Ф
Ф

Q t tt

ω ∂∂ ∂ω
∂ ε ∂∂

+ ⋅ + = ⋅ ,      (3.15) 

where 
СТ

I  is strange current. 

Equation (3.15) is the equation of harmonic oscillator with 

the right side, characteristic for the two-level laser [14]. If the 

source of excitation was opened, then relationship (3.14) 

presents “cold” laser resonator, in which the fluctuations will 

attenuate exponentially 

2
( ) (0)

P t
Qi t PP

E EФ t Ф e e

ω

ω
−

= ⋅  , 

i.e. the macroscopic electric flux ( )
E

Ф t  will oscillate with 

the frequency 
p

ω , relaxation time in this case is determined 

by the relationship: 

2
P

P

Q
τ

ω
= . 

The problem of developing of laser consists to now only in 

the skill excite this resonator. 
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If resonator is excited by strange currents, then this 

resonator presents band-pass filter with the resonance 

frequency to equal plasma frequency and the passband 

2

p

p
Q

ω
ω∆ = . 

Another important practical application of transverse 

plasma resonance is possibility its use for warming-up and 

diagnostics of plasma. If the quality of plasma resonator is 

great, then can be obtained the high levels of electrical fields 

on, and it means high energies of charge carriers. 

4. Dielectrics 

In the existing literature there are no indications that the 

kinetic inductance of charge carriers plays some role in the 

electrodynamic processes in the dielectrics. This not thus. This 

parameter in the electrodynamics of dielectrics plays not less 

important role, than in the electrodynamics of conductors. Let 

us examine the simplest case, when oscillating processes in 

atoms or molecules of dielectric obey the law of mechanical 

oscillator [8]. Let us write down the equation of motion 

2 ,
m

e
r E

m m

β ω − = 
 

�

�

                             (4.1) 

where 
m

r
�

 is deviation of charges from the position of 

equilibrium, β  is coefficient of elasticity, which 

characterizes the elastic electrical binding forces of charges in 

the atoms and the molecules. Introducing the resonance 

frequency of the bound charges  

0
m

βω = , 

we obtain from (4.1) 

2 2
.

( )m
o

e E
r

m ω ω
= −

−
               (4.2) 

Is evident that in relationship (4.2) as the parameter is 

present the natural vibration frequency, into which enters the 

mass of charge. This speaks, that the inertia properties of the 

being varied charges will influence oscillating processes in the 

atoms and the molecules. 

Since the general current density on medium consists of the 

bias current and conduction current 

0∑

∂= = +
∂

�

� �
�E

rotH j nev
t

ε , 

that, finding the speed of charge carriers in the dielectric as the 

derivative of their displacement through the coordinate 

2 2( )
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o

r e E
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t tm ω ω
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, 

from relationship (4.2) we find 
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 .     (4.3) 

Let us note that the value 

2
=kd

m
L

ne
 

presents the kinetic inductance of the charges, entering the 

constitution of atom or molecules of dielectrics, when to 

consider charges free. Therefore relationship (4.3) it is 

possible to rewrite 

2 20
0 0

1
1
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E
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ε ω ω∑
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.    (4.4) 

Since the value 

2

0

1 = pd

kd
L

ω
ε  

it represents the plasma frequency of charges in atoms and 

molecules of dielectric, if we consider these charges free, then 

relationship (4.4) takes the form: 

2

0 2 2
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ω
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To appears temptation to name the value 

2

0 2 2

0

( ) 1
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∗
 

= −  − 

pdω
ε ω ε

ω ω
            (4.6) 

by the depending on the frequency dielectric constant of 

dielectric. But this, as in the case conductors, cannot be made, 

since this is the composite parameter, which includes now 

those not already three depending on the frequency of the 

parameter: the dielectric constant of vacuum, the natural 

frequency of atoms or molecules and plasma frequency for the 

charge carriers, entering their composition. 

Let us examine two limiting cases: 

1. If ω <<
0

ω  then from (4.5) we obtain 

2

0 2

0

1∑

  ∂= = +   ∂ 
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pd E
rotH j

t

ω
ε

ω
.             (4.7) 

In this case the coefficient, confronting the derivative, does 

not depend on frequency, and it presents the static dielectric 

constant of dielectric. As we see, it depends on the natural 

frequency of oscillation of atoms or molecules and on plasma 

frequency. This result is intelligible. Frequency in this case 

proves to be such low that the charges manage to follow the 

field and their inertia properties do not influence 

electrodynamic processes. In this case the bracketed 

expression in the right side of relationship (4.7) presents the 

static dielectric constant of dielectric. As we see, it depends on 
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the natural frequency of oscillation of atoms or molecules and 

on plasma frequency. Hence immediately we have a 

prescription for creating the dielectrics with the high dielectric 

constant. In order to reach this, should be in the assigned 

volume of space packed a maximum quantity of molecules 

with maximally soft connections between the charges inside 

molecule itself. 

2. The case, when ω >>
0

ω ., is exponential.  In this case 

2

0 2
1∑

  ∂= = −   ∂ 

�

� �

pd E
rotH j

t

ω
ε

ω
 

and dielectric became conductor (plasma) since  the obtained 

relationship exactly coincides with the equation, which 

describes plasma. 

One cannot fail to note the circumstance that in this case 

again nowhere was used this concept as polarization vector, 

but examination is carried out by the way of finding the real 

currents in the dielectrics on the basis of the equation of 

motion of charges in these media. In this case as the 

parameters are used the electrical characteristics of the media, 

which do not depend on frequency. 

From relationship (4.5) is evident that in the case of 

fulfilling the equality 0=ω ω , the amplitude of fluctuations is 

equal to infinity. This indicates the presence of resonance at 

this point. The infinite amplitude of fluctuations occurs 

because of the fact that they were not considered losses in the 

resonance system, in this case its quality was equal to infinity.  

In a certain approximation it is possible to consider that lower 

than the point indicated we deal concerning the dielectric, 

whose dielectric constant is equal to its static value. Higher 

than this point we deal already actually concerning the metal, 

whose density of current carriers is equal to the density of 

atoms or molecules in the dielectric. 

Now it is possible to examine the question of why dielectric 

prism decomposes polychromatic light into monochromatic 

components or why rainbow is formed. So that this 

phenomenon would occur, it is necessary to have the 

frequency dispersion of the phase speed of electromagnetic 

waves in the medium in question.  If we to relationship (4.5) 

add the Maxwell first equation , then we will obtain: 
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from where we immediately find the wave equation: 
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If one considers that 

0 0 2

1=
c

µ ε  

where c  is speed of light, then no longer will remain doubts 

about the fact that with the propagation of electromagnetic 

waves in the dielectrics the frequency dispersion of phase 

speed will be observed.  In the formation of this dispersion it 

will participate immediately three, which do not depend on the 

frequency, physical quantities: the self-resonant frequency of 

atoms themselves or molecules, the plasma frequency of 

charges, if we consider it their free, and the dielectric constant 

of vacuum. 

Now let us show, where it is possible to be mistaken, if with 

the solution of the examined problem of using a concept of 

polarization vector. Let us introduce this polarization vector 
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Its dependence on the frequency, is connected with the 

presence of mass in the charges, entering the constitution of 

atom and molecules of dielectrics. The inertness of charges is 

not allowed for this vector, following the electric field, to 

reach that value, which it would have in the permanent fields. 

Since the electrical induction is determined by the 

relationship: 
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that, introduced thus, it depends on frequency. 

If this induction was introduced into the Maxwell second 

equation, then it signs the form: 
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where j
∑

 is the summed current, which flows through the 

model. In expression (4.9) the first member of right side 

presents bias current in the vacuum, and the second - current, 

connected with the presence of bound charges in atoms or 

molecules of dielectric. In this expression again appeared the 

specific kinetic inductance of the charges, which participate in 

the oscillating process of 

2
=kd

m
L

ne
 . 

This kinetic inductance determines the inductance of bound 

charges. Taking into account this relationship (4.9) it is 

possible to rewrite 
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Obtained expression exactly coincides with relationship 
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(4.3). Consequently, the eventual result of examination by 

both methods coincides, and there are no claims to the method 

from a mathematical point of view. But from a physical point 

of view, and especially in the part of the awarding to the 

parameter, introduced in accordance with relationship (4.8) of 

the designation of electrical induction, are large claims, which 

we discussed. Is certain, this not electrical induction, but the 

certain composite parameter. But, without having been 

dismantled at the essence of a question, all, until now, consider 

that the dielectric constant of dielectrics depends on frequency. 

In the essence, physically substantiated is the introduction to 

electrical induction in the dielectrics only in the static electric 

fields. 

Let us show that the equivalent the schematic of dielectric 

presents the sequential resonant circuit, whose inductance is 

the kinetic inductance 
kd

L , and capacity is equal to the static 

dielectric constant of dielectric minus the capacity of the equal 

dielectric constant of vacuum. In this case outline itself proves 

to be that shunted by the capacity, equal to the specific 

dielectric constant of vacuum. For the proof of this let us 

examine the sequential oscillatory circuit, when the 

inductance  L  and the capacity  C  are connected in series. 

The connection between the current 
C

I , which flows 

through the capacity C , and the voltage  
C

U , applied to it, is 

determined by the relationships: 

1= ∫C C
U I dt

C
 

and 

= C

C

dU
I C

dt
 .                  (4.10) 

This connection will be written down for the inductance: 

1= ∫L LI U dt
L

 

and 

= L

L

dI
U L

dt
. 

If the current, which flows through the series circuit, 

changes according to the law 
0

sin=I I tω , then a voltage 

drop across inductance and capacity they are determined by 

the relationships  

0
cos=

L
U LI tω ω  

and 

0

1
cos= −

C
U I t

C
ω

ω
, 

and total stress applied to the outline is equal 

0

1
cos∑

 = − 
 

U L I t
C

ω ω
ω

. 

In this relationship the value, which stands in the brackets, 

presents the reactance of sequential resonant circuit, which 

depends on frequency. The stresses, generated on the capacity 

and the inductance, are located in the reversed phase, and, 

depending on frequency, outline can have the inductive, the 

whether capacitive reactance. At the point of resonance the 

summary reactance of outline is equal to zero. 

It is obvious that the connection between the total voltage 

applied to the outline and the current, which flows through the 

outline, will be determined by the relationship 

1

1

∑∂
= −

∂ − 
 

U
I

t
L

C
ω ω

ω
 .           (4.11) 

The resonance frequency of outline is determined by the 

relationship 

0

1=
LC

ω , 

therefore let us write down 

2

2

0

1

∑∂
=

∂ 
− 

 

UC
I

tω
ω

.             (4.12) 

Comparing this expression with relationship (4.10) it is not 

difficult to see that the sequential resonant circuit, which 

consists of the inductance L  and capacity C , it is possible to 

present to the capacity  the form dependent on the frequency  

2

2

0

( )

1

=
 

− 
 

C
C ω

ω
ω

.                 (4.13) 

This idea does not completely mean that the inductance is 

somewhere lost. Simply it enters into the resonance frequency 

of the outline 0ω . Relationship (4.12) this altogether only the 

mathematical form of the record of relationship (4.11). 

Consequently, this is ( )C ω  the certain composite 

mathematical parameter, which is not the capacity of outline. 

Relationship (4.11) can be rewritten and differently: 

( )2 2

0

1 ∑∂
= −

∂−
U

I
tL ω ω

 

and to consider that 

( )2 2

0

1
( ) = −

−
C

L
ω

ω ω .              (4.14). 

Is certain, the parameter ( )C ω , introduced in accordance 
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with relationships (4.13) and (4.14) no to capacity refers. 

Let us examine relationship (9.12) for two limiting cases: 

1. When ω <<
0

ω , we have 

∑∂
=

∂
U

I C
t

. 

This result is intelligible, since at the low frequencies the 

reactance of the inductance, connected in series with the 

capacity, is considerably lower than the capacitive and it is 

possible not to consider it. 

 

Fig. 3. а is the equivalent the schematic of the section of the line, filled with dielectric, for the case ω >> 0
ω ; б is the equivalent the schematic of the section of 

line for the case ω << 0
ω ; в is the equivalent the schematic of the section of line for entire frequency band. 

The equivalent the schematic of the dielectric, located 

between the planes of long line is shown in Fig. 3. 

2. For the case, when  ω >>
0

ω , we have 

2

1 ∑∂
= −

∂
U

I
tLω

               (4.15) 

Taking into account that for the harmonic signal 

2∑
∑

∂
= − ∫∂

U
U dt

t
ω , 

we obtain from (4.15) 

1
∑= ∫LI U dt

L
. 

In this case the reactance of capacity is considerably less 

than in inductance and chain has inductive reactance. 
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The carried out analysis speaks, that is in practice very 

difficult to distinguish the behavior of resonant circuits of the 

inductance or of the capacity. In order to understand the true 

composition of the chain being investigated it is necessary to 

remove the amplitude and phase response of this chain in the 

range of frequencies.  In the case of resonant circuit this 

dependence will have the typical resonance nature, when on 

both sides resonance the nature of reactance is different. 

However, this does not mean that real circuit elements: 

capacity or inductance depend on frequency. 

In Fig. 3 a and 5 б are shown two limiting cases. In the first 

case, when ω >>
0

ω , dielectric according to its properties 

corresponds to conductor, in the second case, when ω <<
0

ω , 

it corresponds to the dielectric, which possesses the static 

dielectric constant 

2

0 2

0

1
 

= +  
 

pdω
ε ε

ω
. 

Thus, it is possible to make the conclusion that the 

introduction, the depending on the frequency dielectric 

constants of dielectrics, are physical and terminological error. 

If the discussion deals with the dielectric constant of 

dielectrics, with which the accumulation of potential energy is 

connected, then the discussion can deal only with the static 

permeability. And precisely this parameter as the constant, 

which does not depend on the frequency, enters into all 

relationships, which characterize the electrodynamic 

characteristics of dielectrics. 

The most interesting results of applying such new 

approaches occur precisely for the dielectrics. In this case each 

connected pair of charges presents the separate unitary unit 

with its individual characteristics and its participation in the 

processes of interaction with the electromagnetic field (if we 

do not consider the connection between the separate pairs) 

strictly individually. Certainly, in the dielectrics not all dipoles 

have different characteristics, but there are different groups 

with similar characteristics, and each group of bound charges 

with the identical characteristics will resound at its frequency. 

Moreover the intensity of absorption, and in the excited state 

and emission, at this frequency will depend on a relative 

quantity of pairs of this type. Therefore the partial coefficients, 

which consider their statistical weight in this process, can be 

introduced. Furthermore, these processes will influence the 

anisotropy of the dielectric properties of molecules 

themselves, which have the specific electrical orientation in 

crystal lattice. By these circumstances is determined the 

variety of resonances and their intensities, which is observed 

in the dielectric media. The lines of absorption or emission, 

when there is a electric coupling between the separate groups 

of emitters, acquire even more complex structure. In this case 

the lines can be converted into the strips. Such individual 

approach to each separate type of the connected pairs of 

charges could not be realized within the framework earlier 

than the existing approaches. 

Should be still one important circumstance, which did not 

up to now obtain proper estimation. With the examination of 

processes in the material media, which they are both 

conductors and dielectrics in all relationships together with the 

dielectric and magnetic constant figures the kinetic inductance 

of charges. This speaks, that the role of this parameter with the 

examination of processes in the material media has not less 

important role, than dielectric and magnetic constant. This is 

for the first time noted in a number the already mentioned 

sources, including in the recently published article [11]. 

5. Brief Conclusions 

It seems in effect improbable what a large quantity of 

well-known physicists is, beginning with the Drudes, Vula and 

Heaviside [1,15] and concluding By akhiezerom, by Tamm, 

Ginsburg and Landau [2-5],  they completed such elementary 

and at the same time blunder, which served as basis for the 

development of the whole it obliged in contemporary physics, 

in which is examined the dispersion of the dielectric and 

magnetic constant of material media. But, nevertheless, this so, 

and this work convincingly proves, that this error was 

perfected and requires its correction. But this indicates not 

only the revision of the ideological part of such approaches, 

but also the introduction of corrections into a huge quantity of 

works, reference books and fundamental monographs.  And 

this work sooner or later it will arrive to accomplish to the 

present generation of scientists. The error indicated led also to 

the fact that in the field of the sight of physicists did not fall 

this interesting physical phenomenon, as the transverse 

plasma resonance in the nonmagnetized plasma, which can 

have important technical applications. 
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