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Abstract 
At present Vlasov's equations are the fundamental equations of the electrodynamics of 

the plasma, in which the electromagnetic fields are self-consistent with the fields of the 

charges, which present plasma. Into these equations enters the Lorentz force, which in 

the concept of scalar- vector potential can be expressed through the properties of the 

charged particles, which surround observation point. This approach, realized in this 

article, entirely realizes the idea of the long-range interaction of Coulomb pour on, which 

is the basis of Vlasov's equations. 

1. Introduction  

Vlasov's idea for the introduction of self-congruent field, consisted in the fact that the 

electromagnetic fields in the plasma and the fields, created by the charged particles must 

be self-consistent [1-3]. This principle easily understanding based on the example of 

cavity resonator. Its resonance frequency determines the variable electromagnetic fields, 

which are subordinated to Maxwell's equations, to which are superimposed boundary 

conditions. And if inside the resonator appears any object, including free charges, then 

its resonance frequency changes in such a way that its electromagnetic fields would be 

coordinated with the fields by those induced by outside object. Being guided by this 

principle, Vlasov originally examined the system of the general equations of plasma, 

which include three components (electrons, ions and neutral atoms), and wrote 

Boltzmann's equation for s - oh the component of plasma in the form [1-3]:  

( )
1 2 3

st st st

s s s s s

r s v s

s s s s

f e f f f
div vf E v B grad f

t m t t t

∂ ∂ ∂ ∂      + + + × = + +      ∂ ∂ ∂ ∂     

� �� �
       (1.1) 

where ( , , )
s

f r p t
� �

 - the distribution function. 

The right side of the equation (1.1) represents the integrals of collisions. This system 

of equations included also Maxwell's equations, and equation for the charge and the 

current, the expressed through the functions distributions. Since Vlasov was interested 

only in wave solutions, thus he disregarded the contributions of the integrals of 

collisions, since according to his estimations it left, that the frequencies of plasma waves 

are much more than the frequencies of the paired collisions of particles in the plasma. 

I.e., instead of the description of interaction of the charged particles in the plasma by 

means of the collisions, he proposed to use the self-congruent field, created with the 

charged particles of plasma for describing the long-range potential. Instead of 

Boltzmann's equation Vlasov proposed to use the following system of equations for 

describing the charged components of plasma (electrons with the function of 

distributions ( , , )
e

f r p t
� �

and positive ions with the distribution function ( , , )
i

f r p t
� �

): 
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( )

3 3

0
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, 0

( ) , ( )

e e e

i i i

i e i e

f f f
v eE e v B

t x p

f f f
v eE e v B

t x p

E B
rotH j rotE

t dt

divE divB

e f f d p j e f f vd p

ε

ρ

ρ

∂ ∂ ∂
 + − + × = ∂ ∂ ∂

∂ ∂ ∂
 + + + × = ∂ ∂ ∂

∂ ∂= + = −
∂

= =

= − = −∫ ∫

� �� �
� �

� �� �
� �

� �
� ��

� �

�� � �

            (1.2) 

In the relationship (1.2) in the first two equations in the 

brackets stands the force acting on the moving particle in the 

electrical and magnetic field, created by the surrounding 

charged particles. The fixed moving particles create electric 

field, and those moving – create magnetic field. But for 

writing of Vlasov's equations it is possible to use the concept 

of scalar-vector potential [1-13], which assumes the 

dependence of the scalar potential of charge on the speed.  

2. Vlasov's Equations in the Concept 

of the Scalar-Vector Potential 

The Maxwell equations do not give the possibility to write 

down fields in the moving coordinate systems, if fields in the 

fixed system are known. This problem is solved with the aid 

of the conversions of Lorenz, however, these conversions 

from the classical electrodynamics they do not follow. 

Question does arise, is it possible with the aid of the classical 

electrodynamics to obtain conversions fields on upon transfer 

of one inertial system to another, and if yes, then, as must 

appear the equations of such conversions. Indications of this 

are located already in the law of the Faraday induction. Let 

us write down Faraday law: 

Bd
E d l

d t

Φ′ ′ = −∫
��

� .              (2.1) 

As is evident in contrast to Maxwell equations in it not 

particular and substantive (complete) time derivative is used. 

The substantional derivative in relationship (2.1) indicates 

the independence of the eventual result of appearance emf in 

the outline from the method of changing the flow, i.e. flow 

can change both due to the local time derivative of the 

induction of and because the system, in which is measured , 

it moves in the three-dimensional changing field . The value 

of magnetic flux inrelationship (2.1) is determined from the 

relationship  

B B d S ′Φ = ∫
��

,                (2.2) 

where the magnetic induction B Hµ=
��

 is determined in the 

fixed coordinate system, and the element d S ′
�

 is determined 

in the moving system. Taking into account (2.2), we obtain 

from (2.1) 

d
E d l B d S

d t
′ ′ ′= −∫ ∫
� �� �

� ,               (2.3) 

and further, since 
d

v grad
d t t

∂
∂

= + � , let us write down 

B
E d l d S B v d l v div B d S

t

∂
∂

 ′ ′ ′ ′= − − × − ∫ ∫ ∫ ∫
�

� �� �� � �� �

� .  (2.4) 

In this case contour integral is taken on the outline d l ′
�

, 

which covers the area d S ′
�

. Let us immediately note that 

entire following presentation will be conducted under the 

assumption the validity of the Galileo conversions, i.e., 

d l d l′ =
� �

 and d S d S′ =
� �

. From relationship (2.6) follows 

E E v B ′ = + × 
� � ��

.            (2.5) 

If both parts of equation (2.6) are multiplied by the charge, 

then we will obtain relationship for the Lorentz force  

LF e E e v B ′ = + × 
� � ��

.        (2.6) 

Thus, Lorentz force is the direct consequence of the law of 

magnetoelectric induction. 

For explaining physical nature of the appearance of last 

term in relationship (2.5) let us write down B
�

 and E
�

 

through the magnetic vector potential 
BA
�

: 

, B
B

A
B rot A E

t

∂
∂

= = −
�

�� �

.                (2.7) 

Then relationship (2.5) can be rewritten 

B
B

A
E v rot A

t

∂
∂

 ′ = − + × 

�
�� �

                (2.8) 

and further 

( ) ( )B
B B

A
E v A grad v A

t

∂
∂

′ = − − ∇ +
�

� �� � �
           (2.9) 

The first two members of the right side of equality (2.9) 

can be gathered into the total derivative of vector potential on 

the time, namely:  

( )B
B

d A
E grad v A

d t
′ = − +

�
�� �

.                (2.10) 

From relationship (2.9) it is evident that the field strength, 

and consequently also the force, which acts on the charge, 

consists of three parts. 

First term is obliged by local time derivative. The sense of 

second term of the right side of relationship (2.9) is also 

intelligible. It is connected with a change in the vector 

potential, but already because charge moves in the three-

dimensional changing field of this potential. Other nature of 
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last term of the right side of relationship (2.9). It is connected 

with the presence of potential forces, since. potential energy 

of the charge, which moves in the potential field 
B

A
�

 with the 

speed v
�

, is equal ( )B
e v A

��
. The value ( )B

e grad v A
��

gives 

force, exactly as gives force the gradient of scalar potential. 

Taking rotor from both parts of equality (2.10) and taking 

into account that 0rot grad ≡ , we obtain 

d B
rot E

d t
′ = −

�
�

 .              (2.11) 

If there is no motion, then relationship (2.11) is converted 

into the Maxwell first equation. Relationship (2.11) is more 

informative than Maxwell equation  

B
rot E

t

∂
= −

∂

�
�

. 

Since in connection with the fact that 0rot grad ≡  , in 

Maxwell equation there is no information about the potential 

forces, designated through ( )B
e grad v A

��
.  

Let us write down the amount of Lorentz force in the terms 

of the magnetic vector potential: 

[ ] ( ) ( )L B B BF e E e v rot A e E е v A еgrad v A′ = + × = − ∇ +
� � �� � �� � �

.                  (2.12) 

Is more preferable, since the possibility to understand the 

complete structure of this force gives. 

Faraday law (2.2) is called the law of electromagnetic 

induction, however this is terminological error. This law 

should be called the law of magnetoelectric induction, since 

the appearance of electrical fields on by a change in the 

magnetic caused fields on. 

However, in the classical electrodynamics there is no law 

of magnetoelectric induction, which would show, how a 

change in the electrical fields on, or motion in them, it leads 

to the appearance of magnetic fields on. The development of 

classical electrodynamics followed along another way. 

Ampere law was first introduced: 

H d l I=∫
��

� ,                (2.13) 

where I is current, which crosses the area, included by the 

outline of integration. In the differential form relationship 

(2.13) takes the form: 

rot H jσ=
� �

,                   (2.14) 

where jσ
�

is current density of conductivity. 

Maxwell supplemented relationship (2.14) with bias 

current 

D
rot H j

t
σ

∂
∂

= +
�

� �

.                   (2.15) 

If we from relationship (2.15) exclude conduction current, 

then the integral law follows from it 

DHd l
t

∂ Φ
=

∂∫
��

� ,             (2.16) 

where 
D D dSΦ = ∫

��
 the flow of electrical induction. 

If we in relationship (2.16) use the substantional 

derivative, as we made during the writing of the Faraday law, 

then we will obtain [3-13]: 

[ ]
D

H d l d S D v d l v div D d S
t

∂
∂

′ ′ ′ ′= + × +∫ ∫ ∫ ∫
�

� ��� � � �� �

� � .    (2.17) 

In contrast to the magnetic fields, when 0divB =
�

, for the 

electrical fields on divD ρ=
�

and last term in the right side of 

relationship (2.8) it gives the conduction current of and from 

relationship (2.7) the Ampere law immediately follows. In 

the case of the absence of conduction current from 

relationship (2.17) the equality follows: 

[ ]H H v D′ = − ×
� � ��

.                    (2.18) 

As shown in the work [11], from relationship (2.18) 

follows and Bio-Savara law, if for enumerating the magnetic 

fields on to take the electric fields of the moving charges. In 

this case the last member of the right side of relationship 

(2.17) can be simply omitted, and the laws of induction 

acquire the completely symmetrical form [10-16]  

∂
 ′ ′ ′= − + ×∫ ∫ ∫  ∂

∂
 ′ ′ ′ ′= − ×∫ ∫ ∫  ∂

�
� � �� �
� �

�
� � �� �
� �

B
E dl ds v B dl H

t

D
H dl ds v D dl H

t

,                    (2.19) 

or 

∂
 ′ = − + × ∂

∂
 ′ = − × 

�
� ��

�
� ��

B
rotE rot v B

t

D
rotH rot v D

dt

                       (2.20) 

For dc fields on these relationships they take the form: 

 ′ = × 

 ′ = − × 

� ��

� ��

E v B

H v D
 .                       (2.21) 

In relationships (2.19-2.21), which assume the validity of 

the Galileo conversions, prime and not prime values present 

fields and elements in moving and fixed inertial reference 
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system (IS) respectively. It must be noted, that conversions 

(2.21) earlier could be obtained only from the Lorenz 

conversions.  

The relationships (2.19-2.21), which present the laws of 

induction, do not give information about how arose fields in 

initial fixed IS. They describe only laws governing the 

propagation and conversion fields on in the case of motion 

with respect to the already existing fields. 

The relationship (2.21) attest to the fact that in the case of 

relative motion of frame of references, between the fields E
�

 

and H
�

 there is a cross coupling, i.e. motion in the fields H
�

 

leads to the appearance fields on E
�

 and vice versa. From 

these relationships escape the additional consequences, 

which were for the first time examined in the work [13].  

The electric field 
2

g
E

rπε
=  outside the charged long rod 

with a linear density g decreases as 
1

r
, where r  is distance 

from the central axis of the rod to the observation point. 

 If we in parallel to the axis of rod in the field E  begin to 

move with the speed v∆  another IS, then in it will appear the 

additional magnetic field H E vε∆ = ∆ . If we now with respect 

to already moving IS begin to move third frame of reference 

with the speed v∆ , then already due to the motion in the field 

H∆  will appear additive to the electric field ( )2
E E vµε∆ = ∆ . 

This process can be continued and further, as a result of 

which can be obtained the number, which gives the value of 

the electric field ( )E r
v
′  in moving IS with reaching of the 

speed v n v= ∆ , when 0v∆ → , and n → ∞ . In the final analysis 

in moving IS the value of dynamic electric field will prove to 

be more than in the initial and to be determined by the 

relationship: 

( ),
2

v
gch

vc
E r v Ech

r cπε

⊥

⊥
⊥′ = = . 

If speech goes about the electric field of the single charge 

e , then its electric field will be determined by the 

relationship: 

( ) 2,
4

v
ech

c
E r v

rπε

⊥

⊥′ =  , 

where v⊥ is normal component of charge rate to the vector, 

which connects the moving charge and observation point. 

Expression for the scalar potential, created by the moving 

charge, for this case will be written down as follows: 

( , ) ( )
4

v
ech

vc
r v r ch

r c
ϕ ϕ

πε

⊥

⊥
⊥

′ = = ,           (2.22) 

where ( )rϕ is scalar potential of fixed charge. The potential 

( , )r vϕ ⊥
′  can be named scalar-vector, since it depends not only 

on the absolute value of charge, but also on speed and 

direction of its motion with respect to the observation point. 

Maximum value this potential has in the direction normal to 

the motion of charge itself. Moreover, if charge rate changes, 

which is connected with its acceleration, then can be 

calculated the electric fields, induced by the accelerated 

charge. 

During the motion in the magnetic field, using the already 

examined method, we obtain: 

( )
v

H v Hch
c

⊥
⊥′ = . 

where v⊥ is speed normal to the direction of the magnetic 

field. 

If we apply the obtained results to the electromagnetic 

wave and to designate components fields on parallel speeds 

IS as E↑ , H↑ , and E⊥ , H⊥ as components normal to it, then 

with the conversion fields on components, parallel to speed 

will not change, but components, normal to the direction of 

speed are converted according to the rule  

,

1
,

v v v
E E ch v B sh

c c c

v v
B B ch v E sh

c vc c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ = + ×

′ = − ×

� � ��

� � ��
                   (2.23) 

where c  is speed of light. 

Conversions fields (2.23) they were for the first time 

obtained in the work [10]. 

However, the iteration technique, utilized for obtaining the 

given relationships, it is not possible to consider strict, since 

its convergence is not explained  

Let us give a stricter conclusion in the matrix form [17,18].  

Let us examine the totality IS of such, that IS K1 moves 

with the speed v∆  relative to IS K, IS K2 moves with the 

same speed v∆  relative to K1 , etc. If the module of the speed 

v∆  is small (in comparison with the speed of light c), then for 

the transverse components fields on in IS K1, K2,…. we have: 

2

1 1

2

2 1 1 2 1 1

/

/

E E v B B B v E c

E E v B B B v E c

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥ ⊥ ⊥ ⊥

= + ∆ × = − ∆ ×

= + ∆ × = − ∆ ×

� � � � � �� �

� � � � � �� �
 .    (2.24) 

Upon transfer to each following IS of field are obtained 

increases in E∆
�

 and B∆
�

 

2
, /E v B B v E c⊥ ⊥∆ = ∆ × ∆ = −∆ ×

� � � �� � ,       (2.25)
 
 

where of the field E⊥

�
 and B⊥

�
relate to current IS. Directing 

Cartesian axis x  along v∆� , let us rewrite (4.7) in the 

components of the vector  

2, , /y z y y zE B v E B v B E v c∆ = − ∆ ∆ = ∆ ∆ = ∆ .    (2.26) 

Relationship (2.26) can be represented in the matrix form 

2

2

0 0 0 1

0 0 1 0

0 1/ 0 0

1/ 0 0 0

y

z

y

z

E

E
U AU v U

Bc

B
c

 −   
  
  ∆ = ∆ =   
  
     − 

. 
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If one assumes that the speed of system is summarized for 

the classical law of addition of velocities, i.e. the speed of 

final IS 
N

K K′ =  relative to the initial system K  is v N v= ∆ , 

then we will obtain the matrix system of the differential 

equations of 

( )
( )

dU v
AU v

dv
= ,                              (2.27) 

with the matrix of the system v independent of the speed A . 

The solution of system is expressed as the matrix exponential 

curve exp( )vA : 

( ) exp( ) , (0)U U v vA U U U′ ≡ = = ,              (2.28) 

here U  is matrix column fields on in the system K , and U ′  
is matrix column fields on in the system K ′ . Substituting 

(2.28) into system (2.27), we are convinced, that U ′  is 

actually the solution of system (2.27): 

[ ]exp( )( )
exp( ) ( )

d vAdU v
U A vA U AU v

dv dv
= = = . 

It remains to find this exponential curve by its expansion 

in the series: 

2 2 3 3 4 41 1 1
exp( ) ...

2! 3! 4!
va E vA v A v A v A= + + + + +  

where E  is unit matrix with the size 4 4× . For this it is 

convenient to write down the matrix A  in the unit type form  

2

0 0 1 0 0
, , 0 .

/ 0 1 0 0 0

A

c

α
α

α

     −     = = =
     

−     

 

then 

2 2
2

2

/ 0

0 /

c
A

c

α

α

 − =
 

− 

, 
3 2

3 4

0 /3

/ 0

c
A

c

α

α

 
 =
 

− 

, 

4 4

4 4

/ 04

0 /

c
A

c

α

α

 
 =
 
 

, 
5 4

5 6

0 /5

/ 0

c
A

c

α

α

 − =
 
 

 

And the elements of matrix exponential curve take the 

form 

2 4

2 411 22
exp( ) exp( ) ....,

2! 4!

v v
vA vA I

c c
   = = − + −     

3 5
2

321 12 5
exp( ) exp( ) ..... ,

3! 5!

v v v
vA c vA I

c c c c

α  
   = − = − + −    

 

 

where I is the unit matrix 2 2× . It is not difficult to see that 
2 4 6 8 .... Iα α α α− = = − = = = , therefore we finally obtain 

( )

( )
( )

/ /
exp( )

/ / /

/ 0 0 /

0 / / 0

0 / / / 0

/ / 0 0 /

Ich v c c sh v c
vA

sh v c c Ich v c

ch v c csh v c

ch v c csh v c

ch v c c ch v c

sh v c c ch v c

α

α

 − 
= = 
 
 

 − 
 
 
 
 
 
 − 
 

. 

Now we return to (4.10) and substituting there exp( )vA , we 

find 

( ) ( )
/ / , / / ,

/ / / , / / /

y y z z z y

z yy y z z

E E ch v c cB sh v c E E ch v c cB sh v c

B B ch v c E c sh v c B B ch v c E c sh v c

′ ′= − = +

′ ′= + = −
, 

or in the vector record 

,

1
,

v v v
E E ch v B sh

c c c

v v
B B ch v E sh

c vc c

⊥ ⊥ ⊥

⊥ ⊥ ⊥

′ = + ×

′ = − ×

� � ��

� � ��
             (2.29) 

This is conversions (2.23). 

Consequently, if charged particle moves, then the fields of 

its surrounding particles that of field in the system of 

coordinates of the moving particle are converted in 

accordance with the relationships (2.23). 

In Vlasov's equations (1.2) in the first two equations, the 

members concluded in the brackets, present the force, which 

acts on the moving charge. But the concept of scalar vector 

potential gives the possibility to calculate this force in the 

system of coordinates of the moving charge, taking into 

account long-range forces, the surrounding charges, after 

excluding magnetic field. This force is written as follows  

2

1

4

j j

j j

g v
F e ch

crπε
⊥= − ∑

�

,         (2.30) 

where 
jg  is one of the external charges, which is been 

located at a distance 
jr from the charge e , 

jv ⊥ is normal 

component by relative charge rate 
jg with respect to the 

charge e  .  

Substituting the expression of force (2.30) in the 

relationships (1.2), we obtain writing of Vlasov's equations in 

the concept of scalar- vector potential.  

2

1

4
0

⊥ 
−   

∂ ∂ ∂
+ =

∂ ∂ ∂ 
∑

�
� �

e e ej j

j j

g v
e ch

cr

f f f
v

t x pπε
 

2

1

4
0

⊥ 
  

∂ ∂ ∂
+ + =

∂ ∂ ∂ 
∑

�
� �

i i j

j j

ijg v
e ch

cr

f f f
v

t x pπε
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3 3

,

, 0

( ) , ( )

∂ ∂= + = −
∂

= =

= − = −∫ ∫

� �
� ��

� �

�� � �

i e i e

E B
rotH j rotE

t dt

divE divB

e f f d p j e f f vd p

ε

ρ

ρ

 

3. Conclusion 

At present Vlasov's equations are the fundamental 

equations of the electrodynamics of the plasma, in which the 

electromagnetic fields are self-consistent with the fields of 

the charges, which present plasma. Into these equations 

enters the Lorentz force, which in the concept of scalar- 

vector potential can be expressed through the properties of 

the charged particles, which surround observation point. This 

approach, realized in this article, entirely realizes the idea of 

the long-range interaction of Coulomb pour on, which is the 

basis of Vlasov's equations.  
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