Estimation of Entrance Skin Dose (ESD) in Patients Undergoing Forearm X-rays from Federal Medical Centre, Jalingo, Taraba State, Nigeria

Amaitem John Iseh¹⁺, Catherine Ignatius¹, John Wansah¹, Bunmi Jacob Akeredolu¹, Cookey Iyen¹, John Actor Ocheje¹, Moses Onudibia¹, Justin Ime Ukpong²

¹Department of Pure and Applied Physics, Faculty of Pure and Applied Sciences, Federal University Wukari, Wukari, Nigeria
²Department of Science Technology, Akwa Ibom State Polytechnic, Ikot Ekpene, Nigeria

Email address
iseh@fuwukari.edu.ng (A. J. Iseh)

Corresponding author

Citation

Abstract
X-ray is a type of ionizing radiation and due to the fact that it is capable of causing DNA damage, there is need to monitor for the purpose of controlling, the amount of X-ray that patients are being exposed to. This research is a means of quality control on radiation exposure because it investigates the rate at which patients undergoing forearm X-rays from Federal Medical Centre (FMC) Jalingo, Taraba State are exposed through the measurement of their Entrance Skin Dose (ESD). The Entrance Skin Dose (ESD) for patients undergoing forearm X-rays was calculated using Edmond's 1984 formula for children with and without POP and adults with and without POP using X-ray exposure data collected for 40 patients, 20 for each age group and 10 for each category. The calculated Entrance Skin Dose (ESD) ranges from 0.3150mGy to 0.4990mGy for children without POP, 0.4371mGy to 0.5843mGy for children with POP, 0.3826mGy to 0.6716mGy for adults without POP and 0.4851mGy and 0.9774mGy for adults with POP. The maximum mean Entrance Skin Dose (ESD) of 0.6747mGy obtained is below the NNRA standard of 1mGy for a period of one year and does not pose any significant effect on patients undergoing forearm X-rays in the hospital. From the results, even though the estimated Entrance Skin Dose (ESD) is within NNRA’s yearly limit, unavoidable exposures should be administered considering the NNRA’s 5mGy for five years period when necessary while adhering to the ALARA principle of As Low As Reasonably Achievable.

1. Introduction

Ionizing radiation is a form of radiation with sufficient energy to remove electrons from their atomic or molecular orbital shells in the tissues they penetrate [8]. These ionizations received in sufficient quantities over a period of time can result in tissues damage and disruption of cellular functions at the molecular level. The dose delivered to
tissue from ionizing radiation can either be acute (the energy from the radiation absorbed over a few hours or day) or chronic (the energy absorbed over a longer period of months years or over a lifetime). For radioactive materials with effective half-lives longer than a day, even if the intake are brief (minutes to a few days), the energy is deposited in tissue where it remains over a period longer than a few days, so that the exposure to the surrounding tissue is of a chronic duration. The healthy population would decline if ionizing radiation techniques were not available to diagnose diseases and detect trauma. Meanwhile there is no excuse for complacency and it is a basic premise of radiation protection practice that any exposure should be justified by weighing the potential harm against the perceived benefit [15] [31].

X-ray is the most frequently used ionizing radiation for diagnostic imaging and it plays a significant role in effective health care delivery both in developed and developing countries [23] [36]. X-ray is said to be the major contributor to the collective effective dose of ionizing radiation to the general public (Personal and Public). The need for radiation dose assessment of the patients during diagnostic X-ray examinations has been highlighted by increasing knowledge of hazard of ionizing radiation [23] [35]. Because of the deleterious effect of X-rays, it is necessary to protect patients undergoing diagnostic and therapeutic procedures. The aim of any diagnostic X-ray examination is to produce images of sufficient and optimum quality. However, a good quality radiograph is not the one that is most appealing to the eye but, that in which sufficient details can be easily elicited.

In keeping radiation dose to patients to a minimum in hospitals, it is useful to be able to estimate prior to medical examinations the dose to patients as a function of radiographic exposure parameters [15] [23] [43]. According to [15] by Edmond's formula, radiation dose to patients from diagnostic X-ray machine assures a simple functional dependence on radiographic exposure parameters of tube potential (kVp) tube current and time of exposure (mAs), Source to Skin Distance (SSD), filtration and thickness. Monitoring of patients during the examination has been a major way of assessing radiation dose received in diagnostic and therapeutic radiography.

[23] further noted that for the purpose of optimization in radiation protection, dose delivered to patients during diagnosis is studied with assessment of image quality. This is a common practice in many parts of the world where patients with clinical cases requiring X-ray examination which are of ten times not properly done and it is largely due to lack of facilities and suitable qualified personnel, as a result there is no sufficient information about patient's radiation dose.

Patient's dose has often been described by the Entrance Skin Dose (ESD) as measured in the centre of X-ray beam. The ESD is a measure of the radiation dose absorbed by the skin where the X-ray beam enters the patient. Because of the simplicity of its measurement, ESD is considered widely as the index to be assessed and monitored. ESD is measured directly using thermo luminescent dosimeter (TLD) placed on the skin of the patient's or indirectly from measurements of dose area products using a large area transmission ionization.

In the early 1990s, the United States Food and Drug Administration (FDA) received reports of significant radiation induced skin injuries associated with interventional fluoroscopy, prompting the release in 1994 and 1995 of the guideline publications on documenting radiation use [4]. A number of professional radiological societies, including Society of Interventional Radiology (SIR) have been working since then to reduce the frequency of these events. In 2007, the American College of Radiology (ACR) published its recommendations on issues related to patient's radiation exposure in medicine. The document focused mostly on diagnostic imaging procedures.

In radiological exposure, a periodic dose assessment should be made to enhance the optimization of the radiation protection of the patients and to deliver minimum dose to the examinations. Dose measurements are required to comply with some international guidelines and regulations [41].

In this research, ESDs for some patient's undergoing forearm X-rays at the Federal Medical Centre (FMC) Jalingo were measured by method of X-rays output factors.

2. Materials and Method

The X-ray machine at FMC Jalingo is the PLD500B Eschmed Medical England model with a source to skin distance (SSD) of 90cm and a filtration thickness of 1.5mmAl. With an exposure range of 10-20s and the focal spot reduced to small so as to cover just the forearm and reduce scattered radiation as the elbow was placed at 90° and the forearm placed against the cassette. The transparent positioning aid was centred on the cassette and the dominant forearm was placed on it. The forearm was then slightly positioned in ulna deviation so that it fell along a straight line before the patient was exposed to the radiation in which could either be anterior-posterior, posterior-anterior or lateral.

The survey method in this work was based on the guidelines established by the Nigerian Nuclear Regulatory Authority (NNRA). The skin dose to patients was determined by calculation from the X-ray tube parameters and exposure radiographic parameters using Edmonds (1984) skin dose formula which is given as:

\[
SkinDose(\mu Gy) = 418(kVp)^{1.74} \times mAs \times \frac{(T + 0.114)}{(SSD)^2}
\]

(1)

Where kVp is the peak voltage responsible for the quality of penetration, mAs is the exposure current-time, responsible for quantity of electrons from the filament, T is the total filtration of the beams always a constant for each X-ray machine type and SSD is source to skin distance.

The sampling population/size used in this research was 40 patients which was broken into 10 samples for children without POP, 10 samples for children with POP, 10 samples...
for adults without POP and 10 samples for adults with POP

3. Results and Discussion

The results obtained from this research is presented in Tables 1 and 2 below. The maximum mean Entrance Skin Dose recorded was 0.6747 mGy which was for adults with POP at and this is due to the age and body size of patients exposed to ionizing radiation in this hospital as well as the filtration thickness used in this hospital which is 1.5 mm Al.

Table 1. X-ray exposure Entrance Skin Dose (ESD) on Children with and without POP at Federal Medical Center (FMC), Jalingo.

<table>
<thead>
<tr>
<th>AGE 0-18</th>
<th>Children without POP</th>
<th></th>
<th>Children with POP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak kilo-voltage (kVp) (kV)</td>
<td>Exposure Current-Time (mAs)</td>
<td>Entrance Skin Dose (mGy)</td>
<td>Mean Entrance Skin Dose (mGy)</td>
<td>Peak kilo-voltage (kVp) (kV)</td>
</tr>
<tr>
<td>49.0000</td>
<td>10.0000</td>
<td>0.3516</td>
<td>0.4022</td>
<td>49.0000</td>
</tr>
<tr>
<td>49.0000</td>
<td>12.0000</td>
<td>0.4220</td>
<td>0.4480</td>
<td></td>
</tr>
<tr>
<td>46.0000</td>
<td>14.0000</td>
<td>0.4411</td>
<td></td>
<td></td>
</tr>
<tr>
<td>46.0000</td>
<td>10.0000</td>
<td>0.3150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0000</td>
<td>12.0000</td>
<td>0.4071</td>
<td>0.4724</td>
<td></td>
</tr>
<tr>
<td>49.0000</td>
<td>11.5000</td>
<td>0.4044</td>
<td></td>
<td></td>
</tr>
<tr>
<td>49.0000</td>
<td>12.0000</td>
<td>0.4220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0000</td>
<td>10.4000</td>
<td>0.3528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>48.0000</td>
<td>12.0000</td>
<td>0.4071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0000</td>
<td>13.7000</td>
<td>0.4990</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2. X-ray exposure Entrance Skin Dose (ESD) on Adult with and without POP at Federal Medical Center (FMC), Jalingo.

<table>
<thead>
<tr>
<th>AGE 19-70</th>
<th>Adult without POP</th>
<th></th>
<th>Adult with POP</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Peak kilo-voltage (kVp) (kV)</td>
<td>Exposure Current-Time (mAs)</td>
<td>Entrance Skin Dose (mGy)</td>
<td>Mean Entrance Skin Dose (mGy)</td>
<td>Peak kilo-voltage (kVp) (kV)</td>
</tr>
<tr>
<td>52.0000</td>
<td>13.0000</td>
<td>0.5069</td>
<td>0.5207</td>
<td>67.0000</td>
</tr>
<tr>
<td>52.0000</td>
<td>13.0000</td>
<td>0.5069</td>
<td></td>
<td></td>
</tr>
<tr>
<td>58.0000</td>
<td>10.9000</td>
<td>0.5140</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50.0000</td>
<td>15.0000</td>
<td>0.5463</td>
<td></td>
<td></td>
</tr>
<tr>
<td>64.0000</td>
<td>12.0000</td>
<td>0.6716</td>
<td>0.5207</td>
<td>67.0000</td>
</tr>
<tr>
<td>49.0000</td>
<td>17.0000</td>
<td>0.5978</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60.0000</td>
<td>11.0000</td>
<td>0.5502</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40.0000</td>
<td>16.8000</td>
<td>0.4150</td>
<td></td>
<td></td>
</tr>
<tr>
<td>47.0000</td>
<td>11.7000</td>
<td>0.3826</td>
<td></td>
<td></td>
</tr>
<tr>
<td>55.0000</td>
<td>12.0000</td>
<td>0.5159</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The column chart in Figure 1 below indicates that the Entrance Skin Dose (ESD) increases with POP and with age. Even though the mean Entrance Skin Dose (ESD) for Federal Medical Center (FMC), Jalingo could be high when compared to some other hospitals, it is not above the 1 mGy per annum of NNRA standard. Also from this results, children without POP could make use of the X-ray machine at Federal Medical Center (FMC) Jalingo two times in a year and will still be within the NNRA’s 1 mGy per year limit considering the fact that children are more likely to incur fractures, broken arms and dislocations from playgrounds, etc., as any exposure above this could increase the patients risk level to effects of X-ray radiations. Adults with or without POP who wish to make use of the X-ray machine at Federal Medical Center (FMC) Jalingo can be exposed to X-ray radiation only once for a period of a year as exposures above this will place the patients at risk of effect of high exposure to X-ray radiations. However, when need for higher or more frequent exposures to X-rays as discussed above for a period of one year from the hospital arises, patients could be exposed to X-rays bearing in mind that the 5 mGy limit for a duration of 5 years must not be exceeded.
4. Conclusion

Results presented in this research work indicates that Entrance Skin Dose (ESD) received by patients undergoing forearm X-rays in Federal Medical Center (FMC), Jalingo is not above the 1mGy standard guideline of the Nigerian Nuclear Regulatory Agency (NNRA) for a year, and exposure of patients to X-ray radiation at such rate can be done more than once in a year for children with and without POP. The maximum mean Entrance Skin Dose (ESD) recorded is 0.6747mGy for adults with POP from Federal Medical Center (FMC), Jalingo and this rate can only exceed 1mGy if patients are exposed twice in a year.

References

Figure 1. Chart of Mean Entrance Skin Dose (mGy) at FMC Jalingo grouped according to age group with or without POP.

